

Figure 1: Basic Network

Seminar 3: Exercises

Exercise 1

Access Network (AN) 4 represents a WiFI AP used to deliver virtual reality contents in a museum. Each virtual reality session has a random duration, exponentially distributed, with average equal to $E[D_s] = 4$ minutes. New service requests arrive with an average rate of $\lambda = 30$ requests/hour, following a Poisson process.

Since potential clients (visitors) agree on waiting if the number of active sessions is the maximum supported by the AP, the museum is considering two options:

- a) Deploy a WiFi AP that supports up to 4 simultaneous connections, and a management system with Q = 4 buffer positions.
- b) Deploy a WiFi AP that supports up to 5 simultaneous connections, and a management system with Q = 1 buffer positions.

To decide between option a) or b), it is requested to:

- 1. Identify in each case what is the stochastic process X(t), and its state space.
- 2. Draw the Markov chains for each case, indicating arrival and service rates.
- 3. Write the balance equations for each case.
- 4. Compute the blocking probability and the waiting probability for each case.
- 5. Choose the option that minimizes the function $f = 10P_b + 2P_w$, with P_b the probability that a new request is blocked and P_w the probability that a new request has to wait.

Exercise 2

An AP that supports up to 6 data connections receives (following a Poisson process) both new (originated after a station is associated to the target AP) and handoff connections (originated before the station was associated to the target AP), with rate $\lambda_n = 0.5$ connections/second and $\lambda_h = 0.1$ connections/second respectively. Assuming that the duration of a connection is in average of $E[D_s] = 5$ seconds (exponentially distributed);

- 1. Draw the Markov chains for the case in which we have 2 and 4 guard channels.
- 2. Are they birth and death Markov processes? Are they reversible?
- 3. Write the local balance equations for the two cases.
- 4. Compute the blocking and dropping probabilities for the two cases.
- 5. Evaluate which system performs better if we have the following Grade of Service function: $f = P_b + 4P_d$, with P_d the probability of dropping an incoming handoff connection.
- 6. Calculate the first and second moments of the number of on-going connections for the two cases.