

Figure 1: Basic Network

Seminar 4: Exercises

Exercise 1

The transmitter associated to the link between R4 and R3 in Figure 1 is modeled by an M/M/1/K queue. The aggregate arrival rate to this link is $\lambda=24000$ packets/second, the packet size follow an exponential distribution with average $E[L]=8000$ bits and the transmission rate is $R=200 \mathrm{Mbps}$. If the operator of the network wants to guarantee a blocking probability lower than $P_{b}<10^{-3}$:

1. Derive an expression to find K in terms of P_{b}.
2. What is the numerical value of K ?
3. What is the option that gives the best performance? Justify the results:

- Previous case.
- $K^{\prime}=\lceil K / 2\rceil$ and $R^{\prime}=2 R$.
- $K^{\prime \prime}=\lceil K / 4\rceil$ and $R^{\prime \prime}=4 R$.

Exercise 2

Router R2 receives packets directed to the hosts in AN1 and AN7 from R1, R3 and R4. Namely, it receives $\lambda_{R 1}=1200$ packets/second from R1, $\lambda_{R 3}=2400$ packets/second from R3 and $\lambda_{R 4}=900$ packets/second from R4. The expected packet size is $E[L]=12000$ bits, and the packet size follows an exponential distribution.

The probability that a packet received in R2 is directed to AN1 is α_{1} and to AN7 is α_{7}.
The links/transmitters that interconnect R2 with AN1 and AN7 have the following characteristics:

- Link from R2 to AN1: $R=20 \mathrm{Mbps}, K=\infty(\mathrm{M} / \mathrm{M} / 1)$.
- Link from R2 to AN7: $R=40 \mathrm{Mbps}, K=\infty(\mathrm{M} / \mathrm{M} / 1)$.

Then:

1. Is the arrival process at each queue Poisson? Justify the answer based on the properties of Poisson processes.
2. Find the values of α_{7} and α_{1} that result in the same expected waiting delay $\left(E\left[D_{q}\right]\right)$ for both queues.
3. Considering previous values for α_{7} and α_{1}, calculate the expected queue occupancy $\left(E\left[N_{q}\right]\right)$, the system occupancy $E[N]$ and the total delay $(E[D])$ for each queue.

Exercise 3

User 1 is sending a data flow of $\mathrm{B}=8 \mathrm{Mbps}$ to User 3, where packets are generated following a Poisson process. The data flow can follow three different paths: a) $R 2 \rightarrow R 4$, b) $R 2 \rightarrow R 3 \rightarrow R 4$, c) $\mathrm{R} 2 \rightarrow \mathrm{R} 1 \rightarrow \mathrm{R} 3 \rightarrow \mathrm{R} 4$. The background traffic in each link of those routes follows a Poisson distribution:

- R2 \rightarrow R1: 10 Mbps
- R2 \rightarrow R3: 70 Mbps
- R2 \rightarrow R4: 90 Mbps
- R1 \rightarrow R3: 20 Mbps
- R3 \rightarrow R4: 5 Mbps
where $\mathrm{Ri} \rightarrow \mathrm{Rj}$ denotes the background traffic passing through routers Ri and Rj . The transmission rate of all links is $\mathrm{R}=100 \mathrm{Mbps}$, and packets sizes are exponentially distributed with mean $E[L]=$ 250 Bytes. Propagation delays are the same for all links and equal to $10 \mu \mathrm{~s}$. In addition, all processing delays are negligible, and buffers are large enough to be considered of infinite size. Therefore, all interfaces can be modelled as M/M/1 queues. Note that since the hops User1 \rightarrow AN1, $\mathrm{AN} 1 \rightarrow \mathrm{R} 2$, and $\mathrm{R} 4 \rightarrow \mathrm{AN} 2$, $\mathrm{AN} 2 \rightarrow$ User3 are the same in all routes, they do not affect the route election.

1. Represent the sequence of interfaces that are traversed by the data flow in all 3 cases.
2. Calculate the end to end delay in the 3 cases.
3. Explain why the optimal routing depends on the background traffic.

Solution to Ex1

1. The blocking probability for a $M / M / 1 / K$ queue is:

$$
P_{b}=\frac{(1-a) a^{K}}{1-a^{K+1}}
$$

Goal: $K=f\left(P_{b}, a\right)$, so:

$$
\begin{aligned}
P_{b}-P_{b} a^{K+1} & =(1-a) a^{K} \\
P_{b} & =(1-a) a^{K}+P_{b} a^{K+1}=a^{K}\left(1-a+P_{b} a\right) \\
\ln \left(P_{b}\right) & =K \ln (a)+\ln \left(1-a+P_{b} a\right) \\
K & =\left\lceil\frac{\ln \left(P_{b}\right)-\ln \left(1-a+P_{b} a\right)}{\ln (a)}\right\rceil \\
K & =\left\lceil\frac{-\ln \left(a+\frac{1-a}{P_{b}}\right)}{\ln (a)}\right\rceil
\end{aligned}
$$

2. With $a=\frac{\lambda}{\mu}=\frac{24}{25}=0.96, K=\lceil 90.94\rceil=91$ packets.
3. We need to calculate P_{b} for each of the three cases to compare them:

- Case 1: $P_{b}=1 \cdot 10^{-3}$
- Case 2: now, $a=24000 \cdot \frac{8000}{400 \cdot 10^{6}}=0.480$, and $K^{\prime}=\left\lceil\frac{91}{2}\right\rceil=46$.

