Network Engineering Lecture 3. Continuous Time Markov Chains

Boris Bellalta boris.bellalta@upf.edu

Continuous Time Markov chains

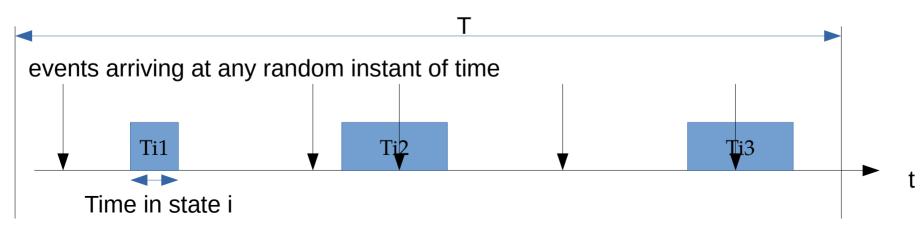
When the system we have to model can change at any arbitrary time, and the time that the system remains in a certain state is important, we will use a CTMC to model it. Examples of stochastic processes that can be modelled with CTMCs are:

- The number of packets waiting in a queue, which depends on the time packets arrive and depart from it.
- The number of persons with active phone conversations in a cell.

Similary to DTMCs, CTMCs will be characterized by a set of states, \mathcal{X} , and a matrix containing the transition rates from one state to the other, \boldsymbol{Q} , known as infinitesimal generator or rate transition matrix.

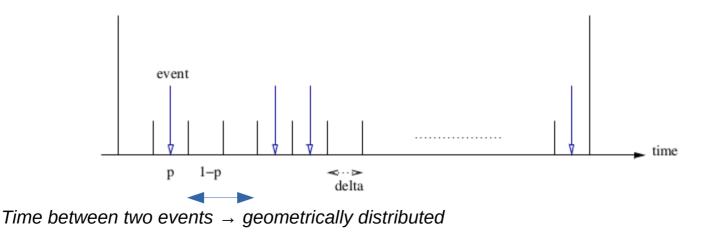
Stationary Probability Distribution

- Two different interpretations
 - The probability that the system is in state 'i' when we check the system state at an arbitrary instant of time.
 - In the example: $\pi i = 2/5$ (2 of 5 events find the system in state i)
 - The fraction of time the system is in state 'i'.
 - In the example: $\pi i = (Ti1+Ti2+Ti3)/T = 2/5$



Continuous Time Markov chains

To move from a DTMC to a CTMC, we assume that the time is divided in very small time intervals of size δ , in a way that changes seem as continuous (see Figure 3.1). For instance, when we watch the Television, it seems that the images are continuous, but this is just an illusion: the images are static and change every few msecs.

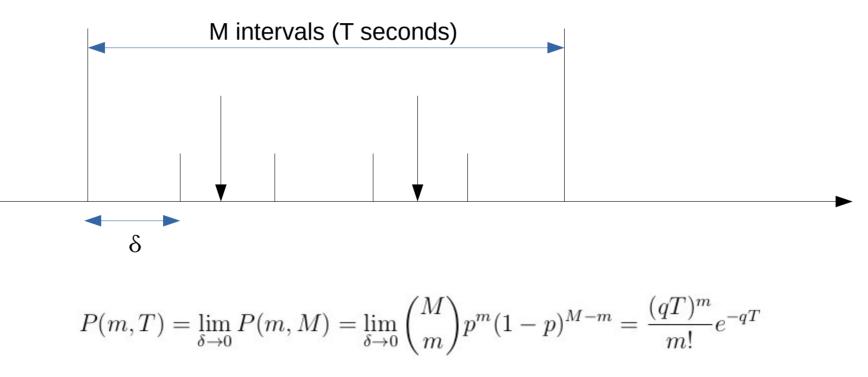


Continuous Time Markov chains

One of the mandatory requirements for these small intervals is that each one only can contain a single event. The probability that one period of time contains an event is $p = q\delta$, where q is the average rate (i.e. frequency) in which events happen (events / second). A second requirement is that all the periods of duration δ must have the same probability to contain or not an event, which means that the probability p must remain always constant. For example, if we have that q = 10 events / second, and define $\delta = 0.05$ seconds, the probability that a given period of duration δ contains an event is $p = q\delta = 0.5$.

