Network Engineering
Lecture 3. Continuous Time Markov Chains

Boris Bellalta
boris.bellalta@upf.edu

Wireless Networking
UPF https://www.upf.edu/web/wnrg



https://www.upf.edu/web/wnrg

Continuous Time Markov chains

When the system we have to model can change at any arbitrary time, and the
time that the system remains in a certain state is important, we will use a CTMC

to model it. Examples of stochastic processes that can be modelled with CTMCs

are:

e The number of packets waiting in a queue, which depends on the time packets

arrive and depart from it.

e The number of persons with active phone conversations in a cell.

Similary to DTMCs, CTMCs will be characterized by a set of states, A, and a
matrix containing the transition rates from one state to the other, @, known as

infinitesimal generator or rate transition matrix.



Stationary Probability Distribution

* Two different interpretations

— The probability that the system is in state ‘i" when we check the system state at an arbitrary
instant of time.
In the example: 7ti = 2/5 (2 of 5 events find the system in state i)
— The fraction of time the system is in state ‘i’.
In the example: i = (Til+Ti2+Ti3)/T=2/5
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Continuous Time Markov chains

To move from a DTMC to a CTMC, we assume that the time is divided in very
small time intervals of size 9, in a way that changes seem as continuous (see Figure
3.1). For instance, when we watch the Television, it seems that the images are
continuous, but this is just an illusion: the images are static and change every few

msecs.
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Continuous Time Markov chains

One of the mandatory requirements for these small intervals is that each one only
can contain a single event. The probability that one period of time contains an event
is p = ¢d, where q is the average rate (i.e. frequency) in which events happen (events
/ second). A second requirement is that all the periods of duration ¢ must have the
same probability to contain or not an event, which means that the probability p must
remain always constant. For example, if we have that ¢ = 10 events / second, and

define 0 = 0.05 seconds, the probability that a given period of duration 0 contains

an event is p = go = 0.5.



Making it continuous

* §->0: Binomial distribution — Poisson distribution
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Time between events must be exponential

* Itresults of moving from discrete to continuous

— Time between two events (a random variable) is exponentially
distributed

— The number of events (a random variable) in a given period of time
follows a Poisson distribution

Number of events: X~Poisson

S :

Time between two events: A~Expo




Poisson and Exponential distribution

The probability of 'm’ events in "T” follows a Poisson distribution:
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The probability that the time between two arrivals, A, is larger than 7 is:
PAz1)=e" ‘ A )
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Therefore, the probability A is equal or lower than 7 is:
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which is the cumulative function of the exponential distribution.



Poisson and Exponential distribution

Then, we conclude that the time between two events, A, is exponentially dis-

tributed:

fibr] =ge~% (3.50)



Properties of the Poisson process

e Aggregation of Poisson processes: the aggregation of several Polsson pro-

cesses resilts in a new Polsson process with a rate A, which 1s the sum
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of the rates A, of the ndividual Poisson processes aggregated.
f}"rxggn'gnu' — E «}‘.l r't_]']-*”
i

Al ASAL+A2

A2 + >

The time between two events is
exponentially distributed




Properties of the Poisson process

e Splitting a Poisson process in several other processes selecting packets
randomly with constant probability over the time causes the resulting processes
to be also Poisson. For example, if we split a Poisson process in two Poisson

processes, we obtain:
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with a; being the probability that a packet belongs to the resulting Poisson
process 1, and a. the opposite. Note that to obtain several Poisson processes
from a single Poisson process, the assignation of a packet to the resulting

process must be independent of previous decisions (i.e., stochastic).



PASTA = Poisson Arrivals see Time Averages

When a new Poisson
distributed event
happens (i.e., the arrival
of a packet in a buffer), it
finds the system in state i
with probability
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Figure 5.2: Example of the PASTA property. From the Figure, we can see that
mp = 0.5 and m = 0.5. In case a), the interarrival time is deterministic, and all
packet arrivals find the system in the empty state. In case b), the interarrival time
is exponentially distributed, and 2 packet arrivals find the system in state 0, and
two in state 1. As we have 4 arrivals, the probability that an arrival observes the
system in state 7 is the same as the equilibrium probability that the system is in
state 7 (i.e. m;)



Properties of the exponential distribution

Events must be able to arrive at any time
(uniformly at random)

* Memoryless property

- A1

Residual time



Properties of the exponential distribution

We obtain the pdf of both data series:
- Al,A2,A3,A4,A5,..., AN
- B1,B2,B3,B4,B5,....,.BN

If Ai’s are exponentially distributed with parameter A, Bi’s are also exponentially distributed with
parameter A.

So, if the average duration of the A events is 1/A , the average duration of the B events is also 1/A.

What does it mean? For example, I know trains arrive at the station randomly following an
exponential distribution, with an average of 10 mins. Then, if I always arrive exactly when a train
departs, I have to wait 10 mins in average for the next train.

— How much time I have to wait if I arrive some time after the departure of a train to take the
next one?

