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Chapter 1

Introduction

1.1 Motivation

Modern telecommunication systems influence our daily lives to a large degree. They

do not only enable us to reach each other or to access information virtually anywhere,

but are also an enabler for a significant part of modern economics. IT networking

infrastructures increase the productivity of companies and impact not only the flow

of information, but are used to manage the flow of physical products as well. It

is therefore worthwhile to study and understand how the infrastructure underlying

these systems works.

This course wants to provide understanding of a specific topic in telecommunication

systems, namely the analysis of data packet flows. This knowledge is very useful es-

pecially for traffic and network engineers, because it allows them to describe existing

or potential future networks, to identify problems or to dimension a system.

Specifically, the focus of the course will be on simple analytical tools originating

from the field of queueing theory that have an application specifically in modern

telecommunication networks. Therefore, although the theoretical part could be

applied to any kind of queues (such as customers waiting at a check-out counter), we

will always establish a connection to specific features of telecommunication networks

and give examples for the application of the presented concepts in this field. These

should allow a student to train the use of these methods, and later to apply them

8



CHAPTER 1. INTRODUCTION 9

to other problems from practice.

However, we would like to add two disclaimers at this point. The first is that these

notes are not meant to be a comprehensive discussion of queueing theory. Very good

and exhaustive literature exists on this topic, such as the suggested in next section,

so that we do not need to add redundant information. Instead, we use the concepts

from these works that are most relevant to modern telecommunication networks and

apply them in this context.

Second, we do not claim that the methods presented here are the only tool needed by

a network engineer or planner. We view them more as one item in a larger toolbox.

Each of the tools in this box has its use and excels for specific jobs, while others

might be better in different situations. Thus, methodologies such as measurements

of live networks or simulation should be seen as complementing to the analytical

approach we focus on here.

For example, while network measurements and the evaluation of system logs can pro-

vide very detailed information from real systems, it is often very resource-consuming

to test a large number of different configurations. Real equipment has to be set up

and configured for each measurement run, making it relatively costly to obtain re-

sults. On the other hand, analytical formulas might provide results for a large set of

different scenarios and parameter settings in a very short time, allowing to explore

a solution space much quicker. However, analytical methods often make simplifying

and partially unrealistic assumptions, and thus produce results that might not be

seen exactly like this in a real system.

1.2 Recommended Books

These are the books we recommend:

• Bertsekas, Dimitri P., Robert G. Gallager, and Pierre Humblet. Data net-

works. Vol. 2. New Jersey: Prentice-Hall International, 1992.

• Gross, Donald. Fundamentals of Queueing Theory. John Wiley & Sons,

2008.

• Kleinrock, Leonard. ”Queueing Systems, volume I: theory.” (1975).
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Figure 1.1: The three related pillars in system dimensioning
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Chapter 2

Random Phenomena in Packet

Networks

2.1 Introduction

A phenomenon is ’random’ when we do not know how it will behave in the future.

For instance, to toss a coin is a random phenomenon as we can not know in advance

the result of it. However, we can try to characterize it by estimating those aspects

that do not change with the time. For instance, in the case we toss a coin, we can

estimate the probability to obtain a head and a cross by simply tossing it several

times, and counting the number of occurrences of each type.

Another example is the data exchange in communication networks. When and how

we will communicate with others is unknown, as well as the data we will send to

the other side. Random phenomena is common in the communication process and

a key phenomena in communication networks. Examples of random phenomena in

telecommunications networks are:

• The instant of time that packets are generated at the transmitter, which de-

pends on the user’s activity (i.e. clicking links on a web page, talking in a

voice call, etc.).

• The size of the packets that are transmitted over a link, which depend on the

specific contents exchanged at that moment.

12



CHAPTER 2. RANDOM PHENOMENA IN PACKET NETWORKS 13

• The capacity of a wireless link when nodes move.

• The number of users that transmit data at the same time over the same link.

Therefore, we need to understand the ’randomness’ present in telecommunication

networks to be able to characterize their performance.

The random variables we will consider in this text will change with the time (i.e.,

take new values). In that case, the stochastic process behind the random variable

is called a stochastic process. In addition, we will assume that all the stochastic

processes considered are stationary.

2.2 Characterizing a random variable

Let X be a random variable that takes values from the set X , which is called the

state space of X. Each possible value x ∈ X has assigned a probability, and will be

referred as P{X = x}. For an stationary stochastic process that is stationary, the

P{X = x} does not change with the time.

A first consideration about X is related with X :

• If the range of values that X can take is finite, we say that X is a random

variable with a discrete state space.

• If the range of values that X can take is infinite, we say that X is a random

variable with a continuous state space.

A second consideration is when the random variable X takes a new value.

• If X can take a new value at any arbitrary time, we say that X is a continuous

time random variable.

• If X can take a new value only at specific instants of time, we say that X is

a discrete time random variable.

Finally, a third consideration is about the dependence between present, past and

future values.

• We will say that the stochastic process that generates X is an independent

stochastic process.
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• If there are some dependencies between the present and past or future values,

we will refer to it as a dependent stochastic process.

In all cases, to characterize the random variable X we will focus on the following

metrics:

• Histogram

• Expected Value

• Variance

• Coefficient of Variation

• Moments

2.2.1 Histogram

The histogram is a function that given a value of X, x (discrete), or a range of

values of X, [x1, x2] (continuous), gives the probability that the x value, or a value

inside the chosen range of values, appears. In detail:

• If X has a discrete state space, the histogram of X is the P{X = x}, ∀x ∈ X .

• If X has an infinite state space, the histogram of X is the P{x1 < X ≤ x2},
∀x1, x2 ∈ X .

Example: In Figure 4.1, let us assume that the Video Server contains 1020 videos

encoded in AVI and 200 videos encoded in MPEG4. Let X be the random variable

that models the next video to be requested. Assuming that all videos have the same

probability to be requested, write the histogram of X.

Solution: The state space of X, and therefore also the histogram, contains two

values: AVI and MPEG4. As the histogram is the probability that the next video

requested belongs to the AVI or MPEG4 category, and as all videos have the same

probability to be requested, the histogram is simply the probability that an AVI or

an MPEG4 video is requested. Therefore,
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P{X = AVI} =
1020

1220
= 0.836

P{X = MPEG4} =
200

1220
= 0.164

Exercise: Find the new histogram if the video server now includes 500 H.264

encoded videos.

Example: The time between two packets arriving to R1 from R2 is a random

variable τ that follows an exponential distribution with parameter λ = 4 pack-

ets/second, fτ (t) = λe−λt. What is the probability that τ takes a value between 1

and 1.25 seconds?

Solution: To obtain the requested probability, we can simply solve next inte-

gral:

P{1 < X ≤ 1.25} =

∫ 1.25

1

4e−4tdt (2.1)

For that, we can use the cumulative distribution function (cdf) of the exponential dis-

tribution, as previous probability can be written in terms of the cdf as follows:

P{1 < X ≤ 1.25} = Fτ (1.25)− Fτ (1) (2.2)

where Fτ (t1) = P{X ≤ t1} = 1− e−λt. Therefore,

P{1 < X ≤ 1.25} = Fτ (1.25)− Fτ (1) = e−4·1 − e−4·1.25 = 0.011578 (2.3)

Exercise: For the previous example, compute the histogram if the intervals are

{(0, 2], (2, 4], (4, 6], (6,∞)}.
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2.2.2 Expected Value

If the random variable is discrete, we can compute its expected value, E[X], as

follows:

E[X] =
∑
∀x∈X

xP{X = x} (2.4)

In case the random variable is continuous, we have to use its pdf:

E[X] =

∫ +∞

−∞
xfX(x)dx (2.5)

In both cases, the expected value is an indicator of the mean value that the random

variable can take.

2.2.3 Variance

The variance is an indicator of the dispersion of the values that X can take. If the

random variable X is discrete, the variance can be calculated as follows

V[X] =
∑
∀x∈X

P{X = x} (x− E[X])2 (2.6)

In case the random variable X is continuous, the variance is:

V[X] =

∫ +∞

−∞
fX(x) (x− E[X])2 dx (2.7)
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2.2.4 Coefficient of Variation

The coefficient of variation is a metric that depends on the both the variance and

the expected value. It is computed as:

CV[X] =

√
V[X]

E[X]
(2.8)

Note that
√

V[X] is known as the standard deviation of X.

2.2.5 Moments

The mth moment of a random variable X is defined as:

E[Xm] =
∑
∀x∈X

xmP{X = x} (2.9)

in case it is discrete. If it is continuous, it is defined as:

E[Xm] =

∫ +∞

−∞
xmfX(x)dx (2.10)

Note that the first moment is the expected value and that the variance can be easily

obtained from the first and second moments:

V[X] = E[X2]− E2[X] (2.11)
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2.3 Stochastic Processes with Independent and

Dependent Outcomes

In this document we only consider stationary processes. For stationary processes

we refer to those stochastic processes in which their parameters are constant during

the time (i.e. the state space does not change, and the probability of each possible

value is constant with the time).

We can classify the stochastic stationary processes in two groups:

Independent outcomes : Given a certain outcome, it is completely independent

from past or future outcomes. For example, each time we toss a coin we get

an independent outcome. In other words, the fact that we got a cross in last

attempt does not influence the result in next attempt.

Dependent outcomes : Given a certain outcome, it depends on previous or future

outcomes. For example, if we capture the packets transmitted over a link, after

seeing a SYN TCP packet, the probability that one of the next packets is a

SYN ACK TCP packet is very high, as the later is always transmitted after

the first one (i.e., there is a dependence).

One class of stochastic process with dependent outcomes are the Markov processes.

A Markov process is a process that satisfies the Markov property, which simply

states that next outcome will only depend on the present outcome. Formally,

Pr{Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2, . . . , X0 = x0} = Pr{Xn = xn|Xn−1 = xn−1}
(2.12)

As we will explain in next chapter, Markov processes are suitable to model telecom-

munications systems.

We will refer to a stochastic process as X(t), with t showing the dependence on the

time.
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2.4 Examples

Example 1: Number of packets received by Router R1 in intervals of ∆ sec-

onds

router

time

delta

Link

Link

Link

tobs

Figure 2.1: Measuring the transmitted packets between R2 and R1.

Consider the router R1 in Figure 4.1, depicted also in Figure 2.1. We measure the

number of packets that arrive to R1 from R2, and count the number of packets that

arrive to R1 in intervals of ∆ seconds. The observation time is Tobs = 10∆, and the

collected data is shown in Table 2.1.

Interval (∆) Packets (X) Interval Packets (X)
1 5 6 2
2 4 7 1
3 4 8 5
4 3 9 3
5 1 10 1

Table 2.1: Results from the experiment

As it can be observed, the number of packets that arrive at each interval ∆ is

a random variable, and we call it X. Now, we are going to characterize X by

computing its histogram, expected value and variance.

Solution:

To obtain the histogram we need to compute the probability P{X = x}, for all

possible values of x, i.e., ∀x ∈ X .
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P{X = x} =
Number of samples equal to x

N
(2.13)

where N is the total number of samples. In our case, N = 10. We can observe

that X only takes five different values: {1, 2, 3, 4, 5}. The resulting histogram is

depicted in Table 2.2.

x Appearances Probability
1 3 3/10
2 1 1/10
3 2 2/10
4 2 2/10
5 2 2/10

Table 2.2: Histogram

To compute the expected value of X, we use (2.4).

E[X] =
∑
∀x∈X

xP{X = x} = (2.14)

=
3

10
+ 2

1

10
+ 3

2

10
+ 4

2

10
+ 5

2

10
=

29

10
= 2.9 packets (2.15)

Now, we compute the variance using (2.6).

Var[X] =
∑
∀x∈X

P{X = x}(x− E[X])2 = (2.16)

= (1− 2.9)2
3

10
+ (2− 2.9)2

1

10
+ (3− 2.9)2

2

10
+ (2.17)

+ (3− 2.9)2
2

10
+ (3− 2.9)2

2

10
= 2.29 packets2 (2.18)

From the variance and the expected value, we compute the coefficient of varia-

tion:

CV[X] =

√
Var[X]

E[X]
= 0.5218 (2.19)
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Observe that the variance can be computed using the first and second moment,

Var[X] = E[X2]− E2[X] (2.20)

where the second moment is

E[X2] =
∑
∀x∈X

x2P{X = x} = (2.21)

=
3

10
+ 22 1

10
+ 32 2

10
+ 42 2

10
+ 52 2

10
= 10.7 packets2 (2.22)

Example 2: Distribution of the time between two consecutive packets and distri-

bution of the packet sizes.

In this second case, we focus on the time elapsed between two consecutive packets

that arrive to R1 from R2. This time is represented by a random variable T , and

shown in Figure 2.3, where τ are specific outcomes of T . As it is observed T is a

continuous random variable that can take any value in the range [0,∞). Addition-

ally, it can be observed in Figure 2.3 that the packets have different packet sizes (l)

as the packet size also follows a random variable (L).

First, we capture 100 packets from the link that connects R1 and R2. The time

between two consecutive packets received at R2 is shown in Figure 2.2(a). In Fig-

ure 2.2(b) we plot the histogram computed from the measured data, as well as the

theoretical histogram assuming that the time between two consecutive packets fol-

lows and exponential distribution. As it can be observed, both histograms match

very well, confirming that assumption: that the time between two packets follows

and exponential distribution. The measured expected time between two packets is

E[T ] = 0.1 seconds. In that case, the variance of the time between two consecutive

packets is:

V[T ] = (E[T ])2 = 0.01 seconds2 (2.23)
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as we know that the variance of a random variable that follows and exponential

distribution is the square of the average. In addition, the coefficient of variation

is

CV[L] =

√
V[T ]

E[T ]
= 1 (2.24)

In all cases, if a continuous random variable follows an exponential probability den-

sity function, its coefficient of variation is 1.

Regarding the packet sizes, we guess that L is a random variable that follows an

uniform distribution with Lmin = 8000 bits and Lmax = 128 bits as the maximum

and minimum values it can take. In the case our guess is true, and L follows an

uniform distribution, the average value of L is

E[L] =
Lmin + Lmax

2
= 4064 bits (2.25)

and the variance

V[L] =
(Lmax − Lmin)2

12
= 5164032 bits2 (2.26)

Finallly, the coefficient of variation is:

CV[L] =

√
V[L]

E[L]
= 0.55917 (2.27)
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Figure 2.2: Time between two packets: Temporal series and Histogram
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Figure 2.3: Time between two packets (τ). The values of l represent the packet
sizes.

2.5 Formulation of independent and dependent

processes

• Independent processes: from each state we can move to any other state. The

transition probabilities are exactly the same regardless the state, and corre-
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X(ti) X(ti+1) Probabilities
0 0 p0

1 p1
2 p2

1 0 p0
1 p1
2 p2

2 0 p0
1 p1
2 p2

Table 2.3: Independent process formulation

X(ti) X(ti+1) Probabilities
0 0 1-p

0 p
1 0 q

1 1-q-p
2 p

2 1 q
2 1-q

Table 2.4: Dependent process formulation

spond to the stationary probability distribution. Example in Table 2.3.

