Network Engineering M/G/1 queues

Boris Bellalta
boris.bellalta@upf.edu

M/M/1

A(t) [arrival process]: L~expo, $\tau \sim \operatorname{expo}$
$\xrightarrow{\sim} \stackrel{\rightharpoonup}{L}_{\mathrm{t}}^{\tau}$
$\mathrm{S}(\mathrm{t})$ [Service process]: D_{s} - expo

M/M/1

- What about if packet sizes are not exponentially distributed?

A(t) [arrival process]: L~det, $\tau \sim$ expo
$\mathrm{S}(\mathrm{t})$ [Service process]: $\mathrm{D}_{\mathrm{s}} \sim \operatorname{det}$

Our model is not accurate, there is an 'error' between the $M / M / 1$ and the real case (M/D/1)

Example: maximum $\mathrm{E}[\mathrm{D}]$ is 2 seconds

Using an $\mathrm{M} / \mathrm{M} / 1$ model overestimates the system delay, so we are not able to use all system resources. (What is the maximum load to guarantee that $\mathrm{E}[\mathrm{D}]$ is below 2 seconds?)

M/G/1

We don't know which distribution follows the packet size, but we can represent it through its:

- Coefficient of variation
- Second moment
- Variance
$\mathrm{M} / \mathrm{G} / 1$ with $\mathrm{CVs}=1 \rightarrow \mathrm{M} / \mathrm{M} / 1$ $\mathrm{M} / \mathrm{G} / 1$ with $\mathrm{CVs}=0 \rightarrow \mathrm{M} / \mathrm{D} / 1$

CVs increases \rightarrow System performance decreases (more resources are needed to achieve the same performance)

Figure 7.1: Real packet size distribution vs. exponential distribution with same mean

M/G/1

M/G/1

M/G/1 - Queueing Delay

Figure 7.3: Consideration for the average waiting time

$$
\rho=a=\lambda \cdot E\left[D_{s}\right] .
$$

M/G/1 - Residual time

Figure 7.4: Residual service time process
For the average residual service time, we consider the system over a long timespan T. In this interval, we will see on average $\lambda \cdot T=n$ packets arriving. Then,

$$
E\left[D_{r}\right]=\frac{1}{T} \int_{0}^{T} D_{r}\left(t^{\prime}\right) d t^{\prime}=\frac{1}{T} \sum_{i=1}^{n} \frac{1}{2} D_{s_{i}}^{2}=\underbrace{\frac{n}{T}}_{\rightarrow \lambda} \cdot \underbrace{\frac{1}{n} \cdot \sum_{i=1}^{n} \frac{1}{2} D_{s_{i}}^{2}}_{\rightarrow \frac{1}{2} E\left[D_{s}^{2}\right]} .
$$

M/G/1 - Residual time

- Alternative way to calculate the residual time:
- What is the probability to arrive when a packet ' i ' is in service given that the 'transmitter' is occupied?
- p_i E[D_\{s,i\}] / sum_ $\{\backslash$ forall $j\}\left\{p_{-} j E\left[D_{-}\{s, j\}\right]\right\}$
- We tradeoff the effect of amount of arrivals of ' i ' packets and their size.
- In average, the residual time when a packet arrives during the service time of a packet ' i ' is $E\left[D_{-}\{\mathrm{s}, \mathrm{i}\}\right] / 2$.
- So, we get: \backslash rho $E\left[D^{\wedge} 2 _\{s\}\right] /\left(2 E\left[D _\{s\}\right]\right)$, as we need to make explicit the condition that the transmitted is occupied.

