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M/M/1

A(t) [arrival process]: L~expo, T~expo
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S(t) [Service process]: D ~expo
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M/M/1
« What about if packet sizes are not exponentially distributed?

A(t) [arrival process]: L~det, T~expo _
S(t) [Service process]: D_~det
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Our model is not accurate,
there is an ‘error’ between
the M/M/1 and the real
case (M/D/1)

=
[ %]
T

Delay [s]
=
(=]

— ) I
0 0.2 0.4 0.6 0.8 1
MNorm. Traffic Load (a)

(=] [ %) £ [=3] oo
T T T T




Example: maximum E[D] is 2 seconds

Using an M/M/1 model
overestimates the system
delay, so we are not able to
use all system resources.
(What is the maximum

load to guarantee that E[D]

is below 2 seconds?)
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M/G/1

We don’t know which
distribution follows the
packet size, but we can
represent it through its:
- Coefficient of variation
- Second moment
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" In black, the case where packet
- sizes follow a general distribution
_ characterized by a CVs=2.
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CVs increases — System performance decreases (more resources are needed

to achieve the same performance)
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—— Real packet trace (caida.org)
/ —— Exponential distribution, same average
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Figure 7.1: Real packet size distribution vs. exponential distribution with same
mean



M/G/1
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M/G/1
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M/G/1 - Queueing Delay

Arriving packet
under consideration

ElDg] = A-E[Dg|-E[D] + E[D:]
ED,| = p-E[D,]+ E[D,]

S y E[D,(1-p) = E[D,]
_ E[D,]
E[N{] Packet currently E [ D q] =

waiting packets  being sent (]_ — p)
/_/_‘\ /_/‘\
E[D,]= E[Ng]-E[D,] + E[D,]

Figure 7.3: Consideration for the average waiting time
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M/G/1 — Residual time

R(t) N Packet arrivals (nin T)

‘ [
-

A

t

—— Y

D, D D,, D D,,

sz 53 s4

Figure 7.4: Residual service time process

For the average residual service time, we consider the system over a long timespan

T'. In this interval, we will see on average A -T" = n packets arriving. Then,
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M/G/1 — Residual time

 Alternative way to calculate the residual time:

- What is the probability to arrive when a packet ‘i’ is in service given
that the “transmitter” is occupied?

o p_iE[D_{s,i}] / sum_{\forallj}{p_jE[D_{s,j}|}

- We tradeoff the effect of amount of arrivals of ‘i" packets and their
size.

- In average, the residual time when a packet arrives during the service
time of a packet i’ is E[D_{s,i}|/2.

e So, we get: \rho E[D"2_{s}|/(2E[D_{s}]), as we need to make
explicit the condition that the transmitted is occupied.



Poisson arrivals — arrivals may happen at any instant of time with the same prob.

Given the server is busy:
p_red =6*T_red / (6*T_red + 2*T_blue) =6/8 T_red / E[T]
p_blue = 2*T blue / (6*T_red + 2*T_blue) =2/8 T_blue / E[T]

E[D_rlbusy| = (T_red / 2)*p_red + (T blau / 2)*p_blau =
((1/2)/E[[ 1) *((6/8) T_red * T_red + (2/8) T_blue * T_blue) =
(1/2)*E[TA2]/E[T]

E[D_r] =a*E[D_rbusy] + (1-a)*0 = lambda * (*2) * E[TA2]



M/G/1

1 ED]  AN-EDI ( 1+CV[DJ  p
E[D,| = i) (_ 5 T E[Ds])
E|D|= E[D,| + E D] = ;IE—_[LS] + E[Dy] (7.5)

Applying Little’s Law again using (7.4) and (7.5), we get the average number of

packets in the queue and in the system, respectively:

: A -EDY]  14CVIDJ*  p?
E[N, )=\ E[D,] = 2 = £
2(1—p) 2 1—p

(7.6)

A2. E[D?
2(1—-p)

1+ CVIDJ* o

E[N] = X-E[D] = + A+ E[Dy] = 5 1,

+p (7.7)



Application to M /M /1 waiting systems

Since the M/M /1 waiting system is a special case of the M/G/1 waiting system, we
can apply the results for the latter and compare it with the results gained by the
Markov chain-based approach. Since C'V[D,] = 1 in a M/M/1 system, we get

L+CVIDJ p p

E\D,| = - F\D,| = —— - FE|D,|,
and
) 1 CLID:,-E 2 2 2 1 —
EN] = LF Ds]* p g, P LPA=p) _ p |
2 1—0p 1—0p 1—p 1—p 1—0p

which are the known formulas for M/M /1.