• Dependent processes: transition probabilities indicate the dependence. They

do not correspond to the transitio probability. Example in Table 2.4.



Chapter 3

Markov Chains

3.1 Introduction and Basic Properties

A Markov process is a dependent and stationary stochastic process X(t) character-

ized by:

• A state space of X(t), called X .

• The time at which X(t) changes, which can be at specific time instants (time-

discrete) or at any arbitrary time (time-continuous).

• A transition matrix, which is called P if the Markov process is time-discrete,

called probability transition matrix, or Q if the Markov process is time-

continuous, called rate transition matrix. In both cases, the transition

matrix represents the possible transitions from any state i to any state j.

• The equilibrium distribution (if exists), π.

A Markov chain is a tool to represent a Markov process. It is composed by ’circles’

and ’arrows’, with circles representing X , i.e., the possible outcomes of the random

variableX(t), and the arrows represent the transitions, i.e., the dependences between

states.

A Markov Chain, as a representation of a Markov process satisfies the Markov

property, which states that next state only depends of the current state.

25
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Pr{Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2, . . . , X0 = x0} = Pr{Xn = xn|Xn−1 = xn−1}
(3.1)

Markov chains can be classified in two types depending on when X(t) changes:

• A transition between two states happens only at specific instants of time. We

will refer to these Markov Chains as Discrete Time Markov Chains (DTMC).

For DTMC the transition matrix is called P and contains the probabilities to

move from any state i to any state j.

• A transition between two states can be done at any arbitrary time. We will

refer to these Markov Chains as Continuous Time Markov Chains (CTMC).

For CTMC the transition matrix is called Q and contains the rates to move

from any state i to any state j.

Some important properties of Markov chains are the next ones:

Irreducibility A Markov chain is called irreducible if the system can move from

any state i to any state j, regardless the number of required transitions.

Aperiodic A Markov chain is called aperiodic if, after departing from state i, the

system can return to it through following different paths.

Positive Recurrent A Markov chain is called positive recurrent if there is a non-

zero probability that after departing from state i, the process will return to it

in a finite time.

Ergodicity A Makov chain is Ergodic if all its states are Aperiodic and Positive

Recurrent.

Besides that, in this text we only consider time-homogeneous Markov chains,

which means that the transitions between states are time-independent. In this cir-

cumstances, given that the Markov chain is irreducible, its states are positive

recurrent and it is aperiodic, we will be able to compute the stationary distri-

bution of the Markov chain, i.e., the probability that the system is in each state at

any arbitrary time, and it will be unique. In that case, the stationary distribution

is also known as equilibrium distribution.
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Finally, a Markov Chain is said to be reversible if the next condition is satisfied

for all its states:

πiP{Xn = j|Xn−1 = i} = πjP{Xn = i|Xn−1 = j} (3.2)

which results in the local balance equations, as we will see later. In plain words, a

Markov chain is reversible if the Markov process moves from one state to another the

same number of times as in the reverse direction. For example, if the Markov chain

represents the probability that a person, which can be inside or outside a room, is

inside or outside the room, in the long term, the person will move the same number

of times from outside to inside the room as from inside to outside, as otherwise the

person would not be able to enter/depart again.

As Markov chains are a useful tool to model telecommunication systems and net-

works, here we focus on describing how we can obtain their equilibrium distribution,

from where several performance metrics of the system, such as packet losses and de-

lay, can be derived.
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3.2 Discrete Time Markov Chains: DTMC

We will use DTMC to model systems in which X(t) only takes new values at specific

time instants. Examples of cases that can be modelled by DTMC are

• Measuring the traffic on a link and checking its characteristics (i.e., number

of packets) only at specifics intervals.

• In Server Farms, a load balancing algorithm that assigns a specific server to

each incoming request. The system only changes at specific time instants, that

are the instants when new request arrives.

Therefore, the main considerations for DTMCs are:

• In DTMC, transitions between states occur at specific time instants, t1, t2, t3,

t4, t5, t6, etc. At each time instant, a transition from state i to state j happens

with probability pi,j.

• The transition probabilities from any state i to any state j define the matrix

P , called probability transition matrix.

One condition that we impose is that the matrix P has to be constant, i.e., the

transition probabilities must be the same in all instants in which the system changes.

If this is satisfied, the Markov chain is time-homogeneous.

3.2.1 Equilibrium Distribution

The Equilibrium distribution is obtained by solving the Balance Equations (Global

or Local, although using the Local ones is generally simpler, although the local

balance equations only exist when the Markov process is reversible). In both cases,

the normalization condition must be considered.

∑
∀i∈S

πi = 1 (3.3)

Global Balance Equations
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In equilibrium, for any state i, the next condition is satisfied:

πi
∑
∀j 6=i

pi,j =
∑
∀j 6=i

πjpj,i (3.4)

which are the global balance equations. If the transition probabilities pi,j are known,

the global balance equations provide as many equations as variables, and therefore,

solving the system of equations, the equilibrium distribution of the Markov chain

can be found.

Local Balance Equations

If the DTMC is reversible, the local balance equations can be formulated and

used.

πipi,j = πjpj,i (3.5)

which together with the normalization condition,
∑
∀i πi = 1, allows to solve the

system of equations and find the equilibrium distribution.
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3.3 Continuous Time Markov Chains

When the system we have to model can change at any arbitrary time, and the

time that the system remains in a certain state is important, we will use a CTMC

to model it. Examples of stochastic processes that can be modelled with CTMCs

are:

• The number of packets waiting in a queue, which depends on the time packets

arrive and depart from it.

• The number of persons with active phone conversations in a cell.

Similary to DTMCs, CTMCs will be characterized by a set of states, X , and a

matrix containing the transition rates from one state to the other, Q, known as

infinitesimal generator or rate transition matrix.

To move from a DTMC to a CTMC, we assume that the time is divided in very

small time intervals of size δ, in a way that changes seem as continuous (see Figure

3.1). For instance, when we watch the Television, it seems that the images are

continuous, but this is just an illusion: the images are static and change every few

msecs.

time

event

p 1−p
delta

Figure 3.1: The Binomial to Poisson Distribution.

One of the mandatory requirements for these small intervals is that each one only

can contain a single event. The probability that one period of time contains an event

is p = qδ, where q is the average rate (i.e. frequency) in which events happen (events

/ second). A second requirement is that all the periods of duration δ must have the

same probability to contain or not an event, which means that the probability p must

remain always constant. For example, if we have that q = 10 events / second, and

define δ = 0.05 seconds, the probability that a given period of duration δ contains

an event is p = qδ = 0.5.
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To satisfy the Markov property, the time spent in each state of the Markov chain

must have no memory (i.e., the past is not important and next change in the Markov

chain will depend only on the present state). It means that one the Markov chain

is in a certain state, the time that it will remain there must depend only on the

current state. For instance, consider a router that is transmitting a packet. When

the transmission of previous packet is near to be completed, a new packet arrives,

which is placed in the queue as the transmitter is in use. At that point, the knowledge

about the remaining time from the packet in transmission must be forgotten, and

the system must act as if the remaining transmission time for the packet that is in

transmission is again its average. This will be only true if the holding times are

exponentially distributed, as we will see later.

3.3.1 The exponential distribution in CTMCs

Let us assume that we observe a system during T seconds, and divide T in N

intervals of duration δ = T/N .

If the probability that one interval contains a single event is p, the probability to

have m events in N intervals is:

P{m|N} =
N !

m!(N −m)!
pm(1− p)N−m (3.6)

Replacing p by qT
N

, we obtain:

P{m|N} =
N !

m!(N −m)!

(
qT

N

)m(
1− qT

N

)N−m
(3.7)

Developing the factorial, and rearranging some terms:

P{m|N} =
N(N − 1) . . . (N −m+ 1)(N −m) . . . 1

m!(N −m)(N −m− 1) . . . 1

(
qT

N

)m (
1− qT

N

)N(
1− qT

N

)−m (3.8)
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we obtain:

P{m|N} =
N(N − 1) . . . (N −m+ 1)

Nm

(qT )m

m!

(
1− qT

N

)N(
1− qT

N

)−m (3.9)

Now, taking into account these three approximations that hold as N grows and qT
N

goes small:

(
1− qT

N

)N
≈ e−qT (3.10)

N(N − 1) . . . (N −m+ 1)

Nm
≈ 1 (3.11)(

1− qT

N

)m
≈ 1 (3.12)

allows us to obtain:

P{m|N} ≈ (qT )m

m!
e−qT (3.13)

which tends to be exact as N increases, or equivalently, δ becomes smaller.

This result is very important, and has huge implications. It says that the time

between two events follows an exponential distribution. For example, what is the

probability that in T seconds there are 0 events?

P{0|T} = e−qT (3.14)

and therefore, what is the probability that next event appears after T seconds?

1− P{0|T} = 1− e−qT = Fτ (t) (3.15)
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which is the Cumulative Probability Distribution of an Exponential Distribution for

τ , the time between two events.

The conclusion of this observation is that in CTMCs, the time between two events

are exponentially distributed.

3.3.2 Memoryless property of the Exponential Distribution

One of the characteristics of the exponential distribution is that it is memoryless.

What does it mean? Well, basically that past information does not give us any

useful information about what will happen in the future.

Example: The time between two consecutive packets that arrive to a router is

exponentially distributed. Consider that at t = 0 the first packet arrives. What is

the probability that we have to wait more than τ seconds to see the arrival of the

second packet?

P{t > τ} = 1− P{t ≤ τ} = e−qτ (3.16)

Now we have been waiting for τ0. What is the probability that next packet arrives

at t > τ0 + τ if we know that during the first τ0 seconds it has not arrived?

P{t > τ0 + τ |t > τ0} =
P{(t > τ0 + τ) ∩ (t > τ0)}

P{t > τ0}
=

P{t > τ0 + τ}
P{t > τ0}

= (3.17)

=
1− P{t ≤ τ0 + τ}

1− P{t ≤ τ0}
=
e−q(τ0+τ)

e−qτ0
=
e−qτ0e−qτ

e−qτ0
= e−qτ (3.18)

(3.19)

which says that our previous information has not give us any insight on what would

happen in the future, as we could have been expected a lower probability in this

second case.

Note that previous demonstration is based on the the conditional probability, that

states:
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P{A|B} =
P{A ∩B}

P{B}
(3.20)

and P{(t > τ0 + τ)∩ (t > τ0)} = P{t > τ0 + τ}. Intuitively the intersection between

t > τ0 + τ and t > τ0 is t > τ0 + τ .

3.3.3 Equilibrium Distribution

As observed, we have defined the probability that there is a change as p = λδ, where

δ is an arbitrary small interval of time which can only contain one event.

Then, if we replace the transition probabilities in the global and local balance equa-

tions of a DTMC by previous definition, we obtain:

πi
∑
∀j 6=i

qi,jδ =
∑
∀j 6=i

πjqj,iδ (3.21)

where qi,j is the transition rate between states i and j.

From previous equation is clear that δ does not depend on i nor j and therefore can

be removed from both sides, resulting in

πi
∑
∀j 6=i

qi,j =
∑
∀j 6=i

πjqj,i (3.22)

which are the global balance equations for a CTMC.

Equivalently, the local balance equations are.

πiqi,j = πjqj,i (3.23)

.
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3.4 Examples

3.4.1 Load Balancing in a Farm Server

In this example, we consider the File Storage and App Servers placed in the AN7.

Each time that a new request arrives to them, it will be processed by only one of

the three servers. In terms of processing power (i.e., CPU and memory), the first

server has more resources than the second, and the second than the third one.

Then, when a new service request is received, if last request was served by server i,

the server to process the incoming request will be selected following Table 3.1.

Prob. Next Server
Current Server Server 1 Server 2 Server 3

1 5/7 2/7 -
2 2/7 2/7 3/7
3 - 4/7 3/7

Table 3.1: Probability Transition Matrix for the Load Balancing Algorithm

The DTMC that models the Load Balancing Algorithm is shown in Figure 3.2.

S1 S2 S3

p12
p23

p32p21

p11 p22 p33

Figure 3.2: Load Balancing Algorithm for the Farm of Servers

Question: What is the stationary probability that a request is processed by Server

1, 2 and 4?

Solution: To solve this problem, as the Markov chain depicted in Figure 3.2 is

reversible, we can use the local balance equations. We have two local balance equa-

tions:
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p12π1 = p21π2 (3.24)

p23π2 = p32π3 (3.25)

(3.26)

and using the normalization condition that states that π1 + π2 + π3 = 1, we can

solve the system of equations, obtaining:

π1 =
1

1 + p12
p21

+ p23
p32

p12
p21

= 0.36364, π2 =
p12
p21

π1 = 0.36364, π3 =
p23
p32

p12
p21

π1 = 0.2727

(3.27)

which gives us the equilibrium distribution of the stochastic process modeled by the

Markov chain shown in Figure 3.2, and the stationary probability that at a new

request will be assigned to Server 1, 2, and 3.

3.4.2 Performance Analysis of a Video Server

In this example, we model the Video Server that is placed in the AN6. Let’s assume

that the video server is only able to send a single video at each time. However, it

can store up to two video requests. When there are two video requests waiting for

service, all new arriving requests to the Video Server are discarded.

We model the number of requests in the Video Server using the stochastic process

X(t). The state space of X(t) is § = {0, 1, 2, 3}, representing the number of requests

that are in service and waiting in the Video Server.

Therefore, X(t) can be described by a Markov chain with 4 states (Figure 3.3):

• State 0: There are 0 video requests in the video server.

• State 1: There is 1 video request in the video server, and it is being served.

• State 2: There are 2 video requests in the video server, the first one is being

served and the second one is waiting.
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• State 3: There are 3 video requests in the video server, one being served and

two waiting.

The video requests arrive with a rate equal to λ = 0.01 video/second, and the dura-

tion of the requested videos is exponentially distributed with an expected duration

of 1/µ seconds. µ = 0.004 is the departure rate in videos / second, and δ is a period

of time arbitrarily small.

0 1 2 3

lambda lambda lambda

mu mu mu

lambda

Trash

Figure 3.3: Continuous Markov Chain to Model the Video Server Operation

Question: What are the stationary probabilities of states 0, 1, 2 and 4?

Solution: To solve this problem, as the Markov chain depicted in Figure 3.3 is

reversible, we can use the local balance equations.