Poisson arrivals \rightarrow arrivals may happen at any instant of time with the same prob.
Given the server is busy:
p_red $=6^{*} \mathrm{~T}_{-}$red $/\left(6^{*} \mathrm{~T}\right.$ red $+2^{*} \mathrm{~T}_{-}$blue $)=6 / 8 \mathrm{~T}$ red $/ \mathrm{E}[\mathrm{T}]$
p_{-}blue $=2{ }^{*} \mathrm{~T}_{-}$blue $/\left(\overline{6}^{*} \mathrm{~T}\right.$ _red $+\overline{2}^{*} \mathrm{~T}$ _blue $)=2 / \overline{8} \mathrm{~T}$ _blue $/ \mathrm{E}[\mathrm{T}]$

$$
\begin{aligned}
\mathrm{E}\left[\mathrm{D} _ \text {r|busy }\right] & =(\mathrm{T} \text { red } / 2)^{*} \mathrm{p}_{-1} \mathrm{red}+\left(\mathrm{T} \text { blau / 2) }{ }^{*}{ }^{*} \text { _blau }=\right. \\
& =((1 / 2) / \mathrm{E}[\mathrm{~T}])^{*}\left((6 / 8) \mathrm{T}_{-} \text {red }{ }^{*} \mathrm{~T}_{-} \text {red }+(2 / 8) \mathrm{T} \text { blue }{ }^{*} \mathrm{~T} \text { blue }\right)= \\
& =(1 / 2)^{*} \mathrm{E}\left[\mathrm{~T}^{\wedge} 2\right] / \mathrm{E}[\mathrm{~T}]
\end{aligned}
$$

$$
\mathrm{E}\left[\mathrm{D} _\mathrm{r}\right]=\mathrm{a} * \mathrm{E}\left[\mathrm{D} _\mathrm{r} \mid \text { busy }\right]+(1-\mathrm{a})^{*} 0=\text { lambda } *(1 / 2) * \mathrm{E}\left[\mathrm{~T}^{\wedge} 2\right]
$$

M/G/1

$$
\begin{gather*}
E\left[D_{q}\right]=\frac{E\left[D_{r}\right]}{(1-\rho)}=\frac{\lambda \cdot E\left[D_{s}^{2}\right]}{2(1-\rho)}\left(=\frac{1+C V\left[D_{s}\right]^{2}}{2} \cdot \frac{\rho}{1-\rho} \cdot E\left[D_{s}\right]\right) \\
E[D]=E\left[D_{q}\right]+E\left[D_{s}\right]=\frac{\lambda \cdot E\left[D_{s}^{2}\right]}{2(1-\rho)}+E\left[D_{s}\right] \tag{7.5}
\end{gather*}
$$

Applying Little's Law again using (7.4) and (7.5), we get the average number of packets in the queue and in the system, respectively:

$$
\begin{gather*}
E\left[N_{q}\right]=\lambda \cdot E\left[D_{q}\right]=\frac{\lambda^{2} \cdot E\left[D_{s}^{2}\right]}{2(1-\rho)}=\frac{1+C V\left[D_{s}\right]^{2}}{2} \cdot \frac{\rho^{2}}{1-\rho} \tag{7.6}\\
E[N]=\lambda \cdot E[D]=\frac{\lambda^{2} \cdot E\left[D_{s}^{2}\right]}{2(1-\rho)}+\lambda \cdot E\left[D_{s}\right]=\frac{1+C V\left[D_{s}\right]^{2}}{2} \cdot \frac{\rho^{2}}{1-\rho}+\rho \tag{7.7}
\end{gather*}
$$

Application to $\mathrm{M} / \mathrm{M} / 1$ waiting systems

Since the $M / M / 1$ waiting system is a special case of the $M / G / 1$ waiting system, we can apply the results for the latter and compare it with the results gained by the Markov chain-based approach. Since $C V\left[D_{s}\right]=1$ in a M/M/1 system, we get

$$
E\left[D_{q}\right]=\frac{1+C V\left[D_{s}\right]^{2}}{2} \cdot \frac{\rho}{1-\rho} \cdot E\left[D_{s}\right]=\frac{\rho}{1-\rho} \cdot E\left[D_{s}\right],
$$

and

$$
E[N]=\frac{1+C V\left[D_{s}\right]^{2}}{2} \cdot \frac{\rho^{2}}{1-\rho}+\rho=\frac{\rho^{2}}{1-\rho}+\rho=\frac{\rho^{2}}{1-\rho}+\frac{\rho(1-\rho)}{1-\rho}=\frac{\rho}{1-\rho},
$$

which are the known formulas for $\mathrm{M} / \mathrm{M} / 1$.