$$
P_{b}=\frac{a^{46}(1-a)}{1-a^{47}}=1.13 \cdot 10^{-15}
$$

- Case 3:

$$
\begin{gathered}
a=24000 \cdot \frac{8000}{800 \cdot 10^{6}}=0.240, K^{\prime \prime}=23 \\
P_{b}=\frac{a^{23}(1-a)}{1-a^{24}}=4.22 \cdot 10^{-15}
\end{gathered}
$$

Solution to Ex2

1. First all arrivals are aggregated into one (Poisson) arrival process, and then are randomly assigned to the individual queues, which again results in a Poisson process.
2. The expected delay $E\left[D_{q}\right]=\frac{a}{\mu-\lambda}$ should be equal for both queues. With the according values
for the individual a, μ, λ we get:

$$
\begin{aligned}
E\left[D_{q 1}\right] & =E\left[D_{q 7}\right] \\
\frac{\frac{\alpha_{1}}{\mu_{1}}}{\mu_{1}-\alpha_{1} \lambda} & =\frac{\frac{\alpha_{7 \lambda}}{\mu_{7}}}{\mu_{7}-\alpha_{7} \lambda} \\
\frac{\alpha_{1}}{\mu_{1}^{2}-\alpha_{1} \mu_{1} \lambda} & =\frac{\alpha_{7}}{\mu_{7}^{2}-\alpha_{7} \mu_{7} \lambda} \\
\frac{\left(1-\alpha_{7}\right)}{\mu_{1}^{2}-\left(1-\alpha_{7}\right) \mu_{1} \lambda} & =\frac{\alpha_{7}}{\mu_{7}^{2}-\alpha_{7} \mu_{7} \lambda} \\
\left(1-\alpha_{7}\right) \cdot\left(\mu_{7}^{2}-\alpha_{7} \mu_{7} \lambda\right) & =\alpha_{7} \cdot\left(\mu_{1}^{2}-\left(1-\alpha_{7}\right) \mu_{1} \lambda\right) \\
\mu_{7}^{2}-\alpha_{7} \mu_{7} \lambda-\alpha_{7} \mu_{7}^{2}+\alpha_{7}^{2} \mu_{7} \lambda-\alpha_{7} \mu_{1}^{2}+\alpha_{7} \mu_{1} \lambda-\alpha_{7}^{2} \mu_{1} \lambda & =0 \\
\alpha_{7}^{2}\left(\mu_{7} \lambda-\mu_{1} \lambda\right)-\alpha_{7}\left(\mu_{7} \lambda+\mu_{7}^{2}+\mu_{1}^{2}-\mu_{1} \lambda\right)+\mu_{7}^{2} & =0 \\
\Rightarrow \alpha_{7} & =0.683 \\
\alpha_{1} & =0.316
\end{aligned}
$$

Check:

$$
\begin{aligned}
& E\left[D_{q 1}\right]=\frac{\frac{0.316 \cdot 4500 \frac{1}{s}}{\mu_{1}}}{\mu_{1}-0.316 \cdot 4500 \frac{1}{s}}=0.0035 \mathrm{~s} \\
& E\left[D_{q 1}\right]=\frac{\frac{0.683 \cdot 4500 \frac{1}{s}}{\mu_{7}}}{\mu_{7}-0.683 \cdot 4500 \frac{1}{s}}=0.0035 \mathrm{~s}
\end{aligned}
$$

3. The queue occupancy $E\left[N_{q}\right]$ can be derived from the waiting delay $E\left[D_{q}\right]$, using Little's Theorem:

$$
E\left[N_{q i}\right]=\lambda_{i} \cdot E\left[D_{q i}\right] .
$$

Therefore,

$$
E\left[N_{q 1}\right]=4.98, E\left[N_{q 7}\right]=10.76 .
$$

The system occupancy is the queue occupancy plus the server/link occupancy, which in turn is the system offer a in a M/M/1/ ∞ system:

$$
\begin{gathered}
E\left[N_{i}\right]=E\left[N_{q i}\right]+a_{i} \\
E\left[N_{1}\right]=5.83, E\left[N_{7}\right]=11.68
\end{gathered}
$$

Finally, applying Little again, we get for the total delay:

$$
\begin{gathered}
E\left[D_{i}\right]=\frac{E\left[N_{i}\right]}{\lambda_{i}} \\
\Rightarrow E\left[D_{1}\right]=0.0041 s, E\left[D_{7}\right]=0.0038 \mathrm{~s}
\end{gathered}
$$

Solution to Ex3

```
clear
clc
%% EX1
B=8E6;
EL=250*8;
lambda = B/EL
Dp = 10E-6;
C=100E6;
mu = C/EL
% Route 1
lambdaR2R4 = 90E6/EL;
DR2R4 = 1 / (mu-lambda-lambdaR2R4);
DRoute1 = DR2R4 + Dp;
% Route 2
lambdaR2R3 = 70E6/EL;
DR2R3 = 1 / (mu-lambda-lambdaR2R3);
lambdaR3R4 = 5E6/EL;
DR3R4 = 1 / (mu-lambda-lambdaR3R4);
DRoute2 = DR2R3 + DR3R4 + 2*Dp;
% Route 3
lambdaR2R1 = 10E6/EL;
DR2R1 = 1 / (mu-lambda-lambdaR2R1);
lambdaR1R3 = 20E6/EL;
DR1R3 = 1 / (mu-lambda-lambdaR1R3);
lambdaR3R4 = 5E6/EL;
DR3R4 = 1 / (mu-lambda-lambdaR3R4);
DRoute3 = DR2R1 + DR1R3 + DR3R4 + 3*Dp;
disp('Results');
DRoute1
DRoute2
DRoute3
```