λδπ0 = µδπ1 (3.28)

λδπ1 = µδπ2 (3.29)

λδπ2 = µδπ3 (3.30)

(3.31)

and
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π1 =
λ

µ
π0 (3.32)

π2 =
λ

µ
π1 =

(
λ

µ

)2

π0 (3.33)

π3 =
λ

µ
π2 =

(
λ

µ

)3

π0 (3.34)

3∑
i=0

πi = 1 (3.35)

If we call a = λ/µ = 2.5 and solve the system of equations we get:

π0 =
1

1 + a+ a2 + a3
= 0.039409 (3.36)

π1 = aπ0 = 0.098522 (3.37)

π2 = a2π0 = 0.24631 (3.38)

π3 = a3π0 = 0.61576 (3.39)

3∑
i=0

πi = 1 (3.40)

From the equilibrium distribution, we can compute some parameters of the system

under study at any arbitrary time:

• The expected number of videos in the system: E[N ] =
∑3

i=0 iπi =

• The expected number of videos waiting: E[Nq] =
∑3

i=2 (i− 1)πi =

• The probability that the video server is empty (not transmitting any video):

Pe = π0

• The probability that the video server is not empty:

3∑
i=1

πi = 1− π0 = 1− Pe
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• The probability that the video server has a single video: π1

• The probability that the video server has a two videos: π2

• The probability that the video server has a three videos: π3



Part II

Modeling the Internet

40



Chapter 4

Delays in Communication

Networks

4.1 A network of queues

As our goal is to analyze modern telecommunication networks, we first need to

have at least a basic understanding of the relevant features of these networks in

order to model them. To start, we observe that, with the exception of mobile tele-

phone networks, most data networks use a datagram- or packet-switching paradigm

(TODO: reformulate to make it true). This means that to transmit data from

one endpoint of the network to another, this data is ’packetized’, i.e., partitioned

into smaller segments. Then, these packets are sent, each on its own, into the net-

work, which forwards them towards their destination (quite similar to packets in the

post).

This forwarding process consists in a number of intermediate steps or hops. Packets

are transferred between networking devices such as end hosts, routers or access

networks. Each intermediate device, i.e., a device that is not an end host, receives

packets from incoming links, decides where to forward them, and queues them for

transmission at the buffer of the according outgoing network interface card. The

packet is transmitted over this outgoing link towards the next device along the path,

and the step (also called ’store-and-forwarding’) is repeated until the packet reaches

its destination (or enters a different type of network).

41
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Figure 4.1: Basic Network

The breaking up of the transmission path into hops allows for a great flexibility

in the network organization, and has contributed greatly to the success of packet-

switched networks. Networks can be organized and handled more efficiently this

way, and local changes can be made easily without having to change a lot in the

global network.

However, the store-and-forward principle also means that packets have to be received

fully in order to be forwarded. For a large amount of data, it is therefore better

to transmit several small packets than a single large one, since a part of the total

data can thus already be sent along while the rest is still being received. Still, each

individual packet will experience a delay at each device, which we will explain in

the following for each of the principal types of devices involved.

To use a common instance for such a multi-hop network that does not exceed the

scope of this text, all the examples considered in the following will refer to the

network presented in Figure 4.1. It has all three types of components: hosts, routers

and access networks. Wireless Sensor Networks (WSNs) will be considered as an

special type of host.
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4.2 Types of Delay

Packets travel from the source host to the destination host. At each hop, a packet

can suffer several delays:

1. Transmission Delay (Ds): The time required to transmit a packet, of size L

bits, when a transmission rate of R bits / second is used. In general, Ds = L
R

.

This delay is the time needed by the outgoing network interface to send all

the bits of a packet over the outgoing link.

2. Propagation Delay (Dp): The time required for a packet to travel through

the medium from the transmitter to the receiver. It depends on the distance

between the transmitter and the receiver, d, and the medium characteristics

(v). In general, Ds = d
v
. This delay stems exclusively from the spread of

information along the medium used for transmission between elements. For

instance, using optical cables, the information travels with the speed of light

across the distance between the connected devices. In other media, such as

copper, the speed is typically a significant fraction of the speed of light.

3. Queueing Delay or Waiting Time (Dq): The time that a packet spends

in the queue waiting for transmission. This delay is of specific interest in

the context of our considerations, because it is not simply derived from some

basic parameters of the networking equipment, but depends strongly on the

amount of traffic that needs to be handled, i.e., the number of packets that

are transmitted over time.

4. Processing Delay (Dc): The time that a node needs to analyze a received

packet. Aspects such as checking if the packet contains errors or not, and

the packet’s final destination are part of the Processing Delay. Among other

things, like the used hardware, this depends on the size of the routing table in

the device.

5. Total Delay in a Node: The overall time that a packet spends in a node,

which is the sum of the processing, queueing and transmission delay. Note

that the propagation delay is not included. Then,

Dnode = Dc +Dq +Ds
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Figure 4.2: Packet delays at each hop

6. Total Delay in a Hop: The overall time that a packet spends in a hop,

which is the sum of the total delay in a node and the propagation delay. We

will refer to the total delay in a node by the variable Dhop, with

Dhop = Dnode +Dp

7. End-to-End Delay: The total time since the packet is generated by the

source until it is received at its destination. It depends on the number of

hops between the source and the destination, as well as the characteristics and

conditions of each hop (i.e. traffic load, distance, etc.). We will refer to the

end-to-end delay by the variable De2e, with

De2e =
∑
∀i

Dhop,i

Considering all of the different forms of delay described above, we can observe that

the transmission delay, the propagation delay and to a large degree also the process-

ing delay are static, i.e., they do not change much over time. The queueing delay is

therefore typically the main source for variance in the end-to-end delay of packets

of the same flow. While this variance does not affect a file download or an email

transfer negatively, more recent and very popular applications are less lucky in that

regard.

For instance, a video streaming application might be able to handle delay quite well
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if it is the same for all packets: the stream just starts playing back after an amount

of time equal to this delay (the situation is a bit different for interactive streaming,

i.e., VoIP or video chat).

If the delay varies, however, it is not sure that the next packets that are needed for

the playout process arrive in time. Therefore, video and audio streaming applications

have to use buffers to handle the variance in the delay, which is in some works also

called jitter.

Other applications might have even stronger demands on the delay. The aforemen-

tioned VoIP is typically said to be able to support an absolute one-way delay up

to 150-400 milliseconds before the pauses in the conversation become too long to

sustain it. In addition, one might, in the near future, imagine a remote control for

important equipment over a network, e.g., for robots or for medical equipment.

In these cases, it might be a good idea to limit the delay of the packets belonging

to these applications as much as possible. This can be done by giving them priority

over other packets, which do not mind being treated in the best-effort way that

is standard in the Internet. Thus, the so-called Future Internet might consist of

a number of different classes of traffic, that are treated differently by the network

(today, although many people are talking about it, nobody really knows what the

Future Internet will look like).

Since the queueing delay has such a large influence on the function and quality

of networking applications, it is very useful to be able to describe it, based on

assumptions about the amount and type of traffic in the network. To this end,

we will use queueing theory to analyze first and foremost the packet queue all of

the aforementioned network devices share, i.e., between network layer and medium

access layer. We will, step by step, extend this analysis to allow for more and more

realistic cases, giving examples taken from actual applications on the way.



Chapter 5

Modeling a Network Element

In this chapter we will use Markov chains to model network elements (i.e., hosts,

routers, and access networks). For the reader that is not familiar with this concept,

Appendix 3 contains an introduction into this topic that is sufficient to understand

the following steps.

We will characterize network elements in terms of the number of packets they contain

over the time (N(t)), which depends on how many packets arrive (λ) and depart

(µ) from them. This time-dependence is an important concept to realize, since it is

different from, e.g., calculating the static transmission delay of a packet. A packet

of a given size that is sent over a link with a given rate will always have the same

transmission delay Ds. In contrast, the waiting time of a packet in the buffer does

not only depend on the packet itself, but on the number of packets before it in the

buffer, i.e., the buffer’s state. A packet arriving one second later than another might

find the buffer less filled and will therefore experience a shorter queueing delay.

A consequence of these considerations is that we will treat values like the waiting

time of packets Dq or their number in the buffer as random variables, since they

vary over time. Appendix 2 provides the necessary background in case the reader is

not familiar with the basic concepts.

In general, we will not focus on the complete system but will model only single

network interfaces, assuming that they are independent. Using these models, we

will be able to compute several performance metrics related to the operation of

46
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those network elements, such as the waiting and transmission delays for each packet

in them, as well as the probability that a network element loses a packet due to

buffer overflow.

Before we arrive at these values, however, we will first have to define the building

blocks of our analytical model. Most importantly, these include the arrival process

of packets at a network interface and how much data each packet contains, i.e., the

characterization of the traffic that is being sent over that interface.

5.1 Modeling a Network Interface

A Network interface can be abstracted by assuming it contains:

• A single buffer and a single transmitter (usual).

• A single buffer and multiple transmitters (rare). However, it is a more general

case containing the previous one.

• Multiple buffers and multiple transmitters, one for each buffer. An example of

this case would be an Ethernet switch. However, in this case, we will simply

analyze each queue independently of the others, returning to the first case.

Figure 5.1 shows a network interface characterized by a buffer of size Q and S

transmitters. Its key parameters are:

• The number S transmitters or servers.

• Maximum number K of packets in the system (buffer + servers). A real-life

buffer is limited in size, although it might be large. This is modeled by the

maximum number of packets it can hold.

• Maximum number Q = K − S of packets in the buffer.

• Transmission rate of each transmitter: R bps. We assume the same transmis-

sion rate for all transmitters, i.e., the same transmission technology is used in

the device.

• Aggregate packet arrival rate: λ packets/second. This is the number of packets

that arrives at the buffer per time unit (typically seconds), averaged over a
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long time scale. Bursts in the packet arrival process, i.e., periods in which

more than average packets arrive in a short time, are modeled by the variance

of the packet interarrival time distribution, which is in the following typically

assumed to be exponential.

• Packet Length: L bits. This is a random variable describing the distribution

of the number of bits over the arriving packets.

• Service/Transmission time: E[Ds] = E[L]
R

seconds. Since we assume R to

be constant, the variation of the transmission time therefore depends on the

variation of the packet length distribution.

• Packet Departure rate: λ(1− Pb) packets/second.

• Maximum Packet Departure rate (assuming that all the transmitters are al-

ways busy): Sµ = S
E[Ds]

packets / second.

• Offered traffic or traffic intensity: a = λ
µ

[Erlangs] (note that this value is

independent of the number of servers).

• System utilization: ρ = 1 − Pe (assuming that the system is working always

when it is not empty).

queue

Servers

packet departures

system

packet arrivals

in packets

lost packets

Figure 5.1: Model of a Network Interface
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5.2 Erlang Notation

Due to the different configurations that queueing systems can have, there is a stan-

dardized procedure to refer to them, and it is called the ”Erlang notation”. It

basically uses a combination of letters as follows:

A/B/S/K : SP

where

• A refers to the packet arrival process. If the packet arrival process follows a

Poisson distribution, we will use the letter M.

• B refers to the packet service process. If the packet service time is exponen-

tially distributed, we will use the letter M.

• S refers to the number of servers (i.e. transmitters or processors).

• K refers to the total number of packets that can be stored in the queueing

system, including those in the buffer and those in service. If it is omitted, we

assume that the buffer has an infinite capacity.

• SP refers to the scheduling policy. If it is not given explicitly, we assume that

a FIFO (First-In First-Out) policy is applied.

Some examples are:

• M/M/1/K: Poisson arrival process, exponentially distributed service times,

1 server and a total system capacity of K packets, with Q = K − 1. A FIFO

policy is considered.

• M/M/3/K: Poisson arrival process, exponentially distributed service times,

3 servers and a total system capacity of K packets, with Q = K − 3. A FIFO

policy is considered.

• M/M/1: Poisson arrival process, exponentially distributed service times, 1

server and a total system capacity of∞ packets. A FIFO policy is considered.
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• M/D/2: Poisson arrival process, deterministically distributed service times, 2

servers and a total system capacity of∞ packets. A FIFO policy is considered.

• D/D/2: Deterministic arrival process, deterministically distributed service

times, 2 servers and a total system capacity of ∞ packets. A FIFO policy is

considered.

• M/G/1: Poisson arrival process, generally distributed service times, 1 server

and a total system capacity of ∞ packets. A FIFO policy is considered. The

general distribution is usually characterized by both the expected value and

the coefficient of variation.
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5.3 Stability

A queueing system is stable if it is able to process all the packets that enter the

system, over a long timescale. In other words, a queueing system is stable if any

packet that has been placed inside the system will depart in a finite period of time.

Note that blocked packets are not considered.

By default, all systems with a finite buffer are stable, since any packet that enters

the system will depart from it. However, queues with infinite buffers are not stable

if the offered traffic is higher than the maximum departure rate (Sµ), as the buffer

backlog will increase until infinite and therefore, there will be packets that never

will depart the system in a finite time.

In general, a queue is stable if:

λ(1− Pb) < Sµ → λ(1− Pb)

Sµ
< 1 → a(1− Pb)

S
< 1 (5.1)

For K = ∞, as Pb = 0, we have to guarantee that a < S. In other words, the

average arrival rate of packets to the system needs to be lower than the maximum

departure rate of the system.

5.4 Stationarity

We assume the traffic arrivals are stationary, i.e., the distribution of the values that

model the number of packets that arrive to the system do not change along the

time.

5.5 Poisson Arrivals

All the system models covered in this book assume a Poisson arrival process. This

arrival process has important characteristics which have an impact on the analysis

of these systems. In the following, we cover these characteristics.
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5.5.1 PASTA

PASTA is the acronym for Poisson Arrivals See Time Averages, which is one of the

key properties of a Poisson arrival process.

First, what is a Time Average? It refers to the state distribution in the equilibrium.

For a total observation time that is sufficiently long, the probability that the system

is at state i in equilibrium can be formulated as:

πi =
Time the system is observed at state i

Total Observation Time
(5.2)

The PASTA property says that when a new packet arrives, the probability that it

finds i packets in the system, i.e., Pa{N(t) = i}, is equal to πi:

Pa{N(t) = i} = πi.

The Poisson distribution appeared when we moved from DTMCs to CTMCs. We de-

fined small intervals of duration λ, where each interval could contain only one arrival

with probability p, that had to be constant and the same for any interval. In those

conditions, the probability that one arrival observes i packets in the system

Pa{N(t) = i} =
Number of arrivals that see the system in state i

Total Number of Arrivals
(5.3)

is proportional to the time the system is in that state, as intuitively, if the system

remains in a certain state for more time than in others, the probability that a

packet arrives when the system is in that state is also higher. Why? Because, the

probability that a packet arrives in a δ period is constant over the time.

