

Wireless Local Area Networks

Boris Bellalta boris.bellalta@upf.edu

Network Engineering

Wireless
Networking
WN
Group

BASIC HUMAN NEEDS

WIFI at home
upf.

Setting-up a WLAN

When the AP is turned ON

- Selects a channel to use.
- Starts transmitting beacons each $\mathrm{T}_{\text {beacon }}$ msecs (usually, 100 msecs).
- Each beacon contains information about the AP:
- BSSID (name of the network)
- Supported transmission rates
- Other characteristics (antennas, channel widths, etc.)

A STA is turned on

- Scans all channels.
- Lists all the available BSSIDs
- Selects the BSSIDs to which it belongs (pre-set)
- If a STA detect beacons from different APs belonging to the same BSSID, it selects the one with higher RSSI (Received Strength Signal Indicator)

WLAN Device: Protocol Stack

Transmitted power, Path-loss, Received Power

Transmit Power

Omnidirectional Pattern

Examples:

$\mathrm{Pt}=100 \mathrm{~mW} \rightarrow \mathrm{Pt}=20 \mathrm{dBm}$
$\mathrm{Pt}=1 \mathrm{~mW} \rightarrow \mathrm{Pt}=0 \mathrm{dBm}$
$\mathrm{Pt}=1$ microW $\rightarrow \mathrm{Pt}=-30 \mathrm{dBm}$
$\mathrm{Pt}=1$ nanoW $\rightarrow \mathrm{Pt}=-60 \mathrm{dBm}$

- Relation with the distance: PL [dB] = L1m [dB] + $10 \mathrm{y}(\mathrm{f}$, environment) $\log 10(\mathrm{~d})$ [dB]

SNR

- Signal-to-Noise Ratio
- SNR [dB] = Pr [dBm] - Noise Power [dBm]

WLANs

Infrastructure

- Stations (STAs) access to Internet and to talk to each other through an Access Point (AP)
- Single-hop communication
- Basic Service Set (BSS)
- STAs must associate to the BSS in order to be able to transmit and receive data

Operating Bands (Spectrum)

- License-exempt bands.
- Maximum Transmission Power (i.e. $100 \mathrm{~mW}=20 \mathrm{dBm}$)
- Most common bands: $1 \mathrm{GHz}, 2.4 \mathrm{GHz}, 5 \mathrm{GHz}, 60 \mathrm{GHz}$
- 1 GHz : 'large' coverage, lower transmission rates
- 60 GHz : 'low' coverage, higher transmission rates
- In 2.4 and 5 GHz WLANs use a minimum channel width of 20 MHz channels

Operating Bands (Spectrum)

- 20 MHz channels
- 2.4 GHz : ~ 3 non-overlapping channels (1~4 channels, 5 MHz spaced)

Operating Bands (Spectrum)

- 20 MHz channels
- $5 \mathrm{GHz}: ~ 20$ non-overlapping channels (20 MHz spaced)

Coexistence Problem in ISM bands

- Everyone can deploy a Wireless Network
- IEEE 802.11 IEEE 802.15.4, Microwaves, etc.
- No planning is required
- Mutual Interference
- Potential low performance

Transmission Rates

data range

Node distant from the AP
The received power depends on the distance and channel characteristics

Transmission Rates

			Minimum Sensitivity $[\mathrm{dBm}]$			
MCS	Modulation	Rate	20 MHz	$\mathbf{4 0} \mathbf{M H z}$	80 MHz	$\mathbf{1 6 0} \mathbf{M H z}$
0	BPSK	$1 / 2$	-82	-79	-76	-73
1	QPSK	$1 / 2$	-79	-76	-73	-70
2	QPSK	$3 / 4$	-77	-74	-71	-68
3	16-QAM	$1 / 2$	-74	-71	-68	-65
4	16-QAM	$3 / 4$	-70	-67	-64	-61
5	64-QAM	$2 / 3$	-66	-63	-60	-57
6	64-QAM	$3 / 4$	-65	-62	-59	-56
7	64-QAM	$5 / 6$	-64	-61	-58	-55
8	256-QAM	$3 / 4$	-59	-56	-53	-50
9	256-QAM	$5 / 6$	-57	-54	-51	-48

