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Markov process

where π
i 
= P(X = x

i
) 



Markov property

● Next value of the stochastic process depends only on the 
current value.



Markov chains
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Example:



Stationary Markov Process

● The equilibrium distribution exists if:
– Transition probabilities / rates are time independent
– All states can be reached (the Markov chain is irreducible)
– Once departing one state, we will return in the future to it (the Markov chain is positive 

recurrent)
– There are different possible paths between any two states (the Markov chain is aperiodic)
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Solving a Markov chain

● Markov chains can be very useful to model real systems
● It is easy to fix the state space and the transition/rate matrices based on design and 

functional requirements of the real system
● So, the goal is to be able to obtain the equilibrium distribution

π
i
→ Probability that the system is 

in state ‘i’ at an arbitrary instant of time

t

What is the probability that the system
s in state I? π

i 

arbitrary instant of time



How to find the state space and P

● It can be done from a data set
● Data set = [a,b,a,b,a,a,b,a,b,b,b,a,a,b,a,a,a,b]; N=18 samples, N-1 transitions

– Values that appear: State space: {a,b} 
– Prob of the value t+1 after a value t, given we are at state ‘i’

● From a→b: 6 times → pa,b = 6/10
● From a→a: 4 times → pa,a = 4/10
● From b→ a: 5 times → pb,a = 5/7
● From b→ b: 2 times → pb,b = 2/7



Solving a Markov chain

● The equilibrium distribution is:
– π0, π1, π5, π10 
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Examples

● Weather model (sunny, cloudy, raining, etc.)
● Number of packets waiting for transmission in a buffer
● Number of bikes in a bike station
● People waiting to pay in a supermarket
● Number of active users in a WIFI network



Discrete and Continuous Markov chains



Equilibrium distribution

● The stationary probability distribution is also called equilibrium 
distribution.

● It represents the probability to find the Markov process in state 
‘i’ when we observe it at an arbitrary instant of time. 

● We use πi=P(X=i) to represent the probability that the Markov 
chain is in state ‘i’



Discrete Time Markov chains (DTMC)



Global Balance Equations



Example
● The traffic load (Mbps) generated by a user changes every second. We 

are interested to know the probability the user is generating a given 
load at an arbitrary instant of time, and then calculate the expected 
traffic load, and its variance.

● To answer this question, we must calculate the equilibrium distribution 
of a DTMC (the system changes at specific time instants, every second) 
with the following state space and transition probabilities:
– Χ={0, 1, 5, 10} Mbps;
– P=[0 0.6 0.2 0.2; 0.4 0 0.4 0.2; 0 0.5 0 0.5; 0 0 0.8 0.2;]



Example

● We can describe the stochastic process using a Markov chain:
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Example: We write the balance equations

● Balance Equations

● We have a system of equations 
to solve



Example: We solve the DTMC (i.e., find the stat. dist)

● Alternative way (Matlab code):
– [V D]=eigs(P.’); st=V(:,1).'; stat_dist = st./sum(st);

● Stationary distribution
– π0=0.0948   π1=0.2370   π5=0.3602    π10=0.3081



Example



Example
function ExampleUserLoadModel()

X=[0 1 5 10]; % Mbps

P=[0 0.6 0.2 0.2; 0.4 0 0.4 0.2; 0 0.5 
0 0.5; 0 0 0.8 0.2;];

pi_dist = SolvingDTMC(P);

EX=X*pi_dist';

EX2 = (X.^2)*pi_dist';

VX = EX2 - EX^2;

disp([EX EX2 VX]);

function stat_dist = SolvingDTMC(P)

[V D]=eigs(P.')

st=V(:,1).';

stat_dist = st./sum(st);



Example [Note]

● In the 1st lecture we had a question: how to select the capacity of a link. 
● For instance, let’s assume that the criterion is the following:

– C = 4 · The expected traffic load

● Given information of the process representing the load of a link, such as the 
state space, and P, which can be obtained by just observing the dynamics of 
the process, we can easily answer that question.

 



Reversible Markov chains

● We say a Markov chain is reversible if the following condition is satisfied for all its 
states:

● In practice, we have bidirectional transitions between two given states.
● Example: Two users. Each user can be active or idle. When one user is active, the 

other is idle.
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Local Balance Equations



Example
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Example



Birth-and-death Markov processes

● Transitions between states are only between consecutive states (forward (births) or 
backward (deaths)).
– Births increase by 1 the current value of the state space.
– Deaths decrease by 1 the current value of the state space.

● They are reversible Markov process → local balance equations
● We will use them to capture the buffer dynamics in network interfaces:

– The state space of the random variable is the number of packets in the buffer.
– Forward transitions: a packet arrival
– Backward transitions: a packet departure



Example of a birth and death Markovian process

● Consider a network interface where ‘events’ happen only at predefined time instants.

● The network interface has a single transmitter, and the maximum buffer size is Q=2 packets.

● At each predefined time instant, only one event may occur:
– It is an arrival with probability p
– It is a departure with probability q
– Nothing happens with probability 1-p-q, 1-p or 1-q

p q
0 1 2 3

p p p

q q q

Q=2 packets

K=3 packets
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