Clearly, if the assumption that p is not constant and the same for all δ intervals is

not true, PASTA does not hold.
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a)

b)

tau1 tau2 tau3 tau4

tau1 tau2 tau3 tau4

delta

Figure 5.2: Example of the PASTA property. From the Figure, we can see that
π0 = 0.5 and π1 = 0.5. In case a), the interarrival time is deterministic, and all
packet arrivals find the system in the empty state. In case b), the interarrival time
is exponentially distributed, and 2 packet arrivals find the system in state 0, and
two in state 1. As we have 4 arrivals, the probability that an arrival observes the
system in state i is the same as the equilibrium probability that the system is in
state i (i.e. πi)

A example-based proof

Consider the temporal evolution of a system with a single server and without any

buffer space, i.e. K = 1 (Figure 5.2). λ packets/second arrive to this system, and

the packets have a deterministic length, which results in a deterministic service time

Ds. We observe the system for Tobs seconds, dividing the time in several intervals

of duration δ. We assume that in each δ there can be only one arrival.

In this system (Figure 5.2), the equilibrium distribution over the time can be com-

puted by dividing the time that the system has been in each state by Tobs, i.e.,

π0 =
Time the system has been in state 0

Tobs
≈ 0.5 (5.4)

π1 =
Time the system has been in state 1

Tobs
≈ 0.5 (5.5)

(5.6)

• In the first case the time between two packet arrivals follows a deterministic
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distribution, and its value is τ . Let us assume that τ > Ds. What is the

probability that an arrival sees the system empty? The answer is easy, it is 1.

In all cases, when a packet arrives the system is empty. Therefore, the PASTA

property does not hold in this case, as it states that the probability that a new

arriving packet sees i packets in the system is equal to the probability that

there are i packets in the system at any arbitrary time (i.e., the equilibrium

probability). In detail, Pa(0) = 1 6= π0.

• In the second case, packets arrive following a Poisson process with rate λ =

1/τ . As we can see, the value of λ will be the same as in previous case. How-

ever, now τ is a random variable exponentially distributed. In this conditions,

the probability that an event contains one arrival is the same for all the inter-

vals. In this case, the packet arrivals will sample all possible cases with equal

probability, and will satisfy the PASTA property.

A formal proof

A more formal definition is as follows, taking into account the assumption that

the probability of an arrival in an interval δ is equal in all of them and therefore

constant.

Pa(i) = lim
t→∞

lim
δ→0

P{N(t) = i|arrival at (t, t+ δ)} (5.7)

= lim
t→∞

lim
δ→0

P{N(t) = i ∩ arrival at (t, t+ δ)}}
P{arrival at (t, t+ δ)}}

(5.8)

= lim
t→∞

lim
δ→0

P{N(t) = i}P{arrival at (t, t+ δ)|N(t) = i}}
P{arrival at (t, t+ δ)}}

(5.9)

= lim
t→∞

lim
δ→0

P{N(t) = i}P{arrival at (t, t+ δ)}
P{arrival at (t, t+ δ)}

(5.10)

= lim
t→∞

lim
δ→0

P{N(t) = k} = πi (5.11)

(5.12)

Observe here that we have used the definition of the conditional probability P{A∩
B} = P{B}P{A|B} twice, and the fact that P{N(t) = i and arrival at (t, t+ δ)}
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are independent events.

PASTA also implies that in equilibrium, an arrival observes E[N ] = E[Nq] + E[Ns]

packets in the system.

5.5.2 Aggregation and Division of Poisson processes

Two very interesting properties of Poisson processes are:

• Aggregation of Poisson processes: the aggregation of several Poisson pro-

cesses results in a new Poisson process with a rate λaggregate which is the sum

of the rates λi of the individual Poisson processes aggregated.

λaggregate =
∑
i

λi (5.13)

• Splitting a Poisson process in several other processes selecting packets

randomly with constant probability over the time causes the resulting processes

to be also Poisson. For example, if we split a Poisson process in two Poisson

processes, we obtain:

λ1 = α1λaggregate (5.14)

λ2 = α2λaggregate (5.15)

1 = α1 + α2 (5.16)

(5.17)

with α1 being the probability that a packet belongs to the resulting Poisson

process 1, and α2 the opposite. Note that to obtain several Poisson processes

from a single Poisson process, the assignation of a packet to the resulting

process must be independent of previous decisions (i.e., stochastic).
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5.6 Exponential Packet length and Residual Ser-

vice Time

One of the requirements of CTMC is that the time in a state has to follow an

exponential duration. This can be deduced from the previous chapter, but here we

will give a more behavioral explanation.

Notice that when a Markov chain changes from one state to another, the Markov

chain only knows that it is in the new state, as it does not store any information from

the past. For example, we can move to state i from state i− 1 or from state i + 1,

though the Markov chain does not care about which of these alternatives actually

happened. In other words, at every change of state, the Markov chains forgets the

past, which is the same as to say it is memoryless. Therefore, the time in each state

must be exponentially distributed:

• If the queue is empty, it is guaranteed by the fact that Poisson arrivals have

exponentially distributed interarrival times.

• If the queue is not empty, the time in each state must be also exponentially

distributed, which means that the service times must be exponentially dis-

tributed, with expected value E[Ds] = 1
µ

and µ the departure rate.

Therefore, in those conditions, the probability density function of the service time

is:

fDs(t) = µe−µt (5.18)

and its cumulative probability distribution

FDs(t) = 1− e−µt (5.19)
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5.6.1 Residual Service Times in Markov Chains

Consider a system in which the packet sizes are exponentially distributed, with

expected packet size E[L]. The system transmits packets at a constant transmission

rate R. In this case, the service time also follows an exponential distribution, as it

only depends on the distribution of L, and the expected service time is E[Ds]. Note

that the parameter of the exponential distribution is µ = 1
E[Ds]

.

Now, consider that a packet starts to be transmitted at t = 0. If another packet

arrives at the system also at time 0, what is the probability that the residual time

it observes is larger than T? Since we know that the service time is exponentially

distributed, to compute this probability is straightforward:

P{t > T} = 1− P{t ≤ T} = e−µT (5.20)

Now, we assume that the second packet arrives T0 units of time after the packet in

service has started. In this case, what is the probability that the residual service

time observed by this packet is also T? Notice that it means that the service time

of the packet finishes at the time instant T0 + T .

P{t > T + T0|t > T0} =
P{t > T + T0 ∩ t > T0}

P{t > T0}

=
P{t > T + T0}
P{t > T0}

=
1− P{t ≤ T + T0}

1− P{t ≤ T0}

=
e−µ(T+T0)

e−µT0
= e−µT (5.21)

As we can see, we obtain the same result. What does this mean? It means that

the information that the packet has started T0 seconds before our arrival does not

have any impact on the future (i.e., it is useless). This is known as the memoryless

property of the exponential distribution.

Thus, the residual time when the service time is exponentially distributed satis-

fies:
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E[Dr] = E[Ds] (5.22)

and it is also exponentially distributed with parameter µ.

5.7 Little’s Law

Little’s law, applied to our use-case says that the long-term average number of

packets in a system is the average arrival rate of packets to that system multiplied

by the average time it spends in the system. This can be applied to just the number

of waiting packets (if just the buffer is interpreted as the system), just the number of

packets in the servers (with just the transmitters being the system), or the complete

system. Formally, this means

E[D] =
E[N ]

λ(1− Pb)
, E[Dq] =

E[Nq]

λ(1− Pb)
, E[Ds] =

E[Ns]

λ(1− Pb)
(5.23)

Why? Let us assume that we are the last packet that has arrived at the queue. In

equilibrium, we find on average E[N ] packets before us, and we will depart from the

queue after E[D] seconds. How many packets will we see on average in the queue

at the moment we depart? In equilibrium, we will find on average E[N ] packets.

Therefore, it means that during the time we have been in the queue, there have been

E[N ] arrivals. Then,

λ(1− Pb)E[D] = E[N ] (5.24)

with λ(1 − Pb)E[D] the number of packets that arrive and enter the system on

average, during the time we are in it.
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5.8 Performance Metrics

To evaluate the performance of a queueing system, we are interested in several per-

formance metrics (parameters which characterize the system performance). These

metrics describe, in different forms, how well the system is dimensioned, and how

good the ’service’ is that the packets experience. In terms of a packet network, the

two most important so-called Quality of Service metrics are the packet loss prob-

ability and the delay experienced by the packets. Some helpful results from the

analysis are therefore:

• Probability that the system is empty at any arbitrary time: Pe = π0.

• Probability that there are i packets in the system at any arbitrary time: πi.

• Blocking or packet loss probability: Pb = πK .

• System utilization: the fraction of time that the system is active (i.e., trans-

mitting packets), given by: ρ = 1− π0.

• Expected number of packets in the queue: E[Q] =
∑K

i=S+1 (i− S) · πi =

E[N ]− E[Ns].

• Expected number of packets in service: E[Ns] =
∑K

i=0 min(i, S) · πi.

• Expected number of packets in the system: E[N ] =
∑K

i=0 i · πi.

• Expected delay of a packet in the buffer:

E[Dq] =
E[Nq]

λ(1− Pb)
.

• Expected delay of a packet in the server:

E[Ds] =
E[Ns]

λ(1− Pb)
.

• Expected delay of a packet in the system:

E[D] =
E[N ]

λ(1− Pb)
.



CHAPTER 5. MODELING A NETWORK ELEMENT 60

• Probability to find the system working (transmitting packets): 1−π0 = ρ (this

has to be understood as follows: always when the system contains packets, there

is at least one packet in service).
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5.9 Basic Queueing Systems

In this section we present the three basic queueing systems that are based on the

assumption of a Poisson arrival process and an exponentially distributed service

time.

In all the systems considered, we assume that the packet arrival rate λ is time-

homogeneous and independent of the system state. In the same way, for the cases

where multiple servers are considered, we assume that all the servers are equal,

with a service rate equal to µ. In addition, a = λ
µ

is the offered traffic or traffic

intensity.

5.9.1 The M/M/S/K queue

The M/M/S/K system has been widely used in the past to plan telephone net-

works, where the number of servers S models the number of calls that can be active

simultaneously in a link or a cell (i.e., lines or channels).

In today’s packet based networks, in general, all the links have a single transmit-

ter, which is modeled using an M/M/1/K system, which is an specific case of the

M/M/S/K system with a single server (S = 1). However, there are also examples

where S > 1. For instance, a M/M/S/K queueing system can be applied to model a

server with multiple processors but a single shared queue for all the arriving requests.

We therefore cover the analysis of such a system for completeness’ sake.

The M/M/S/K queueing system implicitly assumes Poisson arrivals with rate λ and

exponentially distributed service times with average E[Ds] = 1/µ.

Markov chain

In Figure 5.3 the Markov chain for the M/M/S/K queueing system is depicted.

Note that the service rate depends on the system state (more busy servers mean a

higher service rate), while the arrival rate does not. Once all S servers are busy, this

rate cannot increase even if more (waiting) packets are in the system. The number
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0 21 C C+1 C+K−1 C+K

lC+1lClC−1 lC+K−2l0l2l1

mu1 mu2 muC muC+1 muC+K−1 muC+Kmu3 muC+2

lC+K

Figure 5.3: Markov Chain for the M/M/S/K queue

of states is the number of packets possible to have in the system. Since the system

can also be empty, we get K + 1 states.

Local Balance Equations

The balance equations for the M/M/S/K system are:

π0λ = π1µ

π1λ = π22µ

. . .

πi−1λ = πiiµ, i ≤ S (5.25)

. . .

πi−1λ = πiSµ, i ≥ S (5.26)

. . .

πK−1λ = πKSµ

This, together with the normalization condition:

K∑
i=0

πi = 1, (5.27)

will allow us to obtain the equilibrium distribution for the M/M/S/K system.

Note that we can write the previous equations as follows:
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πi =
λ

iµ
πi−1 =

ai

i!
π0, i ≤ S (5.28)

. . .

πi =
λ

Sµ
πi−1 =

ai−S

Si−S
πS =

ai−S

Si−S
aS

S!
π0 =

ai

Si−SS!
π0, i > S (5.29)

Equilibrium Distribution

The equilibrium probability for the 0-th state is given by

π0 =
1∑S

j=0
aj

j!
+
∑K

j=S+1
1

Sj−S
aj

S!

. (5.30)

With π0 known, all the other πi can be computed as well. Thus, the state probabil-

ities are known, allowing to derive all other performance metrics. This will be done

in more detail for the M/M/1/K system.

Performance Metrics

Refer to Section 5.8.

5.9.2 M/M/1/K queue

As explained above, the M/M/1/K system is a specific case of a M/M/S/K system

with a single server (S = 1). However, as it is the most common queueing system in

today’s Internet we will consider it in detail, deriving closed-form expressions when

possible, specifically for the performance metrics.

Markov chain

Again, the basis for our analysis is using a Markov chain with the number of packets

in the system as the states. In Figure 5.4 this Markov chain for the M/M/1/K queue

is depicted.



CHAPTER 5. MODELING A NETWORK ELEMENT 64
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Figure 5.4: Markov Chain for the M/M/1/K queue

In contrast to the Markov chain for the M/M/S/K system, the service rate remains

constant, since there is only one server. This also simplifies the load balance equa-

tions a bit.

Local Balance Equations

π0λ = π1µ

π1λ = π2µ

. . .

πi−1λ = πiµ→ πi =

(
λ

µ

)
πi−1 = aπi−1 → πi = aiπ0

. . .

πK−1λ = πKµ

(5.31)

Equilibrium Distribution

Using again the normalization condition (the sum of all state probabilities equals

one), the stationary probability for the 0-th state is

π0 =
1∑K
j=0 a

j
=

1
1−aK+1

1−a

=
1− a

1− aK+1
. (5.32)

Knowing the state probability for state 0, the stationary probability for the i-th

state then is

πi = aiπ0 =
(1− a)ai

1− aK+1
. (5.33)
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Now we will derive the other performance metrics from these state probabilities.

Performance Metrics

Packet Losses

The probability that a packet is lost due to buffer overflow is equal to the probability

that an arriving packet sees a full system, i.e., the system in state K. Thus, it can

be computed by applying PASTA:

Pb = πK =
(1− a)aK

1− aK+1
(5.34)

Queue Occupancy

The state probabilities essentially give us the distribution for the number of packets

in the system. Therefore, to calculate the average number of packets, are looking

for the average of that distribution.

If a 6= 1, the system occupation is computed as follows:
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E[N ] =
K∑
q=0

πqq =
K∑
q=0

(1− a)aq

1− aK+1
q

=
(1− a)

1− aK+1

K∑
q=0

qaq =
a(1− a)

1− aK+1

K∑
q=0

qaq−1

=
a(1− a)

1− aK+1

K∑
q=0

d

da
aq =

a(1− a)

1− aK+1

d

da

K∑
q=0

aq

=
a(1− a)

1− aK+1

d

da

(
1− aK+1

1− a

)
=

=
a(1− (K + 1)aK +KaK+1)

(1− a)(1− aK+1)
=

=
a(1− (K + 1)aK + (K + 1)aK+1 − aK+1)

(1− a)(1− aK+1)
=

=
a(1− aK+1 − (K + 1)aK(1− a))

(1− a)(1− aK+1)
=

=
a

1− a
− (K + 1)aK+1

1− aK+1
(5.35)

In 5.35 we can observe that the system occupancy has two terms. The first term

describes the queue occupancy for an infinite queue, and the second term is the

queue occupancy that is lost due to the finite buffer size. We observe that, if K

increases, the second term tends to 0 if a < 1.