* 10 mins! (in average)



Example

* Consider a network interface where packets arrive at a rate A [packets/second] and depart at a rate

1L [packets/second].
— Events can be two types: 1) packet arrivals, 2) packet departures
~ They may happen at any arbitrary instant of time.

* The network interface has a single transmitter, and the maximum buffer size is Q=2 packets.
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with rate A



Example

* Let us assume we divide the time in very small intervals of size 6, satisfying all previous explained
requirements. We have the following events:

— The probability that in a given interval we have a packet arrival is AS.
— Similarly, the probability that in a given interval we have a packet departure is p.é.

— And the probability that nothings happens is: 1-A5-p.6.
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CTMC: Equilibrium distribution

* Global balance equations:

i Z q; ;0 = Z Tiq;.i0 T Z Gij = Z Tjqj.i

Vj i Vjti ViF Vi

* Local balance equations:

Tidij = Tj4q;.



Solving a CTMC: Infinitesimal Generator Q

The infinitesimal generator is given by the following set of equations (for all 7):

—; Z i + Z T =0

Vj#i Vj#i

We can obtain the stationary distribution by solving

- Zv#g do.; do.1 do.2
0= 41,0 — D i1 QL 1,2 - Qr =0
42,0 92,1 - Z\/j;éB 92,5
. ' 4 where 7 is a vector representing the stationary distribution.



Example

* In a data center, a server equipped with 4 CPUs receives groups of ‘tasks” with rate A
[tasks/second] following a Poisson process. There are two different types of groups: groups
containing 1 task, and groups containing 2 tasks. The probability that given an arrival it
corresponds to a group containing a single task is 0.4, and so, the probability it corresponds to a
group of 2 tasks is 0.6.

— Therefore: A1=0.4A and A2=0.6A
* The time to complete a task is exponentially distributed with average value E[Ds].
— Therefore, the rate at which tasks are completed is p=1/E[Ds]

* Incase a group of tasks arrives to the server and there are not enough available CPUs, the ones
that cannot be accommodated are dropped.

* Exercise: Considering the stochastic process X(t) that models the number of tasks in the system,
find its stationary probability distribution.



Example

* The first thing to do is to find the state space of X(t). Since X is the number of tasks in
the server, it can take the following values: 0, 1, 2, 3 and 4.

* Second, we can represent the state space and the transitions (CTMC)

A2 A2 A2 A2

* Finally, we can write the balance equations, and solve the resulting system of
equations to find the stationary probability distribution.



Example

* Note that the CTMC is not reversible, so local balance does not holds.

* Then, we must apply the global balance condition, and solve the resulting
system of equations.

* Alternatively, given Q, we can obtain the stationary probability distribution
as follows:

- std=mrdivide([zeros(1,size(Q,1)) 1],[Q ones(size(Q,1),1)]);



Example

function ExampleCTMCs_Tasks()

lambda=10;
EDs=0.04;
mu = 1/EDs;

lambdal=0.4*lambda;
lambda2=0.6*lambda;

Q=[-lambdal-lambda2 lambdal lambda2 0 O;
mu -mu-lambdal-lambda2 lambdal lambdaZ2 O;
0 2*mu -2*mu-lambdal-lambda2 lambdal lambdaZ2;

0 0 3*mu -3*mu-lambdal-lambda2 lambdal+lambda2;

0 0 0 4*mu -4*mu];

disp('Infinitesimal generator Q');
disp(Q);

std=mrdivide([zeros(1,size(Q,1)) 11,[Q ones(size(Q,1),1)])

disp('Stationary Probability Distribution');
disp(std);

Infinitesimal generator Q
-10 4 6 0 O
25 35 4 6 O
O 50 -60 4 6
O 0 75 -8 10
O O O 100 -100

Stationary Probability Distribution
0.5965 0.2386 0.1193 0.0350 0.0107

; % the left null space of Q is equivalent to solve [pi]*Q = [00 ... 0 1]

1,=0.6; 11,=0.24; 1,=0.12; 11,=0.035; 11,=0.01



Example

* By consider that m; is the fraction of time the system spends in
state i, we can say that:

— The system is idle the 60 % of the time.
— The system has the 4 CPUs working only the 10 % of the time.
- Etc.
* Similarly, what is the probability that a new group of tasks find the
system in state 2 when it arrives?
- T1,=0.24



Modelling WIFI networks

* We can model CSMA /CA networks using CTMCs if:
— Backoff period are continuous, and exponentially distributed.
~ The duration of the transmissions are exponentially distributed.

~ Propagation delay in the WLAN is negligible

AP Data




Example

* The duration of a backoff is a random variable exponentially distributed
with expected value 0.01 ms, so A=1/0.01 = 1E5 tx/second

* The duration of a transmission is a random variable exponentially
distributed with expected value 0.003 s, so n=1/0.003 = 333.33 packets/sec.

* The CTMC representing the stochastic process is:

The AP is transmitting

(A1) _ N How much time (in %)
d B is transmitting . S
the AP is transmitting?

The channeé
Is idle
O\’ M C is transmitting
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