Application to M /D /1 waiting systems

As a second case for a specific class of service time distribution, we apply the M/G/1
analysis to a M/D/1 waiting system. Here, CV[D,] = 0 due to the deterministic

service process. Therefore,

L+CVIDE
2 1—p

l1—p
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or exactly half the average waiting time of a M/M /1 waiting system with the same

average service time and load. Similarly,
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Traffic flows with multiple packet sizes - Exercise

A traffic flow of load B= 8 Mbps contains the following packet sizes:

- L1=64 Bytes (deterministic), with p1=0.45;

- L2=800 Bytes (deterministic), with p2 = 0.2;

- L3 =1500 Bytes (deterministic), with p3 = 0.35
o The traffic flow arrives to a network interface, that transmits at a rate of
R=10 Mbps.

» C(Calculate the waiting packet delay, and the total delay in the network
interface.

« Compare the results if the M/M/1 queue was used.



The expected packet size 1s

E[L] = p1(64- 8) + pa(800 - 8) + p3(1500 - 8) = 5710.4 bits.

The expected service time 1s given by

E[L] 64 - § 800 - 8 1500 - 8
ED|=——= ;
[ 3] + +pdln . 1[]{".‘!

64-8  800-8 — 0.571 ms.
R P70 108 T P10 100 0.071 ms

The second moment of the service time is given by

, 4. 2 .8\ 2 1500 - 8\ 2
E[Dil=p1( 0 8) +p2(snn 8) +p3( . 8) = 0.5871 48 (7.14)

10 - 106 10 - 106 10 - 106
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The expected residual time 1s then given by W?-S .
missing

CAE[DY 8108

LD 2 5.5710.4

0.5871 - 10~% = 0.8225 ms (7.15)
2




Note that the residual time can be decomposed in the contributions of each packet
s1Ze:

MEIDZ] | MEIDZ) | MEIDY)

E[D,] = E[D, ] + E[D, o] + E[D, 3] = 7.16)

2

N2
where E[D? ] = (%) (1 +CV[Dy,:]?).

Arriving packet
under consideration

Hr_/

E[Ng Packet currently
waiting packets  being sent

—— ——
E[DQ]: E[Ar:]E[Ds] + E[Dr]

Figure 7.3: Consideration for the average waiting time



The expected queueing delay 1s

E[D,] _0.8225-10°3 5

D =1=, ===, “oomts
2
with p = AE[D,] = El@j [D.] = 0.8225
The expected system delay 1s
E(D,) 0.00155 s
E[D] = " + E[D.] = 6:6026-

The CV of D, is given by

ﬂf E[D?| — E?[D
C'V|[D,] \/ ! D) = (.8947

[Dl - E[D]




If we compare the obtained delay with the delay of a M/M/1 queue, we obtain:

1 1

ED] = — = — = = 0.0029 s

ED,] — E[L]




Traffic flows with multiple packet sizes - Exercise

» A traffic flow of load B= 8 Mbps contains the following packet

sizes:

- L1:E
- L2:E
- L3:E

L]
[L2]
13] =

=64 Bytes (general, with CV[L1]=0.5), with p1=0.45;
=800 Bytes (general, with CV[L2]=1.2), with p2 = 0.2;
= 1500 Bytes (general, with CV[L3]=0.7), with p3 = 0.35

« The traffic flow arrives to a network interface, that transmits at a
rate of R=10 Mbps.

 Calculate the waiting packet delay, and the total delay in the
network interface.

« Compare the results if the M/M/1 queue was used.



Here, it's exactly the same as before. We first calculate the second moment of each

type of size:
E[D:,] = E[D;|*(1+ CV[D,,]?) (7.21)

where CV[D, ;| = CVI[L;] as D ; = %, with R a constant.

Then, we can calculate the residual time:

MEDE] | MEIDL)  MEIDE

EID,] = E[Dy1) + E[Dy2) + E[Dyg) = =— : -

(7.22)

Note that in previous exercise, since all packet sizes where deterministic, we just

considered that C'V[L;] = 0 in all cases.
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