For the specific case a = 1:

E[N ] =
K

2

To find E[Nq], we can use the relation

E[Nq] = E[N ]− E[Ns] (5.36)

where

E[Ns] = 1− π0 (5.37)
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Alternatively, E[Nq] can be computed in a similar fashion to E[N ], as E[Nq] =∑K
q=0 πq(q − 1).

Delay

The parameters related to the delay can be obtained by simply applying Little’s

formula:

E[Ds] =
E[Ns]

λ(1− Pb)
=

1− π0
λ(1− Pb)

=
E[L]

R
(5.38)

E[D] =
E[N ]

λ(1− Pb)
(5.39)

E[Dq] =
E[Nq]

λ(1− Pb)
= E[D]− E[Ds] (5.40)

Note that this equality is true 1−π0
λ(1−Pb)

= E[L]
R

since λ(1− Pb) = µ(1− π0) (from the

stability requirements). Therefore,

λ

µ
=

(1− π0)
(1− Pb)

Transforming this relation slightly, we get that

1− π0
λ(1− Pb)

=
1

µ
(5.41)

1− π0 =
λ(1− Pb)

µ
(5.42)

π0 = 1− λ(1− Pb)
µ

= 1− a(1− Pb) (5.43)

E[Ns] = a(1− Pb) (5.44)

which expresses that the expected number of packets in the server is equal to the

fraction of traffic intensity that enters in the queue.
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5.9.3 M/M/1 queue

The M/M/1 queueing system assumes that the system buffer size is infinite (i.e.

K → ∞), which is obviously not realistic. However, when the queue size is large,

and the traffic intensity is low, it provides a very accurate model and allows to

estimate the different expected delays using simpler expressions than the used for

the M/M/1/K queue. It should therefore be seen as a complementary tool that can

provide useful results faster, if the aforementioned prerequisites are met.

The analysis of a M/M/1 queue can be only done if the system is stable. Since

the queue is infinite here, we require that a < 1. Note that for the M/M/1 queue,

Pb = 0, since new packets can always be stored in the buffer.

Markov chain

In Figure 5.5 the Markov chain for the M/M/1 queue is shown. Observe that the

Markov chain now has an infinite number of states.

λ λ λ λ

0 1 2 i K−1 K

λ λ λ λ λ λ

µ µ µ µ µ µ µ

Κ+1 Κ+2

µ µ µ

Figure 5.5: Markov Chain for the M/M/1 queue

Local Balance Equations

The balance equations for the M/M/1 system take the same form as in the M/M/1/K

system, although now we have an infinite number of them.
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π0λ = π1µ

π1λ = π2µ

. . .

πi−1λ = πiµ→ πi =

(
λ

µ

)
πi−1 = aπi−1 → πi = aiπ0

. . .

(5.45)

Equilibrium Distribution

The equilibrium distribution for the M/M/1 system is the same as for the M/M/1/K

system, just considering that K →∞, which leads to aK+1 = 0 if a < 1. Then, the

stationary probability for the 0-th state is

π0 =
1∑∞
j=0 a

j
=

1
1

1−a
= 1− a (5.46)

The stationary probability for the i-th state is therefore

πi = aiπ0 = (1− a)ai (5.47)

Distribution of the time a packet spends inside the system, D

For the M/M/1 the distribution of the time that a packet spends inside the system

is given by:

fD(t) = (µ− λ)e−(µ−λ)t (5.48)

for t > 0. We can observe that the time that a packet spends inside the system

also follows an exponential distribution with rate µ − λ. For instance, what is the

probability that a packet is inside the system less or T seconds?



CHAPTER 5. MODELING A NETWORK ELEMENT 70

Pr{t ≤ T} = FD(t) = 1− e−(µ−λ)T (5.49)

Performance Metrics

As we will see in the following, we can obtain very simple formulas for the perfor-

mance metrics of the M/M/1 queue.

Packet Losses

As stated before, the probability that a packet is lost due to buffer overflow is

Pb = 0 (5.50)

Queue Occupancy

If a < 1, the system occupation is computed as follows:

E[N ] =
∞∑
q=0

πqq =
a

1− a
packets. (5.51)

To find E[Nq], we will use the relations

E[Ns] = 1− π0 = a (5.52)

and

E[Nq] = E[N ]− E[Ns] (5.53)

=
a

1− a
− a =

a− a+ a2

1− a
=

a2

1− a
packets. (5.54)
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Delay

The parameters related to the delay are obtained by applying Little’s formula:

E[Ds] =
E[Ns]

λ(1− Pb)
=
a

λ
=

1

µ
seconds (5.55)

E[D] =
E[N ]

λ(1− Pb)
=

1

µ(1− a)
=

1

µ− λ
seconds (5.56)

E[Dq] =
E[Nq]

λ(1− Pb)
=

a2

λ(1− a)
=

a

µ(1− a)
=

a

µ− λ
seconds (5.57)

(5.58)

We can reach the same expression for E[Dq] by considering that

E[Dq] = E[D]− E[Ds] =
1

µ− λ
− 1

µ
=

λ

µ(µ− λ)
=

a

µ− λ
seconds (5.59)

5.10 Examples

5.10.1 Example - Multiple Links sharing a buffer

Motivation: This example shows that sharing a single buffer between multiple

transmitters is a better approach than individual buffers for each transmitter, given

that the sum of buffer space is exactly the same.

Let us consider the link between R1 and R3 consists of three independent cables of

capacity C each one. Let us consider two cases:

1. Each virtual link (i.e., each transmitter) has an individual buffer of size Q.

2. All virtual links share a single buffer of size 3Q.

To compare which is the best situation, we compute the expected system delay E[D]

for both cases. In the first case, we have three independent M/M/1/Q+1 system,

and in the second case, we have a single M/M/3/3Q+3 system. To obtain the results,
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we will consider that Q=4 packets, that packet arrival rate is λ = 20 packets/second,

and each transmitter can transmit packets at a rate µ = 25 packets/second.

Solution: In the first case, we have a M/M/1/5 system. In such a system, the

delay is given by:

E[D] =
E[N ]

λ(1− Pb)
(5.60)

where

Pb =
0.85(1− 0.8)

1− 0.86
(5.61)

E[N ] =
0.8

1− 0.8
− 6 · 0.86

1− 0.86
(5.62)

5.10.2 Example - A Network Interface

[To revise!]

User7 from Figure 4.1 is viewing online TV on his computer. The packets with the

streaming data come from the TV broadcasting server and pass through the network

elements AN6, R1, R3 and AN4. In this example, we will evaluate the delay that

packets suffer in the AN4, which is a WLAN. We assume that User 8 and User 9 are

not connected to the WLAN, so all the WLAN bandwidth is used by User7.

The AP sends packets to User 7 at a transmission rate of R = 22 Mbps. We assume

that the service time, Ds, for each packet follows an exponential distribution, with

average

Ds = DIFS + E[BO] +
Lh + E[L]

R
+ SIFS +

LACK

R
(5.63)

where DIFS= 34 µs, SIFS= 16 µs, E[BO] = 90 µs are parameters of the WLAN.

LACK = 112 bits is the length of MAC-layer ACK which is sent by the receiver after

receiving a packet and Lh = 230 bits is the length of the MAC header which is

added to each TV data packet. The packets have an average size of E[L] = 4000

bits.
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If the TV broadcasting server send packets to User7 at a rate λ = Bstream

E[L]
following a

Poisson process, with Bstream = 8 Mbps the bandwidth required by the TV flow, and

the queue size at AN4 is K = 10 packets, compute E[Ds], E[Dq] and E[D].

Solution: The AP can be modelled by a M/M/1/K queue, with K = 10, λ = 500

packets, E[Ds] = 3.342 ms and µ = 1/E[Ds] = 2992 packets. The offered traffic is

a = λ
µ

= 0.668 Erlangs.

First, we compute the Equilibrium Distribution. The results are shown in Table

5.1.

State Value State Value
π0 0.3356266 π5 0.0447631
π1 0.2243206 π6 0.0299180
π2 0.1499277 π7 0.0199961
π3 0.1002062 π8 0.0133647
π4 0.0669742 π9 0.0089325
- - π10 0.0059701

Table 5.1: Equilibrium Distribution for the WLAN Exercise

The blocking probability is

Pb = πK = π10 = 5.9 · 10−3

.

The expected system occupation is

E[N ] =
K∑
k=0

πkk = 1.8830 packets

and the expected system delay can be obtained by applying the Little’s Law

E[D] =
E[N ]

λ(1− Pb)
= 0.947 · 10−3 seconds.

The expected waiting delay is

E[Dq] = E[D]− E[Ds] = 0.613 · 10−3 seconds.
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Alternatively, it can obtained by computing firstE[Nq] =
∑K

k=2 πk(k − 1) = 1.2186 packets,

and then applying Little’s law.

From those results, we can observe that User7 will be able to watch the TV without

suffering neither high packet losses nor high delays.

5.10.3 Example - Is K =∞ a good approximation?

Here, we consider the same scenario as in the previous example. The goal now is

to evaluate what is the impact of assuming that the buffer size is infinite in the

performance metrics that we can obtain.

First, assuming that K = ∞, the E[D] and E[Dq] values for different TV stream

bandwidth values are:

- TV stream bandwidth (Mbps)
Parameter 2 6 10
E[Dq] 6.7041e-05 3.3589e-04 0.0016968
E[D] 4.0122e-04 6.7007e-04 0.0020309

Table 5.2: E[Dq] and E[D] assuming K =∞

Considering the case with the highest stream bandwidth, B = 10 Mbps, what is the

value of K that gives similar values for E[Dq] and E[D] when they are compared

with the case of K =∞? The results obtained are shown in Table 5.3.

K Pb E[Dq] E[D]
5 1.0148e-01 5.4986e-04 8.8404e-04
10 0.0316381 0.0010332 0.0013674
15 0.0117574 0.0013343 0.0016685
20 0.0046219 0.0015082 0.0018423
25 0.0018554 0.0016024 0.0019366
30 7.5097e-04 1.6510e-03 1.9851e-03
40 1.2401e-04 1.6867e-03 2.0209e-03
50 2.0534e-05 1.6947e-03 2.0289e-03
60 3.4014e-06 1.6963e-03 2.0305e-03
70 5.6349e-07 1.6967e-03 2.0309e-03

Table 5.3: E[Dq] and E[D] for a TV stream bandwidth value of 10 Mbps
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We can observe that, for medium/high traffic loads (10 Mbps, a = 0.83 Erlangs),

even for small K values, the performance metrics obtained using the M/M/1/K

queueing system are close to those obtained when the M/M/1 queueing system is

used.

Obviously, when a → 1, the use of the M/M/1 queue will not be accurate. How-

ever, even for medium/high values of the offered traffic (a), as we have seen in this

example, the assumption that the buffer size is infinite allows us to use the less com-

plex formulas of the M/M/1 queueing system without significantly compromising

the accuracy of the results.

5.10.4 WIFI Downlink Model

1. The packet arrival rate per flow is {λ1, λ2, . . . , λN}.

2. The aggregate packet arrival rate is λ =
∑N

n=1 λn

3. The packet transmission time per flow is given by

{T1(R1, L1), T2(R2, L2), . . . , TN(RN , LN)},

where Rn is the transmission rate experienced by station n, and Ln is the size

(average) of the packets directed to station n.

4. The expected packet transmission time of the system is given by:

E[Ds] =
N∑
n=1

λn
λ
Tn(Rn, Ln)

5. Normalized traffic load per flow: an = λnTn(Rn, Ln)

6. Normalized aggregate traffic load: a = λE[Ds] =
∑N

n=1 an

7. We obtain the stationary probability distribution: πn = (1−a)an
1−aK+1 , ∀ n, where

K = Q+ 1 is the AP packets storage capacity (including the packet in trans-

mission).

8. The AP utilization is given by ρ = 1− π0 = a(1− Pb)
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9. The packet blocking probability is Pb = πK

10. The expected AP delay for flow n is E[D]n = Tn(Rn, Ln) + E[Dq]. Note that

the term E[Dq] is the same for all flows, as the time a packet waits in the buffer

depends on the packets that have arrived before it (and are still waiting).

11. The expected AP delay is given by E[D] =
∑N

n=1
λn
λ
E[D]n = E[N ]

λ(1−Pb)

12. The expected AP buffer delay is given by E[Dq] = E[Nq ]

λ(1−Pb)



Chapter 6

End-to-end Delay

6.1 Queueing Networks

In the previous chapter, we have analyzed a variety of systems using different queue-

ing models. However, all of these models have one thing in common: they describe

only a single networking element (or even just a part of one). This is sufficient

if the goal is to dimension this part of a network, or to identify isolated problem

spots.

However, there may be cases where a complete network path from its source to its

destination needs to be considered. For instance, consider again an audio streaming

application. As we discussed earlier, the path end-to-end delay and the deviation

from its average are very important for the quality of this stream, and for parame-

terizing application components such as buffers.

Therefore, it would be helpful if we could analyze the sojourn time of a packet

going through a sequence of queueing systems instead of just a single one. A simple

first approach is to compute the sojourn time for each of the systems individually,

and then adding up these values. However, this means that we will ignore the fact

that packet stream leaving a queueing system does not necessarily have the same

stochastic properties as the arrival process. Since the departure process also depends

heavily on the service time distribution, it may no longer be Markovian.

One may argue that we have made the same kind of error already in assuming a

77
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Markov arrival process in any of the previous models. We justified this assumption

with the large number of individual packet flows that together form the packet

arrival process of a network core element. While this assumption has its merits, we

will now use a more exact method of describing and analyzing networks of queues,

only assuming properties of packet flows entering the network and for the routing

of packets between its elements. We will compare the results using this method to

the aforementioned simple approach of adding up individual results, and finally also

will use a simulation to generate yet another set of values for comparison.

This ’competition’ of different performance evaluation approaches will allow us to

recognize the limits of our queueing theory approach, thus enabling us to judge how

far we can go in using them for system analysis.

6.2 Jackson Networks

Packets traverse multiple hops from their source to their destination. For example,

if User4 and User1 have VoIP conversation, their packets can traverse AN1, R2, R4

and AN2.

In this chapter we explain how the average end-to-end packet delay can be computed.

To compute the end-to-end delay we have to know the following information:

• The route that the packets follow from their source to their destination. The

route that a packet follows is indicated by the set of links F it traverses.