MCS	Sensitivity $(\mathbf{d B m}) \mathbf{- 2 0} \mathbf{~ M H z}$	Rate (Mbps)
0	-82	6.5
1	-79	13
2	-77	19.5
3	-74	26
4	-70	39
5	-66	52
6	-65	58.5
7	-64	65
8	-59	78
9	-57	86.67

Link-layer

- Multiple nodes, and a single (half-duplex) shared channel.
- If two or more nodes transmit at the same time, we have a collision.
- The channel access arbitration is done using the Distributed Coordination Function (DCF), which consists of:
- CSMA protocol.
- Backoff (BEB).
- Stop \& Wait ARQ protocol, for packet retransmissions.
- Other relevant features:
- The Backoff countdown is paused if channel activity is detected.
- After any transmission, all nodes are synchronized.

New Random selected backoff value (orange slots)
DCF

Automatic ReQuest prtocol (Stop \& Wait)

- Unconfirmed Packets are retransmitted until they are acknowledged or discarded.
- There is a maximum number of retransmissions: $\mathrm{R}_{\max }$
- Stop \& Wait ARQ protocol.

Frame Structure

- A single and common structure

DATA frame

PHY header MAC header	DATA
$\left\{\begin{array}{l}\text { Tx \& Rx Address } \\ \text { Type of Frame (Data packet, Control frame) } \\ \text { Management information }\end{array}\right.$	
Clock Synchronization Channel Estimation	PHY header

Packet Transmission Time

Packet Transmission time

Values:
$\mathrm{T}_{\mathrm{PHY}}=40$ micro seconds
$\mathrm{L}_{\text {ACK }}=112$ bits
$L_{\text {MAC }}=240$ bits
SIFS = 16 micro seconds
DIFS = 34 micro seconds
$\mathrm{T}_{0}=9$ micro seconds

SIFS DIFS $+T_{0}$

$$
\mathrm{T}=\mathrm{T}_{\mathrm{DATA}}+\mathrm{SIFS}+\mathrm{T}_{\mathrm{ACK}}+\mathrm{DIFS}+\mathrm{T}_{0}
$$

Example

- $\mathrm{Pt}=20 \mathrm{dBm}, \mathrm{PL}(\mathrm{dB})=95 \mathrm{~dB}, \mathrm{Pr}=\mathrm{Pt}-\mathrm{PL}(\mathrm{dB})=20-92=-72 \mathrm{dBm}$
- Rate: MCS $=3 \rightarrow \mathrm{R}=26 \mathrm{Mbps}$
- L=12000 bits
- $\mathrm{T}_{\text {DATA }}=\mathrm{T}_{\text {PHY }}+\left(\mathrm{L}_{\mathrm{MAC}}+\mathrm{L}\right) / \mathrm{R}=40 \mathrm{E}-6+(240+12000) / 26 \mathrm{E} 6=0.51 \mathrm{~ms}$
- $\mathrm{T}_{\mathrm{ACK}}=\mathrm{T}_{\mathrm{PHY}}+\left(\mathrm{L}_{\mathrm{ACK}}\right) / \mathrm{R}=40 \mathrm{E} 6+112 / 26 \mathrm{E} 6=0.044 \mathrm{~ms}$
- $\mathrm{T}=0.51 \mathrm{E}-3+16 \mathrm{E}-6+0.044 \mathrm{E}-3+34 \mathrm{E}-6+9 \mathrm{E}-6=0.613 \mathrm{~ms}$

Exercise

- Calculate the transmission time for STA A and STA B in the following WLAN if STA A transmits packets of size LA=1000 bits and LB=12000 bits.

- Considering they alternate transmissions, which station will transmit more packets to the AP? How many?

