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Figure 1: Basic Network

Seminar 4: Exercises

Exercise 1

The transmitter associated to the link between R4 and R3 in Figure 1 is modeled by an M/M/1/K
queue. The aggregate arrival rate to this link is λ = 24000 packets/second, the packet size follow an
exponential distribution with average E[L] = 8000 bits and the transmission rate is R = 200 Mbps.
If the operator of the network wants to guarantee a blocking probability lower than Pb < 10−3:

1. Derive an expression to find K in terms of Pb.

2. What is the numerical value of K?

3. What is the option that gives the best performance? Justify the results:

� Previous case.

� K ′ = dK/2e and R′ = 2R.

� K ′′ = dK/4e and R′′ = 4R.
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Exercise 2

Router R2 receives packets directed to the hosts in AN1 and AN7 from R1, R3 and R4. Namely, it
receives λR1 = 1200 packets/second from R1, λR3 = 2400 packets/second from R3 and λR4 = 900
packets/second from R4. The expected packet size is E[L] = 12000 bits, and the packet size follows
an exponential distribution.

The probability that a packet received in R2 is directed to AN1 is α1 and to AN7 is α7.

The links/transmitters that interconnect R2 with AN1 and AN7 have the following characteris-
tics:

� Link from R2 to AN1: R = 20 Mbps, K =∞ (M/M/1).

� Link from R2 to AN7: R = 40 Mbps, K =∞ (M/M/1).

Then:

1. Is the arrival process at each queue Poisson? Justify the answer based on the properties of
Poisson processes.

2. Find the values of α7 and α1 that result in the same expected waiting delay (E[Dq]) for both
queues.

3. Considering previous values for α7 and α1, calculate the expected queue occupancy (E[Nq]),
the system occupancy E[N ] and the total delay (E[D]) for each queue.

Exercise 3

User 1 is sending a data flow of B = 8 Mbps to User 3, where packets are generated following a
Poisson process. The data flow can follow three different paths: a) R2→R4, b) R2→R3→R4, c)
R2→R1→R3→R4. The background traffic in each link of those routes follows a Poisson distribu-
tion:

� R2→R1: 10 Mbps

� R2→R3: 70 Mbps

� R2→R4: 90 Mbps

� R1→R3: 20 Mbps

� R3→R4: 5 Mbps

where Ri→Rj denotes the background traffic passing through routers Ri and Rj. The transmission
rate of all links is R=100 Mbps, and packets sizes are exponentially distributed with mean E[L] =
250 Bytes. Propagation delays are the same for all links and equal to 10 µs. In addition, all
processing delays are negligible, and buffers are large enough to be considered of infinite size.
Therefore, all interfaces can be modelled as M/M/1 queues. Note that since the hops User1→AN1,
AN1→R2, and R4→AN2, AN2→User3 are the same in all routes, they do not affect the route
election.

1. Represent the sequence of interfaces that are traversed by the data flow in all 3 cases.
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2. Calculate the end to end delay in the 3 cases.

3. Explain why the optimal routing depends on the background traffic.
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Solution to Ex1

1. The blocking probability for a M/M/1/K queue is:

Pb =
(1− a)aK

1− aK+1

Goal: K = f(Pb, a), so:

Pb − PbaK+1 = (1− a)aK

Pb = (1− a)aK + Pba
K+1 = aK(1− a+ Pba)

ln(Pb) = Kln(a) + ln(1− a+ Pba)

K =

⌈
ln(Pb)− ln(1− a+ Pba)

ln(a)

⌉
K =

⌈
−ln(a+ 1−a

Pb
)

ln(a)

⌉

2. With a = λ
µ = 24

25 = 0.96, K = d90.94e = 91 packets.

3. We need to calculate Pb for each of the three cases to compare them:

� Case 1: Pb = 1 · 10−3

� Case 2: now, a = 24000 · 8000
400·106 = 0.480, and K ′ = d912 e = 46.

Pb =
a46(1− a)

1− a47
= 1.13 · 10−15

� Case 3:

a = 24000 · 8000

800 · 106
= 0.240,K ′′ = 23

Pb =
a23(1− a)

1− a24
= 4.22 · 10−15

Solution to Ex2

1. First all arrivals are aggregated into one (Poisson) arrival process, and then are randomly
assigned to the individual queues, which again results in a Poisson process.

2. The expected delay E[Dq] = a
µ−λ should be equal for both queues. With the according values
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for the individual a, µ, λ we get:

E[Dq1] = E[Dq7]
α1λ
µ1

µ1 − α1λ
=

α7λ
µ7

µ7 − α7λ
α1

µ21 − α1µ1λ
=

α7

µ27 − α7µ7λ

(1− α7)

µ21 − (1− α7)µ1λ
=

α7

µ27 − α7µ7λ

(1− α7) · (µ27 − α7µ7λ) = α7 · (µ21 − (1− α7)µ1λ)

µ27 − α7µ7λ− α7µ
2
7 + α2

7µ7λ− α7µ
2
1 + α7µ1λ− α2

7µ1λ = 0

α2
7(µ7λ− µ1λ)− α7(µ7λ+ µ27 + µ21 − µ1λ) + µ27 = 0

⇒ α7 = 0.683

α1 = 0.316

Check:

E[Dq1] =

0.316·4500 1
s

µ1

µ1 − 0.316 · 45001
s

= 0.0035s

E[Dq1] =

0.683·4500 1
s

µ7

µ7 − 0.683 · 45001
s

= 0.0035s

3. The queue occupancy E[Nq] can be derived from the waiting delay E[Dq], using Little’s
Theorem:

E[Nqi] = λi · E[Dqi].

Therefore,
E[Nq1] = 4.98, E[Nq7] = 10.76.

The system occupancy is the queue occupancy plus the server/link occupancy, which in turn
is the system offer a in a M/M/1/∞ system:

E[Ni] = E[Nqi] + ai

E[N1] = 5.83, E[N7] = 11.68

Finally, applying Little again, we get for the total delay:

E[Di] =
E[Ni]

λi

⇒ E[D1] = 0.0041s, E[D7] = 0.0038s
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Solution to Ex3

clear

clc

%% EX1

B=8E6;

EL=250*8;

lambda = B/EL

Dp = 10E-6;

C=100E6;

mu = C/EL

% Route 1

lambdaR2R4 = 90E6/EL;

DR2R4 = 1 / (mu-lambda-lambdaR2R4);

DRoute1 = DR2R4 + Dp;

% Route 2

lambdaR2R3 = 70E6/EL;

DR2R3 = 1 / (mu-lambda-lambdaR2R3);

lambdaR3R4 = 5E6/EL;

DR3R4 = 1 / (mu-lambda-lambdaR3R4);

DRoute2 = DR2R3 + DR3R4 + 2*Dp;

% Route 3

lambdaR2R1 = 10E6/EL;

DR2R1 = 1 / (mu-lambda-lambdaR2R1);

lambdaR1R3 = 20E6/EL;

DR1R3 = 1 / (mu-lambda-lambdaR1R3);

lambdaR3R4 = 5E6/EL;

DR3R4 = 1 / (mu-lambda-lambdaR3R4);

DRoute3 = DR2R1 + DR1R3 + DR3R4 + 3*Dp;

disp(’Results’);

DRoute1

DRoute2

DRoute3
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