• The aggregate packet arrival rate to every node in the route.

• The stochastic routing vector α at each network element. The stochastic

routing vector indicates the probability that a packet is directed to a certain

output network interface.

With this information, the end-to-end delay is the sum of the average times a packet

has spent in each hop.

E[De2e] =
∑
∀f∈F

(E[Dnode]f + E[Dp]f ) (6.1)
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where E[Dnode]f and E[Dp]f are the expected delay at node f and the propaga-

tion delay at hop f respectively. Usually, we will simply assume that E[Dnode]f =

E[D]f .

However, to apply (6.1), we have to make several assumptions:

• At each element, the packets have to arrive following a Poisson process.

• Each network interface has to be modelled assuming K =∞, with the excep-

tion of the last hop.

• The offered traffic at each network interface must be a < 1, i.e., the queueing

system must be stable.

• Stochastic routing must be applied, i.e., the next hop for a given packet is

selected randomly.

• The service time has to be exponentially distributed, with the exception of the

last hop.

• The service times of the same packet in different queues have to be indepen-

dent.

These assumptions are based on the Burkes and Jackson’s theorems, as well as, the

work done by Kleinrock in his PhD thesis.

6.3 Burke and Jackson’s theorems

Burke proved that the departure process of a M/M/S queueing system is also a

Poisson process with rate λ. Therefore, it allows us to concatenate several M/M/S

systems.

Jackson proved that considering the assumptions stated in the previous section, the

network state can be computed as a product of the state of all individual network

interfaces. In other words, that each network interface behaves independently of

the others. For example, the probability that the network contains 0 packets is∏
∀n∈Network nodes π0,n.
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6.4 Model of a node in a network

In Figure 6.1 the schematic of a node (router) is depicted. It has Min input links

and Mout output links. For instance, in Figure 4.1, the R4 has 4 input and 4 output

links, as all links are bidirectional.

l1in

l2in

l3in

lMin

lambda

muG

mu2

mu1

lalfa2

lalfa1

lalfaG

Figure 6.1: Schematic of a Node

6.5 Examples for End-to-end Delay

End to End delay for a video transmission

Consider that User9 is watching a video transmitted by the video server connected

to AN6. The route that the packets follow has 5 hops (Video Server, AN6, R1, R3,

AN4 and User9). Each hop is modeled by an M/M/1 queue as shown in Figure

6.2.

Given that λ = 200 packets/second, and E[L] = 2000 bits, compute the expected

end-to-end packet delay.

Solution: We have to compute the E[Dhop] = E[D] + E[Dp] for each hop:
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AN6 R1 R3 AN4 User9

RAN4RR3RR1RAN6RVS

video server

lambda

DpVS DpAN6 DpR1 DpR3 DpAN4

Figure 6.2: Network for Example 1

• E[Dhop,VS] = 1
10E6
2000
−200 + 0.001 · 10−3 = 2.0933 · 10−4 seconds.

• E[Dhop,AN6] = 1
100E6
2000

−200 + 4 · 10−3 = 0.0040201 seconds.

• E[Dhop,R1] = 1
100E6
2000

−200 + 1 · 10−3 = 0.0010201 seconds.

• E[Dhop,R3] = 1
100E6
2000

−200 + 0.001 · 10−3 = 2.1080 · 10−5 seconds.

• E[Dhop,AN4] = 1
22E6
2000
−200 + 2 · 10−3 = 0.0020926 seconds.

Finally, the end-to-end delay is computed by adding all the previous delays, and the

result is:

E[De2e] = 7.3632 msecs

Background Traffic

In this second example, there appears background traffic in the same route of the

video packets, as shown in Figure 6.3. Consider that the average packet length is

E[L] = 2000 bits and that

αR4 =
λB1

λB1 + λ
= 0.99593 αUser8 =

λB2

λB2 + λ
= 0.92308

AN6 R1 R3 AN4 User9

RAN4RR3RR1RAN6RVS

video server

lambda

DpVS DpAN4

toUser8

alfaUser8

DpAN6 DpR3DpR1

lambdaB1

toR4

lambdaB2

alfaR4

Figure 6.3: Network for Example 2

Solution: We have to compute the E[Dhop] = E[D] + E[Dp] for each hop:
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• E[Dhop,VS] = 1
10E6
2000
−200 + 0.001 · 10−3 = 2.0933 · 10−4 seconds.

• E[Dhop,AN6] = 1
100E6
2000

−200 + 4 · 10−3 = 0.0040201 seconds.

• E[Dhop,R1] = 1
100E6
2000

−(49000+200)
+ 1 · 10−3 = 0.0022500 seconds.

• E[Dhop,R3] = 1
100E6
2000

−(2400+200)
+ 0.001 · 10−3 = 2.2097 · 10−5 seconds.

• E[Dhop,AN4] = 1
22E6
2000
−(2400+200)

+ 2 · 10−3 = 0.0021190 seconds.

Finally, the end-to-end delay is computed by adding all the previous delays, and the

result is:

E[De2e] = 8.6206 msecs



Part III

Miscellaneous Traffic and Quality

of Service
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Chapter 7

Heterogeneous Traffic in IP

Networks

7.1 Observations about Real Packets

In the previous part, we assumed several things about IP packets in order to be able

to model a data link using a Markov chain model. One of these assumptions, namely

that packet sizes are exponentially distributed, is especially unrealistic considering

real packet-switched networks. To start, it is pretty obvious that packets can only

contain a discrete number of bits, whereas the exponential distribution is continuous.

Moreover, there typically is a minimum packet size significantly larger than 0, owed

to the headers that each packet needs to contain. In the case of IP version 4 packets,

not considering lower layer headers, this minimum size would be 20 Byte (40 Byte

in version 6), although normally one can assume that each IP packet contains at

minimum a transport layer header as well.

Finally, current packet switched networks typically impose a limit on the maximum

size of individual packets, the Maximum Transmission Unit (MTU). A typical value

for the MTU is 1500 Byte, resulting from the use of Ethernet V2 technology. Packets

that are larger than this MTU above the network layer are fragmented by the IP so

that the fragments conform to the limit. This means that any realistic packet size

distribution should have a finite maximum value, whereas the exponential distribu-

tion does not. To illustrate the difference between the Markov model assumption
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and the real world, Figure 7.1 shows packet sizes observed on a core network link

(available via www.caida.org) and compares the resulting distribution with an ex-

ponential distribution with a similar average value. The discrepancies between the

two are obvious.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Packet length (byte)

C
D

F

 

 

Real packet trace (caida.org)

Exponential distribution, same average

Figure 7.1: Real packet size distribution vs. exponential distribution with same
mean

What does this mean for our formulas derived for M/M/S/K queues? Basically, it

means that if we use these formulas, we have to keep in mind that they result from a

simplification (and maybe oversimplification) of the observed system. This does not

mean that they are completely useless, just that they provide only a first, somewhat

unaimed shot at analyzing the system in question. However, that does not mean we

have to stop there.

In the following, we will provide analytical tools and their derivation for systems

with packet size distributions different than an exponential distribution. Better than

that, these formulas are valid for a very large class of distributions, namely all packet

size distributions which are general and independent. The first attribute means that

the sizes of all packets are determined by the same distribution, and the second that

the size of each packet is independent from the size of other packets. This is similar



CHAPTER 7. HETEROGENEOUS TRAFFIC IN IP NETWORKS 86

to rolling a dice, where the outcome of one roll does not depend on the numbers

rolled before, but the same distribution, i.e., dice, is used for each roll. Packet sizes

in real networks fulfill these requirements rather well, so that this should lead us to

a much more exact model than the one from the previous chapter.

7.2 M/G/1 Waiting System

In order to be able to model more realistic packet length distributions, we need

to replace the exponential service time distribution with a general, independent

distribution, ’G’ in the Kendall notation. The resulting M/G/1 waiting system, cf.

Figure 7.2, will be analyzed in the following.

infty

lam

G

E_S

M

Figure 7.2: A M/G/1 waiting system

In this system, the utilization ρ and the traffic intensity still depend on the average

service time E[Ds]:

ρ = a = λ · E[Ds].

For the system to be in a stable condition, it still holds that a < 1.

We are again interested in the same important system characteristics, such as the

average time spent in the queue E[Dq], the average system response or sojourn time

E[D], and the average queue length E[Nq]. The complete distributions for these

values can be derived using a so-called embedded Markov chain. However, since we

are now only interested in the average values, we choose a simpler approach. We will

analyze the system from the viewpoint of an arriving packet, cf. Figure 7.3.

Under a FIFO queueing strategy, this newly arrived packet will have to wait on
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Arriving packet

E_W

Figure 7.3: Consideration for the average waiting time

average until the packet that is currently being sent is completely transmitted, and

then until all the packets before it in the queue are also transmitted. The former

is the residual service time E[Dr], while the latter is the product of the average

number of packets encountered in the queue by arriving packets E[Na
q ] and the

average service time needed for each:

E[Dq] = E[Na
q ] · E[Ds] + E[Dr]. (7.1)

Since we still assume a Poisson arrival process, the PASTA property still holds.

This means that the average number of packets in the queue seen by an arriving

packet equals the average number of packets in the queue over time, or E[Na
q ] =

E[Nq].

We can use Little’s Law to derive E[Nq]:

E[Nq] = λ · E[Dq]. (7.2)

Using (7.2) with (7.1) gives us
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E[Dq] = λ · E[Dq] · E[Ds] + E[Dr]

E[Dq] = ρ · E[Dq] + E[Dr]

E[Dq](1− ρ) = E[Dr]

E[Dq] =
E[Dr]

(1− ρ)
(7.3)

Next, we have to quantify the average residual service time E[R]. To give an intuition

for this, Figure 7.4 shows a qualitative plot of the residual work over time.

t

R(t)

T

S1 S2 S3 S4 Sn

S1

...

...

Figure 7.4: Residual service time process

For the average residual service time, we consider the system over a long timespan

T . In this interval, we will see on average λ · T = n packets arriving. Then,

E[Dr] =
1

T

∫ T

0

Dr(t
′)dt′ =

1

T

n∑
i=1

1

2
D2
si

=
n

T︸︷︷︸
→λ

· 1

n
·

n∑
i=1

1

2
D2
si︸ ︷︷ ︸

→ 1
2
E[D2

s ]

.

Finally, we get

E[Dq] =
E[Dr]

(1− ρ)
=
λ · E[D2

s ]

2(1− ρ)

(
=

1 + CV [Ds]
2

2
· ρ

1− ρ
· E[Ds]

)
. (7.4)

Knowing the average waiting time, we can calculate the average system response
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time as

E[D] = E[Dq] + E[Ds] =
λ · E[D2

s ]

2(1− ρ)
+ E[Ds] (7.5)

Applying Little’s Law again using (7.4) and (7.5), we get the average number of

packets in the queue and in the system, respectively:

E[Nq] = λ · E[Dq] =
λ2 · E[D2

s ]

2(1− ρ)
=

1 + CV [Ds]
2

2
· ρ2

1− ρ
(7.6)

E[N ] = λ · E[D] =
λ2 · E[D2

s ]

2(1− ρ)
+ λ · E[Ds] =

1 + CV [Ds]
2

2
· ρ2

1− ρ
+ ρ (7.7)

7.2.1 Averaging

Dq,i = Dr,i +

Nq,i∑
n=1

Ds,n

Dq,i = Dr,i +Nq,i

 1

Nq,i

Nq,i∑
n=1

Ds,n


Dq,i = Dr,i +Nq,iE[Ds]

→ E[Dq] = E[Dr] + E[Nq]E[Ds]

Application to M/M/1 waiting systems

Since the M/M/1 waiting system is a special case of the M/G/1 waiting system, we

can apply the results for the latter and compare it with the results gained by the

Markov chain-based approach. Since CV [Ds] = 1 in a M/M/1 system, we get

E[Dq] =
1 + CV [Ds]

2

2
· ρ

1− ρ
· E[Ds] =

ρ

1− ρ
· E[Ds],

and
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E[N ] =
1 + CV [Ds]

2

2
· ρ2

1− ρ
+ ρ =

ρ2

1− ρ
+ ρ =

ρ2

1− ρ
+
ρ(1− ρ)

1− ρ
=

ρ

1− ρ
,

which are the known formulas for M/M/1.

[Before showing how the Residual time looks, it’s an interesting exercise to compute

it as: E[Dr]
1−a + E[Ds] = 1

µ−λ ]

Application to M/D/1 waiting systems

As a second case for a specific class of service time distribution, we apply the M/G/1

analysis to a M/D/1 waiting system. Here, CV [Ds] = 0 due to the deterministic

service process. Therefore,

E[Dq] =
1 + CV [Ds]

2

2
· ρ

1− ρ
· E[Ds] =

1

2
· ρ

1− ρ
· E[Ds],

or exactly half the average waiting time of a M/M/1 waiting system with the same

average service time and load. Similarly,

E[N ] =
1 + CV [Ds]

2

2
· ρ2

1− ρ
+ ρ =

1

2
· ρ2

1− ρ
+ ρ.

7.2.2 Comments

We have a traffic flow that has two different service time values: Ds,1,1 and Ds,1,2,

with probability p1,1 and p1,2, respectively. Then, the second moment is:

E[D2
s,1] = p1,1D

2
s,1,1 + p1,1D

2
s,1,2 (7.8)

If we add another traffic flow that has also two different service time values: Ds,2,1

and Ds,2,2, with probability p2,1 and p2,2, and we know that the fraction of arriving

packets from flow 1 is ψ1 and from 2 is ψ2, the second moment of the mixture
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is:

E[D2
s ] = ψ1(p1,1D

2
s,1,1 + p1,2D

2
s,1,2) + ψ2(p2,1D

2
s,2,1 + p2,2D

2
s,2,2)

= ψ1E[D2
s,1] + ψ2E[D2

s,2] (7.9)

where ψ1 = λ1
λ1+λ2

and ψ1 = λ2
λ1+λ2

.

Therefore, with multiple traffic flows, the queueing delay in a M/G/1 queue reduces

to:

E[Dq] =
λ
∑

i ψiE[D2
s,i]

2(1− a)
=

∑
i λiE[D2

s,i]

2(1− a)
=

=

∑
i λiE

2[Ds,i](1 + CV2[Ds,i])

2(1− a)
=

=

∑
i aiE[Ds,i](1 + CV2[Ds,i])

2(1− a)
=

=

∑
i ai

E2[Ds,i](1+CV2[Ds,i])

2E[Ds,i]

(1− a)
=

∑
i ai

E[D2
s,i]

2E[Ds,i]

(1− a)
=

=

∑
iE[Dr,i]

(1− a)
(7.10)

7.3 Examples for the Use of M/G/1

Example 1: Impact of the variance of the packet length in the core network

A data flow aggregate sent over a core link, cf. Figure 7.5, contains packets of an

average length E[L] = 800 bit, which arrive following a Poisson arrival process at

a link with a queue sufficiently large to be considered infinite. The average arrival

rate is λ = 107 1
s
, and the capacity of the link is R = 10 Gbps.