Application to M/D/1 waiting systems

As a second case for a specific class of service time distribution, we apply the $\mathrm{M} / \mathrm{G} / 1$ analysis to a M/D/1 waiting system. Here, $C V\left[D_{s}\right]=0$ due to the deterministic service process. Therefore,

$$
E\left[D_{q}\right]=\frac{1+C V\left[D_{s}\right]^{2}}{2} \cdot \frac{\rho}{1-\rho} \cdot E\left[D_{s}\right]=\frac{1}{2} \cdot \frac{\rho}{1-\rho} \cdot E\left[D_{s}\right],
$$

or exactly half the average waiting time of a $M / M / 1$ waiting system with the same average service time and load. Similarly,

$$
E[N]=\frac{1+C V\left[D_{s}\right]^{2}}{2} \cdot \frac{\rho^{2}}{1-\rho}+\rho=\frac{1}{2} \cdot \frac{\rho^{2}}{1-\rho}+\rho .
$$

Traffic flows with multiple packet sizes - Exercise

- A traffic flow of load $\mathrm{B}=8 \mathrm{Mbps}$ contains the following packet sizes:
- L1=64 Bytes (deterministic), with p1=0.45;
- L2=800 Bytes (deterministic), with p2 $=0.2$;
- $\mathrm{L} 3=1500$ Bytes (deterministic), with p3 $=0.35$
- The traffic flow arrives to a network interface, that transmits at a rate of $\mathrm{R}=10 \mathrm{Mbps}$.
- Calculate the waiting packet delay, and the total delay in the network interface.
- Compare the results if the $\mathrm{M} / \mathrm{M} / 1$ queue was used.

The expected packet size is

$$
E[L]=p_{1}(64 \cdot 8)+p_{2}(800 \cdot 8)+p_{3}(1500 \cdot 8)=5710.4 \text { bits. }
$$

The expected service time is given by

$$
E\left[D_{s}\right]=\frac{E[L]}{R}=p_{1} \frac{64 \cdot 8}{10 \cdot 10^{6}}+p_{2} \frac{800 \cdot 8}{10 \cdot 10^{6}}+p_{3} \frac{1500 \cdot 8}{10 \cdot 10^{6}}=0.571 \mathrm{~ms} .
$$

The second moment of the service time is given by

$$
\begin{equation*}
E\left[D_{s}^{2}\right]=p_{1}\left(\frac{64 \cdot 8}{10 \cdot 10^{6}}\right)^{2}+p_{2}\left(\frac{800 \cdot 8}{10 \cdot 10^{6}}\right)^{2}+p_{3}\left(\frac{1500 \cdot 8}{10 \cdot 10^{6}}\right)^{2}=0.5871 \mu \mathrm{~s} \tag{7.14}
\end{equation*}
$$

The expected residual time is then given by

$$
\begin{equation*}
E\left[D_{r}\right]=\frac{\lambda E\left[D_{s}^{2}\right]}{2}=\frac{8 \cdot 10^{6}}{2 \cdot 5710.4} 0.5871 \cdot 10^{-6}=\frac{0.8225 \mathrm{~ms}}{2} \tag{7.15}
\end{equation*}
$$

The 2
was
missing

Note that the residual time can be decomposed in the contributions of each packet size:

$$
\begin{equation*}
E\left[D_{r}\right]=E\left[D_{r, 1}\right]+E\left[D_{r, 2}\right]+E\left[D_{r, 3}\right]=\frac{\lambda_{1} E\left[D_{s, 1}^{2}\right]}{2}+\frac{\lambda_{2} E\left[D_{s, 2}^{2}\right]}{2}+\frac{\lambda_{3} E\left[D_{s, 3}^{2}\right]}{2} \tag{7.16}
\end{equation*}
$$

where $E\left[D_{s, i}^{2}\right]=\left(\frac{E\left[L_{i}\right]}{R}\right)^{2}\left(1+C V\left[D_{s, i}\right]^{2}\right)$.