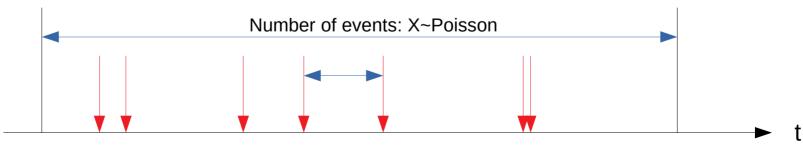
Making it continuous

• δ ->0: Binomial distribution \rightarrow Poisson distribution



Time between events must be exponential

- It results of moving from discrete to continuous
 - Time between two events (a random variable) is exponentially distributed
 - The number of events (a random variable) in a given period of time follows a Poisson distribution



Time between two events: A~Expo

Poisson and Exponential distribution

The probability of 'm' events in 'T' follows a Poisson distribution:

$$P(m,T) = \frac{(qT)^m}{m!}e^{-qT}$$

Then, the probability of 0 events in a time τ is given by

 $P(0,\tau) = e^{-q\tau}$

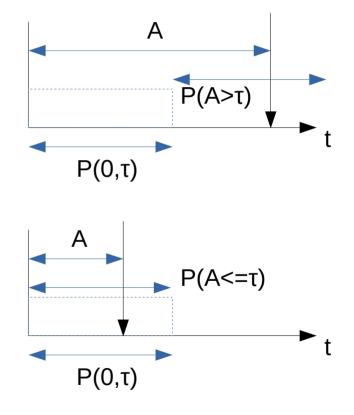
The probability that the time between two arrivals, A, is larger than τ is:

$$P(A > \tau) = e^{-q\tau}$$

Therefore, the probability A is equal or lower than τ is:

$$P(A \le \tau) = 1 - e^{-q\tau}$$

which is the cumulative function of the exponential distribution.



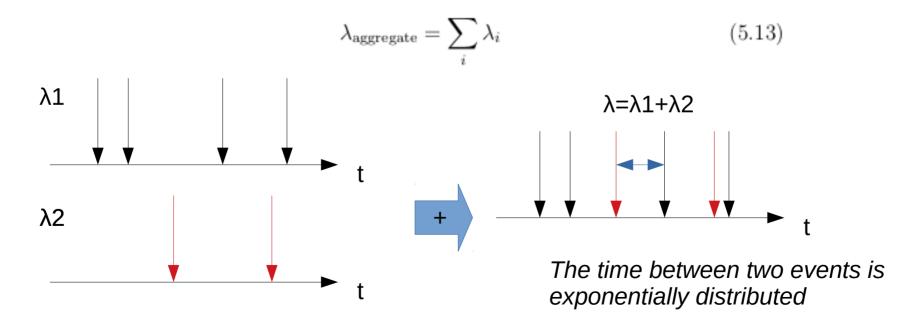
Poisson and Exponential distribution

Then, we conclude that the time between two events, A, is exponentially distributed:

$$f_A(\tau) = q e^{-q\tau} \tag{3.50}$$

Properties of the Poisson process

Aggregation of Poisson processes: the aggregation of several Poisson processes results in a new Poisson process with a rate λ_{aggregate} which is the sum of the rates λ_i of the individual Poisson processes aggregated.



Properties of the Poisson process

• Splitting a Poisson process in several other processes selecting packets randomly with constant probability over the time causes the resulting processes to be also Poisson. For example, if we split a Poisson process in two Poisson processes, we obtain:

$$\lambda_1 = \alpha_1 \lambda_{\text{aggregate}} \tag{5.14}$$

$$\lambda_2 = \alpha_2 \lambda_{\text{aggregate}} \tag{5.15}$$

$$1 = \alpha_1 + \alpha_2 \tag{5.16}$$

(5.17)

with α_1 being the probability that a packet belongs to the resulting Poisson process 1, and α_2 the opposite. Note that to obtain several Poisson processes from a single Poisson process, the assignation of a packet to the resulting process must be independent of previous decisions (i.e., stochastic).

PASTA = Poisson Arrivals see Time Averages

 When a new Poisson distributed event happens (i.e., the arrival of a packet in a buffer), it finds the system in state i with probability π_i

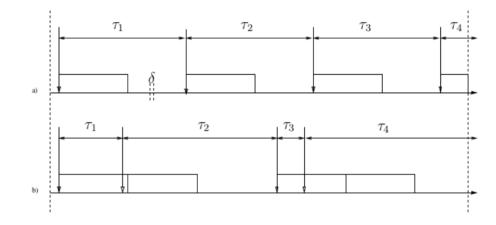


Figure 5.2: Example of the PASTA property. From the Figure, we can see that $\pi_0 = 0.5$ and $\pi_1 = 0.5$. In case a), the interarrival time is deterministic, and all packet arrivals find the system in the empty state. In case b), the interarrival time is exponentially distributed, and 2 packet arrivals find the system in state 0, and two in state 1. As we have 4 arrivals, the probability that an arrival observes the system in state *i* is the same as the equilibrium probability that the system is in state *i* (i.e. π_i)