We will now compare the waiting times of these packets in the buffer for packet

length distributions. These distributions serve as a first and very rough modeling of

different application classes.

1. Calculate the average waiting time of a packet if all packets are of fixed length

L, such as in a voice streaming application.

2. Compare the previous result to the waiting time for exponentially distributed
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Figure 7.5: Core network link

packet lengths.

3. Compare the previous results to the waiting time if the packet lengths show a

coefficient of variation of CV [L] = 3.2. What is the conclusion?

Solution:

1. In this first case, the packets have a fixed length. Therefore, the service time

distribution is deterministic. Every packet needs the same time to be trans-

mitted:

E[Ds] =
E[L]

R
=

800 bit

10 Gbps
= 8 · 10−8 s = 8 · 10−5 ms

ρ = λ · E[Ds] = 107 1

s
· 8 · 10−8 s = 0.8

With a deterministic service time distribution, we can directly model the sys-

tem as a M/D/1 waiting system. For this kind of system, the waiting time

is:

E[Dq] =
ρ

1− ρ
E[Ds]

2
=

0.8

0.2

8 · 10−8 s

2
= 16 · 10−8 s = 16 · 10−5 ms

2. With the change in the packet length distribution, the service time distribution

changes as well. The new system is therefore an M/M/1 waiting system, where

the average waiting time is:

E[Dq] =
ρ

1− ρ
E[Ds] =

0.8

0.2
· 8 · 10−8 s = 32 · 10−8 s = 32 · 10−5 ms,

or double the waiting time of the previous case.
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3. Finally, for the general M/G/1 case, we use Formula 7.4:

E[Dq] =
1 + CV [Ds]

2

2

ρ

1− ρ
E[Ds] =

1 + 3.22

2

0.8

0.2
· 8 · 10−8 s

= 179.84 · 10−8 s = 179.84 · 10−5 ms.

Comparing the three results, we see that the variance of the service time has

a large effect of the waiting time, all other things (and specifically the average

service time) being equal. Specifically, a higher variance in the service time

process leads to longer waiting times.

Example 2: TCP data traffic

As stated before, the Internet carries packets of different sizes. Measurements show

that two very important classes of IP packets are data packets that utilize the full

Maximum Transfer Unit (MTU) of Ethernet networks, i.e., 1500 Byte, and TCP

acknowledgments, which have a length of 40 Byte using IPv4. Using the M/G/1

model, we can now analyze a link that transports these two types of packets. We

will use a DSL uplink of a private user as an example, cf. Figure 7.6.

Figure 7.6: DSL uplink

To do so, we model the acknowledgments as packets with a fixed length of Lack =

40 Byte, and the data packets also with a fixed packet length of Ldata = 1500 Byte.

The probability for an arriving packet to be an acknowledgment is pack = 0.33 (i.e.,

we see roughly one acknowledgment for every two data packets), and the total packet

arrival rate is λ = 45 1
s
. The link capacity is R = 0.5 Mbps.

We now want to determine the average waiting times and the average number of

acknowledgments and data packets (individually and in total) in the system.
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Solution:

Since the overall service time distribution is neither deterministic (there is more than

one type of packet), nor exponential (in this case, the distribution is even discrete),

we have to use the M/G/1 model.

We know that, in order to calculate the waiting time of the packets, we will need the

second central moment E[D2
s ] of the waiting time. As well, we need to calculate the

average service time E[Ds] to get the system utilization ρ = λ · E[Ds]. We can do

both in a similar fashion. First, we calculate the according values for the individual

packet types, and then use a weighted sum based on their probabilities to get the

moment of the total distribution:

E[Dsack ] =
E[Lack]

R
=

40 · 8 bit

0.5 · 106 bit
s

= 0.64 · 10−3 s

E[Dsdata ] =
E[Ldata]

R
= 24 · 10−3 s

E[Ds] = pack · E[Dsack ] + pdata · E[Dsdata ]

= 0.33 · 0.64 · 10−3 s + 0.67 · 24 · 10−3 s = 16.3 · 10−3 s

E[D2
sack

] = (1 +

=0(det.)︷ ︸︸ ︷
CV [Dsack ]2)E[Dsack ]2 = E[Dsack ]2 = 4.1 · 10−7 s2

E[D2
sdata

] = (1 +

=0(det.)︷ ︸︸ ︷
CV [D2

sdata
)E[Dsdata ]2 = 5.76 · 10−4 s2

E[D2
s ] = pack · E[D2

sack
] + pdata · E[D2

sdata
]

= 0.33 · 4.1 · 10−7 s2 + 0.67 · 5.76 · 10−4 s2 = 3.8 · 10−4 s2

Next, we can calculate the average waiting time of packets, which is also needed

for the system response time and therefore for the number of packets in the system

(using Little’s Law).

The average waiting time is the same for both packet types, since it does not depend

on a packet itself, but on the packets that are positioned before it in the buffer:
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E[Dq] =
λE[D2

s ]

2(1− ρ)

=
45 1

s
· 3.8 · 10−4 s2

2(1− 45 1
s
· 16.3 · 10−3 s)

= 3.17 · 10−2 s

The average time spent in the system is different for the two packet types, since this

is the sum of the average waiting time (which is equal) and the average service time

(which is not):

E[Dack] = E[Dq] + E[Dsack ] = 3.23 · 10−2 s ≈ 32 ms

E[Ddata] = E[Dq] + E[Dsdata ] = 5.57 · 10−2 s ≈ 56 ms

Finally, knowing the average time a packet spends in the system and the arrival

rates of the packets, we can use Little’s Law to calculate the average number of

these packets in our system:

E[Nack] = λack · E[Dack] = pack · λ · E[Dack]

= 0.33 · 45
1

s
· 3.81 · 10−2 s = 0.48

E[Ndata] = λdata · E[Ddata] = pdata · λ · E[Ddata]

= 0.67 · 45
1

s
· 5.57 · 10−2 s = 1.68

Example 3: WLAN traffic

Wireless LAN uses CSMA-CA (Carrier Sense Multiple Access - Collision Avoidance)

as its medium access protocol. This means that a packet will be sent over the

air interface, and if the local WLAN station was the only one transmitting, the

transmission was successful. However, if more than one station transmits at the same

time, the packets will collide and will have to be retransmitted. This retransmission
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is delayed by a random amount of time in order to try to avoid another collision,

hence Collision Avoidance.

Figure 7.7: A WLAN link

We will in the following show how the M/G/1 model can be used to do a simple

analysis of the packet waiting times in a WLAN station, cf. Figure 7.7. To simplify

things a bit, we will assume a fixed and independent packet collision probability

of pcol = 2% for each packet. In addition, we assume that the backoff time after

an unsuccessful transmission is a fixed interval of Dbo = 1 ms, and that a packet is

discarded after Zmax = 3 unsuccessful transmission intents.

We will assume data packets with a fixed size of L = 8000 Byte (which is close

to the WLAN MTU), and that the wireless network card can transmit packets at

R = 11 Mbps. Packets to be sent over the WLAN are generated at the station

following a Poisson process, with an average rate of λ = 100 1
s
.

Solution:

Again, the important thing is to characterize the overall service time process for

a packet. We can easily calculate the time E[D∗s ] it takes to transmit a packet,

regardless of whether it collides with another packet or not:

E[D∗s ] =
E[L]

R
=

8000 · 8 Bit

11 · 106 bit
s

= 5.8 · 10−3 s

The actual service time of a packet, i.e., the time it takes to process the packet, also

depends on the number of necessary retransmissions. With probability 1− pcol, the
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packet is successfully transmitted with the first try. With probability pcol·(1−pcol), it

is successfully sent after the first retransmission following a collision, and finally, the

packet leaves the system in the rest of the cases, either because it was successfully

transmitted after two previous collisions, or because it is discarded.

In the first case, we just need E[D∗s ] to transmit the packet, and in the second

E[D∗s ] + Dbo + E[D∗s ] = 2E[D∗s ] + Dbo, since even an unsuccessful transmission

is completed before the backoff. Similarly, the third case takes 3E[D∗s ] + 2Dbo.

Therefore, the total average service time can be calculated as:

E[Ds] = (1− pcol) · E[D∗s ] + pcol(1− pcol)(2E[D∗s ] +Dbo)

+p2col(3E[D∗s ] + 2Dbo)

= 6 · 10−3 s.

By now we are familiar with the fact that we need the second moment of the service

time as well. Luckily, we can again use the same approach as in the last example,

since for each case, the service time is again deterministic:

E[D2
s ] = (1− pcol) · E[D∗s ]

2 + pcol(1− pcol)(2E[D∗s ] +Dbo)
2

+p2col(3E[D∗s ] + 2Dbo)
2

= 3.65 · 10−5 s

With ρ = λ ·E[Ds] = 0.6, we again have everything we need to calculate the average

waiting time of packets:

E[Dq] =
λE[D2

s ]

2(1− ρ)
=

100 1
s
· 3.65 · 10−5 s2

2(1− 0.6)
= 4.5 · 10−3 s

Thus, in total, packets spend on average E[D] = E[Dq] + E[Ds] = 10.5 ms in the

buffer before they are either successfully transmitted or discarded. The probability

for this packet loss is Pr = p3col = 8 · 10−6, or 0.0008%.
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7.4 Heterogeneous flows: Slides M/G/1

The expected packet size is

E[L] = p1(64 · 8) + p2(800 · 8) + p3(1500 · 8) = 5710.4 bits. (7.11)

The expected service time is given by

E[Ds] =
E[L]

R
= p1

64 · 8
10 · 106

+ p2
800 · 8
10 · 106

+ p3
1500 · 8
10 · 106

= 0.571 ms. (7.12)

Note that:

E[Ds] = p1E[Ds,1] + p2E[Ds,2] + p3E[Ds,3] = p151 µs + p20.64 ms + p31.2 ms

(7.13)

The second moment of the service time is given by

E[D2
s ] = p1

(
64 · 8

10 · 106

)2

+ p2

(
800 · 8
10 · 106

)2

+ p3

(
1500 · 8
10 · 106

)2

= 0.5871 µs2. (7.14)

The expected residual time is then given by

E[Dr] =
λE[D2

s ]

2
=

8 · 106

5710.4
0.5871 · 10−6 = 0.8225 ms (7.15)

Note that the residual time can be decomposed in the contributions of each packet

size:

E[Dr] = E[Dr,1] + E[Dr,2] + E[Dr,3] =
λ1E[D2

s,1]

2
+
λ2E[D2

s,2]

2
+
λ3E[D2

s,3]

2
(7.16)

where E[D2
s,i] =

(
E[Li]
R

)2
(1 + CV [Ds,i]

2).

The expected queueing delay is

E[Dq] =
E[Dr]

1− ρ
=

0.8225 · 10−3

1− ρ
= 0.0021 s (7.17)
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with ρ = λE[Ds] = 8·106
E[L]

E[Ds] = 0.8225

The expected system delay is

E[D] =
E[Dr]

1− ρ
+ E[Ds] = 0.0026 s (7.18)

The CV of Ds is given by

CV [Ds] =

√
V [Ds]

E[Ds]
=

√
E[D2

s ]− E2[Ds]

E[Ds]
= 0.8947 (7.19)

If we compare the obtained delay with the delay of a M/M/1 queue, we obtain:

E[D] =
1

µ− λ
=

1
1

E[Ds]
− B

E[L]

= 0.0029 s (7.20)

Here, it’s exactly the same as before. We first calculate the second moment of each

type of size:

E[D2
s,i] = E[Ds,i]

2(1 + CV [Ds,i]
2) (7.21)

where CV [Ds,i] = CV [Li] as Ds,i = Li

R
, with R a constant.

Then, we can calculate the residual time:

E[Dr] = E[Dr,1] + E[Dr,2] + E[Dr,3] =
λ1E[D2

s,1]

2
+
λ2E[D2

s,2]

2
+
λ3E[D2

s,3]

2
(7.22)

Note that in previous exercise, since all packet sizes where deterministic, we just

considered that CV [Li] = 0 in all cases.



Chapter 8

Traffic Differentiation in IP

Networks

8.1 M/G/1 Multiple flows

E[Dq] =
F∑
f=1

E[Nq,f ]E[Ds,f ] +
F∑
f=1

afE[Dr,f |af ]

E[Dq] =
F∑
f=1

E[Nq,f ]E[Ds,f ] +
F∑
f=1

af
E[D2

s ]

2E[Ds]

E[Dq] =
F∑
f=1

E[Nq,f ]E[Ds,f ] +
F∑
f=1

λfE[Ds,f ]
E[D2

s,f ]

2E[Ds,f ]

E[Dq] =
F∑
f=1

E[Nq,f ]E[Ds,f ] +
F∑
f=1

λf
E[D2

s,f ]

2

E[Dq] =
F∑
f=1

E[Nq,f ]E[Ds,f ] +
F∑
f=1

E[Dr,f ]

Example with 2 flows:

100
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E[Dq] = E[Nq,1]E[Ds,1] + E[Nq,2]E[Ds,2] + E[Dr,1] + E[Dr,2]

E[Dq] = λ1E[Dq]E[Ds,1] + λ2E[Dq]E[Ds,2] + E[Dr,1] + E[Dr,2]

E[Dq](1− a1 − a2) = E[Dr,1] + E[Dr,2]

E[Dq] =
E[Dr,1] + E[Dr,2]

1− a1 − a2
=
λ1

E[D2
s,1]

2
+ λ2

E[D2
s,2]

2

1− a1 − a2

E[Dq] =
λE[D2

s ]
2

1− a1 − a2
=
λE[D2

s ]
2

1− a

Some relationships:

E[Nq] =
F∑
f=1

E[Nq,f ]

E[Nq,f ] =
λf
λ
E[Nq] (8.1)

8.2 M/G/1 Waiting Systems with Priorities

Up to now, we have considered pure FIFO queues, i.e., packets do not ’overtake’

each other in the queue. In this kind of system, packets are scheduled only based on

their arrival time, but otherwise have the same priority. This is a very good model

for the ’best effort’ Internet, where packets are indeed not treated differently and

the arrival sequence of packets in a buffer is the same as the send sequence.

However, nowadays more and more applications with completely different require-

ments use the same network. Among these are applications that do not depend

much on the end-to-end delay of their individual packets, such as file downloads,

web traffic or email. The quality of service of these applications is determined by the

arrival time of the last packet of the transmission (i.e., the file transfer, the webpage

or the mail). In many cases, even a minor delay in the transmission duration is not

of a very large consequence.