Figure 7.3: Consideration for the average waiting time

The expected queueing delay is

$$
E\left[D_{q}\right]=\frac{E\left[D_{r}\right]}{1-\rho}=\frac{0.8225 \cdot 10^{-} 3}{1-\rho} \stackrel{/ 2}{=} \frac{0.0021 \mathrm{~s}}{2}
$$

with $\rho=\lambda E\left[D_{s}\right]=\frac{8 \cdot 10^{6}}{E[L]} E\left[D_{s}\right]=0.8225$
The expected system delay is

$$
E[D]=\frac{E\left[D_{r}\right]}{1-\rho}+E\left[D_{s}\right]=0.00026 \mathrm{~s}
$$

The CV of D_{s} is given by

$$
C V\left[D_{s}\right]=\frac{\sqrt{V\left[D_{s}\right]}}{E\left[D_{s}\right]}=\frac{\sqrt{E\left[D_{s}^{2}\right]-E^{2}\left[D_{s}\right]}}{E\left[D_{s}\right]}=0.8947
$$

If we compare the obtained delay with the delay of a $M / M / 1$ queue, we obtain:

$$
E[D]=\frac{1}{\mu-\lambda}=\frac{1}{\frac{1}{E\left[D_{s}\right]}-\frac{B}{E[L]}}=0.0029 \mathrm{~s}
$$

Traffic flows with multiple packet sizes - Exercise

- A traffic flow of load $\mathrm{B}=8 \mathrm{Mbps}$ contains the following packet sizes:
- L1: E[L1]=64 Bytes (general, with CV[L1]=0.5), with p1=0.45;
- L2: $\mathrm{E}[\mathrm{L2}]=800$ Bytes (general, with CV[L2]=1.2), with p2 $=0.2$;
- L3: E[L3] = 1500 Bytes (general, with CV[L3]=0.7), with p3 $=0.35$
- The traffic flow arrives to a network interface, that transmits at a rate of $\mathrm{R}=10 \mathrm{Mbps}$.
- Calculate the waiting packet delay, and the total delay in the network interface.
- Compare the results if the $\mathrm{M} / \mathrm{M} / 1$ queue was used.

Here, it's exactly the same as before. We first calculate the second moment of each type of size:

$$
\begin{equation*}
E\left[D_{s, 2}^{2}\right]=E\left[D_{s, i}\right]^{2}\left(1+C V\left[D_{s, i}\right]^{2}\right) \tag{7.21}
\end{equation*}
$$

where $C V\left[D_{s, i}\right]=C V\left[L_{i}\right]$ as $D_{s, i}=\frac{L_{i}}{R}$, with R a constant.
Then, we can calculate the residual time:

$$
\begin{equation*}
E\left[D_{r}\right]=E\left[D_{r, 1}\right]+E\left[D_{r, 2}\right]+E\left[D_{r, 3}\right]=\frac{\lambda_{1} E\left[D_{s, 1}^{2}\right]}{2}+\frac{\lambda_{2} E\left[D_{s, 2}^{2}\right]}{2}+\frac{\lambda_{3} E\left[D_{s, 3}^{2}\right]}{2} \tag{7.22}
\end{equation*}
$$

Note that in previous exercise, since all packet sizes where deterministic, we just considered that $C V\left[L_{i}\right]=0$ in all cases.