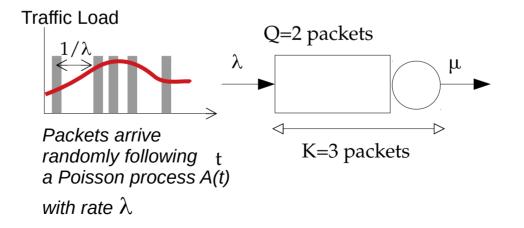
Properties of the exponential distribution



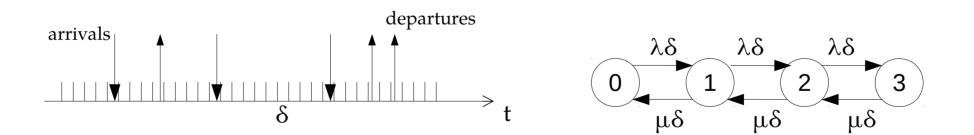
Properties of the exponential distribution

- We obtain the pdf of both data series:
 - A1,A2,A3,A4,A5,...,AN
 - B1,B2,B3,B4,B5,....,BN
- If Ai's are exponentially distributed with parameter λ , Bi's are also exponentially distributed with parameter λ .
- So, if the average duration of the A events is $1/\lambda$, the average duration of the B events is also $1/\lambda$.
- What does it mean? For example, I know trains arrive at the station randomly following an exponential distribution, with an average of 10 mins. Then, if I always arrive exactly when a train departs, I have to wait 10 mins in average for the next train.
 - How much time I have to wait if I arrive some time after the departure of a train to take the next one?
 - 10 mins! (in average)

- Consider a network interface where packets arrive at a rate λ [packets/second] and depart at a rate μ [packets/second].
 - Events can be two types: 1) packet arrivals, 2) packet departures
 - They may happen at any arbitrary instant of time.
- The network interface has a single transmitter, and the maximum buffer size is Q=2 packets.



- Let us assume we divide the time in very small intervals of size δ, satisfying all previous explained requirements. We have the following events:
 - The probability that in a given interval we have a packet arrival is $\lambda\delta$.
 - Similarly, the probability that in a given interval we have a packet departure is $\mu\delta$.
 - And the probability that nothings happens is: $1-\lambda\delta-\mu\delta$.



Self-transitions are omitted

CTMC: Equilibrium distribution

• Global balance equations:

$$\pi_i \sum_{\forall j \neq i} q_{i,j} \delta = \sum_{\forall j \neq i} \pi_j q_{j,i} \delta \qquad \qquad \pi_i \sum_{\forall j \neq i} q_{i,j} = \sum_{\forall j \neq i} \pi_j q_{j,i}$$

• Local balance equations:

 $\pi_i q_{i,j} = \pi_j q_{j,i}$

Solving a CTMC: Infinitesimal Generator Q

The infinitesimal generator is given by the following set of equations (for all i):

$$-\pi_i \sum_{\forall j \neq i} q_{i,j} + \sum_{\forall j \neq i} \pi_j q_{j,i} = 0$$

We can obtain the stationary distribution by solving

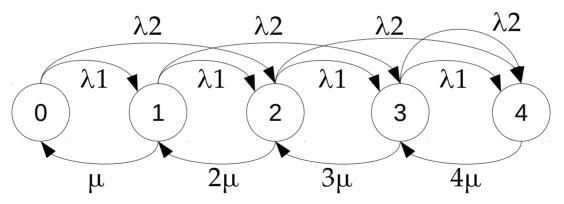
$$Q\pi = 0$$

where π is a vector representing the stationary distribution.

$$Q = \begin{bmatrix} -\sum_{\forall j \neq 0} q_{0,j} & q_{0,1} & q_{0,2} & \dots \\ q_{1,0} & -\sum_{\forall j \neq 1} q_{1,j} & q_{1,2} & \dots \\ q_{2,0} & q_{2,1} & -\sum_{\forall j \neq 2} q_{2,j} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

- In a data center, a server equipped with 4 CPUs receives groups of 'tasks' with rate λ [tasks/second] following a Poisson process. There are two different types of groups: groups containing 1 task, and groups containing 2 tasks. The probability that given an arrival it corresponds to a group containing a single task is 0.4, and so, the probability it corresponds to a group of 2 tasks is 0.6.
 - Therefore: $\lambda 1=0.4\lambda$ and $\lambda 2=0.6\lambda$
- The time to complete a task is exponentially distributed with average value E[Ds].
 - Therefore, the rate at which tasks are completed is $\mu = 1/E[Ds]$
- In case a group of tasks arrives to the server and there are not enough available CPUs, the ones that cannot be accommodated are dropped.
- Exercise: Considering the stochastic process X(t) that models the number of tasks in the system, find its stationary probability distribution.