In contrast, multimedia applications such as video streaming or Voice over IP (VoIP)
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depend heavily on the delay of individual packets. Since the transmitted content

(video frames or voice samples) needs to be played out continuously on the receiver

side, a delay in only a fraction of the packets may lead to a stall and/or errors in

the video, or garbling of the received speech signal.

These circumstances have led to the development of mechanisms and architectures

such as Differentiated Services, which enable network operators to provide different

classes of service to different types of traffic flows. To give an example, an Inter-

net Service Provider (ISP) could treat packets that it can identify as belonging to

multimedia traffic flows preferentially, i.e., giving them a higher priority in packet

queues or guaranteeing a minimum delay and flow throughput. The following anal-

ysis covers one specific type of queueing system that implements the first policy, i.e.,

handling different classes of traffic with different priorities.

As an example, we can imagine a link carrying file transfer and VoIP traffic, cf.

Figure 8.1.

infty

lam1

lam2

VoIP

File transfer

C

Figure 8.1: Link with two classes of packets

With a normal FIFO scheduling strategy, all packets would experience the same

average waiting time, regardless of their type. For example, assume values of L1 =

48 bit, λ1 = 1.21 1
s

and CV [DS1 ] = 0 for the average packet length, arrival rate, and

coefficient of variation for the VoIP packets, respectively, and the according values

L2 = 960 bit, λ2 = 4.91 1
s

and CV [DS2 ] = 1 for the file transfer packets. Then,

the average waiting time for all packets equals, using the M/G/1 waiting model,

E[Dq] = 97.64 ms.

However, as we discussed above, in some cases it might improve system performance

if some packets could be prioritized, e.g., the (small) VoIP packets of our example.

To achieve this, we need to change the scheduling policy in the queue. Priority

scheduling processes a packet with higher priority before all packets with a lower one,

whenever there is one in the queue. This can be done preemptively, i.e., interrupting
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the current processing of a low-priority packet for an arriving higher-priority one, or

non-preemptive, i.e., finishing sending the packet that is currently being processed

even if it has a lower priority than another packet arriving during its service time.

Within the same priority class, we still assume a FIFO strategy, i.e., packets of the

same priority leave the queue in order of their arrival. This can be visualized as

done in Figure 8.2:

infty

lam1

infty

lam2

Classifier

lam12

High priority queue

Low priority queue

Figure 8.2: System with priority scheduling

We will now adapt our previous M/G/1 analysis to model this new type of system.

First, we will derive the average waiting time for the case with two priorities, and

then provide the solution for the general case. We assume DSi
to be the service time

distribution of packet priority class i, and λi the arrival rate of packets of this class.

Then, ρi = λi · E[DSi
], with ρ =

∑
i ρi < 1 necessary for a stable system.

The basic approach is the same as for the standard M/G/1 waiting system. We

consider a packet that has just arrived in the system, and the time needed to serve

the packets scheduled before it.

We now have to distinguish between two cases, i.e., whether the packet that arrived

was a high-priority packet (priority class 1), or a low-priority packet (priority class

2). In the former case, the average waiting time of the packet is
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E[Dq1 ] = E[Nq1 ] · E[DS1 ] + E[Dr]

= λ1 · E[Dq1 ] · E[DS1 ] + E[Dr]

= ρ1 · E[Dq1 ] +
λ

2
E[D2

s ]

⇒ E[Dq1 ] =
λE[D2

s ]

2(1− ρ1)

Here, E[Dr] is again the residual service time for the packet being served at the

arrival instant. Since we do not preempt this service, it may be a packet of any

priority, and we can express E[Dr] in terms of the general service time distribution,

like we did for the normal M/G/1 system. However, the number of packets in

the queue that have to be processed before the arriving packet is only the number

of packets E[Nq1 ] of the high-priority class, since these take precedence over the

lower priority packets. The high-priority packets, in turn, only need E[Ds1 ] as their

average service time, and their number is again found using Little’s Law.

For an arriving packet of low priority, the situation is slightly more complex. These

packets have to wait until

1. the packet currently being serviced has finished

2. the packets of high priority found in the queue at arrival have been processed

3. the packets of low priority found in the queue at arrival have been processed

4. and finally, the packets of high priority that arrive during the waiting period

have been processed as well (since they ’overtake’ the packet under consider-

ation).

For the average waiting time of these packets, this results in:
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E[Dq2 ] =

2.︷ ︸︸ ︷
E[Nq1 ] · E[Ds1 ] +

3.︷ ︸︸ ︷
E[Nq2 ] · E[Ds2 ]

+λ1 · E[Dq2 ] · E[Ds1 ]︸ ︷︷ ︸
4.

+E[Dr]︸ ︷︷ ︸
1.

= λ1 · E[Dq1 ] · E[Ds1 ] + λ2 · E[Dq2 ] · E[Ds2 ]

+λ1 · E[Dq2 ] · E[Ds1 ] +
λ

2
E[D2

s ]

= ρ1E[Dq1 ] + ρ2E[Dq2 ] + ρ1E[Dq2 ] +
λ

2
E[D2

s ]

E[Dq2 ](1− ρ2 − ρ1) = ρ1E[Dq1 ] +
λ

2
E[D2

s ]

E[Dq2 ] =
ρ1E[Dq1 ] + λ

2
E[D2

s ]

(1− ρ2 − ρ1)

=

ρ1
λ
2
E[D2

s ]

(1− ρ1)
+ λ

2
E[D2

s ]

(1− ρ2 − ρ1)

E[Dq2 ] =
λE[D2

s ]

2(1− ρ2 − ρ1)(1− ρ1)

This approach can be generalized to the case with C classes of packets, cf. Figure

8.3. Each class has an arrival rate of λi, and a service time distribution Dsi , for

i = 1, ..., p.

infty

lam1

infty

lamp

Classifier

lam12p

infty

lam2

...

Figure 8.3: Generalized system with priority scheduling
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Again, ρ =
∑

i ρi, with ρi = λiE[Dsi ]. Then,

E[Dqi ] =
λE[D2

s ]

2
∏i

j=i−1

(
1−

∑j
z=1 az

) (8.2)

Using the example from the beginning of the section, we can now calculate the

waiting times for the VoIP and file transfer packets if we prioritize the VoIP packets.

With the given values, we get ρ1 = 0.006 and ρ2 = 0.491, and thus E[Dq1 ] =

49.41 ms and E[Dq2 ] = 98.24 ms. Comparing this with the result for a system

without priorities, the VoIP packets, which only make up a small part of the load,

now experience much shorter waiting times, while the data packets are affected by

only slightly longer waits.

Still, keep in mind that there is no free lunch, i.e., that the much shorter delay of the

VoIP packets in this example was achieved only by treating the file transfer packets

worse. While the effect in this example may be small due to the chosen values of

ρ1 and ρ2, this changes when the preferred traffic makes up a significant part of the

total. To imagine the worst case, think of a link where there is always a packet of

the high priority class to send, i.e., the queue of this traffic class in never empty. In

this case, no packet of the lower priorities can be transmitted! Thus, high priority

traffic could starve out low priority traffic.

8.3 Examples for M/G/1 with Priorities

Example 1: Voice over IP and background traffic

We consider one router in a network that supports Quality of Service (QoS) for Voice

over IP (VoIP) by prioritizing voice traffic over other data traffic (or background

traffic), cf. Figure 8.4. We want to calculate the effect this has on the voice packets,

by comparing the system with and without the priority policy.

Voice packets have an average length of E[LV ] = 480 bit, and arrive with an average

rate of λV = 10 1
s
. The average length of data packets is E[LD] = 10000 bit, these

packets arrive with an average rate of λD = 20 1
s
. For both types, the interarrival



CHAPTER 8. TRAFFIC DIFFERENTIATION IN IP NETWORKS 107

Figure 8.4: An access router supporting QoS

times as well as the packet lengths are distributed exponentially. The outgoing link

of the router under consideration has a send rate of R = 1 Mbps and its packet

queue is large enough to be considered infinite.

1. First, we assume that only voice packets are sent over the link. Calculate the

average number of these packets in the system.

2. Now adding the data traffic, calculate the average system response time for

voice packets and data packets, respectively.

3. Finally, calculate the number of voice and data packets in the queue and in

the system under the condition that the voice packets are prioritized.

Solution:

1. If we just consider the voice traffic, we only have one arrival process with an

exponentially distributed interarrival time. Thus, the system is simplified to

a M/M/1 waiting system, and we can apply the according formulas for the

average waiting time:

E[DsV ] =
E[LV ]

R
=

480 bit

1 · 106 bit
s

= 4.8 · 10−4 s

ρV = λV · E[DsV ] = 50
1

s
· 4.8 · 10−4 s = 0.024

E[Dq] =
ρV

1− ρV
· E[DsV ] = 1.18 · 10−5 s

To get the number of packets in the system, we use again Little’s theorem,
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first calculating the average time spent in the system by a packet:

E[D] = E[Dq] + E[DsV ] = 4.92 · 10−4 s

E[N ] = λV · E[D] = 50
1

s
· 4.92 · 10−4 s = 0.025

2. We can no longer use the M/M/1 model from the previous subproblem, since

the arrival process is no longer Poisson. Therefore, we use the M/G/1 model

from now on. We already know some of the necessary values for the voice

traffic. We still miss the second central moment, and the moments of the

service time distribution of the data packets to calculate the overall second

moment of the service time:

E[DsD ] =
10000 bit

1 · 106 bit
s

= 0.01 s

ρ = ρV + ρD = λV · E[DsV ] + λD · E[DsD ] = 0.224

E[Ds] = pV · E[DsV ] + pD · E[DsD ]

=
λV

λV + λD
· E[DsV ] +

λD
λV + λD

· E[DsD ] = 3.2 · 10−3 s

Since the packet lengths are exponentially distributed, CV [LV ] = CV [DsV ] =

1 and CV [LD] = CV [DsD ] = 1, as well. Therefore:

E[D2
sV

] = (1 + CV [DsV ]2)E[DsV ]2 = (1 + 12) · (4.8 · 10−4 s)2 = 4.61 · 10−7 s2

E[D2
sD

] = (1 + CV [DsD ]2)E[DsD ]2 = 2 · 10−4 s2

E[D2
s ] = pV · E[D2

sV
] + pD · E[D2

sD
] = 5.75 · 10−5 s2

(Side note: this means that the coefficient of variation of the service time dis-

tribution is CV [Ds] = 2.15. The combination of two exponentially distributed

service times does not give another exponential distribution!) Now, we can

calculate the average waiting time and thus the system response times for the
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two packet classes:

E[Dq] =
λ · E[D2

s ]

2(1− ρ)
= 2.6 · 10−3 s

E[DV ] = E[Dq] + E[DsV ] = 3.08 · 10−3 s

E[DD] = E[Dq] + E[DsD ] = 12.6 · 10−3 s

3. The model changes again slightly, to the M/G/1 model with priorities. For

the voice packets, we get

E[DqV ] =
λ · E[D2

s ]

2(1− ρV )
= 2.1 · 10−3 s

In contrast, the data packets on average have to wait:

E[DqD ] =
λ · E[D2

s ]

2(1− ρV )(1− ρV − ρD)
= 2.7 · 10−3 s

Therefore,

E[DV ] = E[DqV ] + E[DsV ] = 2.6 · 10−3 s

E[DD] = E[DqD ] + E[DsD ] = 12.7 · 10−3 s

E[NqV ] = λV · E[DqV ] = 50
1

s
· 2.1 · 10−3 s = 0.11

E[NqD ] = λD · E[DqD ] = 20
1

s
· 2.7 · 10−3 s = 0.05

E[NV ] = λV · E[DV ] = 50
1

s
· 2.6 · 10−3 s = 0.13

E[ND] = λD · E[DD] = 20
1

s
· 12.7 · 10−3 s = 0.25

Example 2: Signaling, Streaming and Best Effort Traffic

In this example, we introduce a third traffic class into a QoS-supporting network,

namely signaling traffic. This can be for example VoIP signaling in the form of SIP,

or signaling messages from the traditional telephone network carried over an IP net-

work, e.g., using SIGTRAN. Since these messages are critical for their applications,

they should have a very high priority.

In addition, we see streaming traffic that consists not only of voice packets but
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video content as well. Again, streaming has tighter delay constraints than other

data traffic, so it should receive some priority. Finally, the rest of the traffic, for

example Peer-to-Peer (P2P) traffic, is considered background traffic with the lowest

priority.

Figure 8.5: An access network with three different traffic classes

We will use the M/G/1 model with priority to analyze a network element carrying

these three traffic types, giving priority in the order: signaling, streaming, back-

ground traffic.

Signaling packets have an average length of E[Lsig] = 50 Byte, streaming pack-

ets of E[Lstr] = 1000 Byte and background data packets of E[Ldata] = 1450 Byte.

The lengths of the packets are distributed with coefficients of variation CV [Lsig] =

0.5, CV [Lstr] = 1, CV [Ldata] = 0.1, respectively. The link to be modeled has a send

rate of R = 10 Mbit
s

.

The packet arrival process at the link is a Poisson process, with an average packet

arrival rate of λ = 500 1
s
. Of the arriving packets, psig = 5% are signaling packets,

pstr = 35% are streaming packets and pdata = 60% background data packets.

We will calculate the average time spent by the different packet types in the buffer

of that link.

Solution:

We need the second moment of the service time distribution and the partial system

utilizations ρi caused by the different traffic classes:
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E[Dssig ] =
E[Lsig]

C
= 0.04 · 10−3 s,

E[Dsstr ] = 0.8 · 10−3 s, E[Dsdata ] = 1.2 · 10−3 s

⇒ E[Ds] = psigE[Dssig ] + pstrE[Dsstr ] + pdataE[Dsdata ]

= 1 · 10−3 s

E[D2
ssig

] = (1 + CV [Dssig ]2) · E[Dssig ]2 = 2 · 10−9 s2

E[D2
sstr ] = 1.28 · 10−6 s2, E[D2

sdata
] = 1.01 · 10−6 s2

⇒ E[D2
s ] = psigE[D2

ssig
] + pstrE[D2

sstr ] + pdataE[D2
sdata

]

= 1.05 · 10−6 s

ρsig = psig · λ · E[Dssig ]

= 0.001

ρstr = 0.14, ρdata = 0.36

⇒ ρ = 0.501

With all of this, we can calculate the waiting times according to Formula 3.1:

E[Dqsig ] = 0.33 · 10−3 s

E[Dqstr ] = 0.38 · 10−3 s

E[Dqdata ] = 0.77 · 10−3 s

We can see the rather strong effect of the scheduling policy on the delay of the back-

ground data packets, while the signaling and streaming packets have to wait much
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shorter in comparison. Although the signaling packets are short and their number

is low, they still have to wait a significant time. This is less due to the queueing

than to the probability to encounter one of the longer streaming or data packets

being sent over the link when arriving, and having to wait for this transmission to

end.



The end!


