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Continuous Time Markov chains



Stationary Probability Distribution

● Two different interpretations
– The probability that the system is in state ‘i’ when we check the system state at an arbitrary 

instant of time.
● In the example: πi = 2/5 (2 of 5 events find the system in state i)

– The fraction of time the system is in state ‘i’.
● In the example: πi = (Ti1+Ti2+Ti3)/T = 2/5

Ti1 Ti2 Ti3

events arriving at any random instant of time

Time in state i
t

T



Continuous Time Markov chains

Time between two events → geometrically distributed



Continuous Time Markov chains



Making it continuous

● δ->0: Binomial distribution → Poisson distribution

δ

M intervals (T seconds)



Time between events must be exponential

● It results of moving from discrete to continuous
– Time between two events (a random variable) is exponentially 

distributed
– The number of events (a random variable) in a given period of time 

follows a Poisson distribution

t

Number of events: X~Poisson

Time between two events: A~Expo



Poisson and Exponential distribution

P(0,τ)

P(A>τ)

A

t

P(0,τ)

P(A<=τ)

A

t



Poisson and Exponential distribution



Properties of the Poisson process
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The time between two events is 
exponentially distributed
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Properties of the Poisson process



PASTA = Poisson Arrivals see Time Averages

● When a new Poisson 
distributed event 
happens (i.e., the arrival 
of a packet in a buffer), it 
finds the system in state i 
with probability πi



Properties of the exponential distribution

● Memoryless property
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Events must be able to arrive at any time
(uniformly at random)
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Properties of the exponential distribution

● We obtain the pdf of both data series:
– A1,A2,A3,A4,A5,…,AN
– B1,B2,B3,B4,B5,….,BN

● If Ai’s are exponentially distributed with parameter λ, Bi’s are also exponentially distributed with 
parameter λ.

● So, if the average duration of the A events is 1/λ , the average duration of the B events is also 1/λ.

● What does it mean? For example, I know trains arrive at the station randomly following an 
exponential distribution, with an average of 10 mins. Then, if I always arrive exactly when a train 
departs, I have to wait 10 mins in average for the next train.
– How much time I have to wait if I arrive some time after the departure of a train to take the 

next one?
● 10 mins! (in average) 



Example
● Consider a network interface where packets arrive at a rate λ [packets/second] and depart at a rate packets/second] and depart at a rate 

μ [packets/second] and depart at a rate packets/second].
– Events can be two types: 1) packet arrivals, 2) packet departures
– They may happen at any arbitrary instant of time.  

● The network interface has a single transmitter, and the maximum buffer size is Q=2 packets.

λ μ
Q=2 packets

K=3 packetst
Packets arrive
randomly following
a Poisson process A(t)

with rate λ

Traffic Load

1/λ



Example

0 1 2 3

λδ

μδ μδ

● Let us assume we divide the time in very small intervals of size δ, satisfying all previous explained 
requirements. We have the following events:
– The probability that in a given interval we have a packet arrival is λδ.
– Similarly, the probability that in a given interval we have a packet departure is μδ.
– And the probability that nothings happens is: 1-λδ-μδ.

λδ λδ

μδδ t

Self-transitions are omitted

arrivals
departures



CTMC: Equilibrium distribution

● Global balance equations:

● Local balance equations:



Solving a CTMC: Infinitesimal Generator Q



Example

● In a data center, a server equipped with 4 CPUs receives groups of ‘tasks’ with rate λ 
[packets/second] and depart at a rate tasks/second] following a Poisson process. There are two different types of groups: groups 
containing 1 task, and groups containing 2 tasks. The probability that given an arrival it 
corresponds to a group containing a single task is 0.4, and so, the probability it corresponds to a 
group of 2 tasks is 0.6. 
– Therefore: λ1=0.4λ and λ2=0.6λ

● The time to complete a task is exponentially distributed with average value E[packets/second] and depart at a rate Ds]. 
– Therefore, the rate at which tasks are completed is μ=1/E[packets/second] and depart at a rate Ds]

● In case a group of tasks arrives to the server and there are not enough available CPUs, the ones 
that cannot be accommodated are dropped.

● Exercise: Considering the stochastic process X(t) that models the number of tasks in the system, 
find its stationary probability distribution.



Example

● The first thing to do is to find the state space of X(t). Since X is the number of tasks in 
the server, it can take the following values: 0, 1, 2, 3 and 4.

● Second, we can represent the state space and the transitions (CTMC)

● Finally, we can write the balance equations, and solve the resulting system of 
equations to find the stationary probability distribution.

0 1 2 3 4

λ2λ2λ2λ2

λ1λ1λ1λ1

μ 2μ 3μ 4μ



Example

● Note that the CTMC is not reversible, so local balance does not holds.
● Then, we must apply the global balance condition, and solve the resulting 

system of equations.
● Alternatively, given Q, we can obtain the stationary probability distribution 

as follows:
– std=mrdivide([zeros(1,size(Q,1)) 1],[Q ones(size(Q,1),1)]);



Example

function ExampleCTMCs_Tasks()
 
lambda=10;
EDs=0.04;
mu = 1/EDs;
 
lambda1=0.4*lambda;
lambda2=0.6*lambda;
 
Q=[-lambda1-lambda2 lambda1 lambda2 0 0;
    mu -mu-lambda1-lambda2 lambda1 lambda2 0;
    0 2*mu -2*mu-lambda1-lambda2 lambda1 lambda2;
    0 0 3*mu -3*mu-lambda1-lambda2 lambda1+lambda2;
    0 0 0 4*mu -4*mu];
 
disp('Infinitesimal generator Q');
disp(Q);
 
std=mrdivide([zeros(1,size(Q,1)) 1],[Q ones(size(Q,1),1)]); % the left null space of Q is equivalent to solve [pi] * Q =  [0 0 ... 0 1]
 
disp('Stationary Probability Distribution');
disp(std);

Infinitesimal generator Q
   -10     4     6     0     0
    25   -35     4     6     0
     0    50   -60     4     6
     0     0    75   -85    10
     0     0     0   100  -100

Stationary Probability Distribution
    0.5965    0.2386    0.1193    0.0350    0.0107

π
0
=0.6; π

1
=0.24; π

2
=0.12; π

3
=0.035; π

4
=0.01



Example

● By consider that  πi is the fraction of time the system spends in 
state i, we can say that:
– The system is idle the 60 % of the time.
– The system has the 4 CPUs working only the 10 % of the time.
– Etc. 

● Similarly, what is the probability that a new group of tasks find the 
system in state 2 when it arrives?
–  π2=0.24



Modelling WIFI networks

● We can model CSMA/CA networks using CTMCs if:
– Backoff period are continuous, and exponentially distributed. 
– The duration of the transmissions are exponentially distributed.
– Propagation delay in the WLAN is negligible

AP

A B C

AP
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C

Data
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Example

● The duration of a backoff is a random variable exponentially distributed 
with expected value 0.01 ms, so λ=1/0.01 = 1E5 tx/second

● The duration of a transmission is a random variable exponentially 
distributed with expected value 0.003 s, so μ=1/0.003 = 333.33 packets/sec.

● The CTMC representing the stochastic process is:

AP

B

C

0

(λ,μ)

(λ,μ)

(λ,μ)
The channel
is idle

The AP is transmitting

B is transmitting

C is transmitting

How much time (in %) 
the AP is transmitting?
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