- The first thing to do is to find the state space of X(t). Since X is the number of tasks in the server, it can take the following values: 0, 1, 2, 3 and 4.
- Second, we can represent the state space and the transitions (CTMC)



• Finally, we can write the balance equations, and solve the resulting system of equations to find the stationary probability distribution.

- Note that the CTMC is not reversible, so local balance does not holds.
- Then, we must apply the global balance condition, and solve the resulting system of equations.
- Alternatively, given Q, we can obtain the stationary probability distribution as follows:
 - std=mrdivide([zeros(1,size(Q,1)) 1],[Q ones(size(Q,1),1)]);

function ExampleCTMCs_Tasks()

lambda=10; EDs=0.04; mu = 1/EDs;

lambda1=0.4*lambda; lambda2=0.6*lambda;

Q=[-lambda1-lambda2 lambda1 lambda2 0 0; mu -mu-lambda1-lambda2 lambda1 lambda2 0; 0 2*mu -2*mu-lambda1-lambda2 lambda1 lambda2; 0 0 3*mu -3*mu-lambda1-lambda2 lambda1+lambda2; 0 0 0 4*mu -4*mu];

```
disp('Infinitesimal generator Q');
disp(Q);
```

Infinitesimal generator Q

4	6	0	0
-35	4	6	0
50	-60	4	6
0	75	-85	10
0	0	100	-100
	-35 50 0	-35 4 50 -60 0 75	-35 4 6 50 -60 4 0 75 -85

Stationary Probability Distribution 0.5965 0.2386 0.1193 0.0350 0.0107

std=mrdivide([zeros(1,size(Q,1)) 1],[Q ones(size(Q,1),1)]); % the left null space of Q is equivalent to solve [pi] * Q = [0 0 ... 0 1]

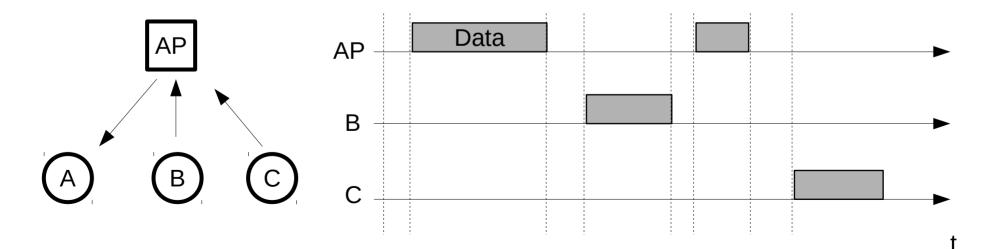
disp('Stationary Probability Distribution');
disp(std);

$$\pi_0 = 0.6; \pi_1 = 0.24; \pi_2 = 0.12; \pi_3 = 0.035; \pi_4 = 0.01$$

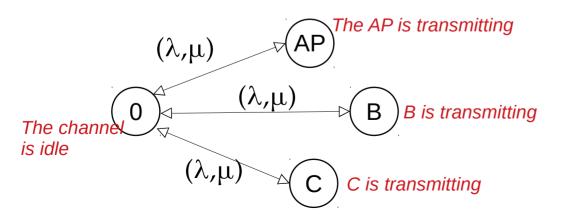
- By consider that π_i is the fraction of time the system spends in state i, we can say that:
 - The system is idle the 60 % of the time.
 - The system has the 4 CPUs working only the 10 % of the time.
 - Etc.
- Similarly, what is the probability that a new group of tasks find the system in state 2 when it arrives?
 - $\pi_2 = 0.24$

Modelling WIFI networks

- We can model CSMA/CA networks using CTMCs if:
 - Backoff period are continuous, and exponentially distributed.
 - The duration of the transmissions are exponentially distributed.
 - Propagation delay in the WLAN is negligible



- The duration of a backoff is a random variable exponentially distributed with expected value 0.01 ms, so $\lambda = 1/0.01 = 1E5$ tx/second
- The duration of a transmission is a random variable exponentially distributed with expected value 0.003 s, so $\mu = 1/0.003 = 333.33$ packets/sec.
- The CTMC representing the stochastic process is:



How much time (in %) the AP is transmitting?