

#### Wireless Local Area Networks

Boris Bellalta boris.bellalta@upf.edu

Network Engineering



Wireless Networking Group http://wnrg.upf.edu/













#### WIFI everywhere!





## Setting-up a WLAN



# When the AP is turned ON

- Selects a channel to use.
- Starts transmitting beacons each T<sub>beacon</sub> msecs (usually, 100 msecs).
- Each beacon contains information about the AP:
  - BSSID (name of the network)
  - Supported transmission rates
  - Other characteristics (antennas, channel widths, etc.)





## A STA is turned on

- Scans all channels.
  - Lists all the available BSSIDs
- Selects the BSSIDs to which it belongs (pre-set)
- If a STA detect beacons from different APs belonging to the same BSSID, it selects the one with higher RSSI (Received Strength Signal Indicator)

upf.



## WLAN Device: Protocol Stack





### Transmitted power, Path-loss, Received Power



### **Transmit Power**



Omnidirectional Pattern

Pt(dBm)= 10 log10(Pt [mW])

#### Examples:

Pt=100 mW  $\rightarrow$  Pt=20 dBm Pt=1 mW  $\rightarrow$  Pt = 0 dBm Pt=1 microW  $\rightarrow$  Pt = -30 dBm Pt=1 nanoW  $\rightarrow$  Pt = -60 dBm



#### To know more: https://arxiv.org/pdf/1812.00667.pdf

#### Path-loss



**Obstacles** 

- Relation with the distance:  $PL [dB] = L1m [dB] + 10 \gamma(f, environment) log10(d) [dB]$ 



Path-loss at 1 meter (usually, 20-25 dBs)

- Signal-to-Noise Ratio
  - SNR [dB] = Pr [dBm] Noise Power [dBm]





#### WLANs



### Infrastructure

- Stations (STAs) access to Internet and to talk to each other through an Access Point (AP)
- Single-hop communication
- Basic Service Set (BSS)
- STAs must associate to the BSS in order to be able to transmit and receive data
- Direct STA2STA communication is possible with WIFI Direct





## **Operating Bands (Spectrum)**

- License-exempt bands.
- Maximum Transmission Power (i.e. 100 mW = 20 dBm)
- Most common bands: 1 GHz, 2.4 GHz, 5 GHz, 60 GHz
  - 1 GHz: 'large' coverage, lower transmission rates
  - 60 GHz: 'low' coverage, higher transmission rates
- In 2.4 and 5 GHz WLANs use a minimum channel width of 20 MHz channels



## **Operating Bands (Spectrum)**

- 20 MHz channels
  - 2.4 GHz: ~3 non-overlapping channels (1~4 channels, 5 MHz spaced)



# **Operating Bands (Spectrum)**

- 20 MHz channels
  - 5 GHz: ~20 non-overlapping channels (20 MHz spaced)





Image from:http://www.dailywireless.org/2011/12/13/1-gbps-wifi-next-year/

## Coexistence Problem in ISM bands

- Everyone can deploy a Wireless Network
  - IEEE 802.11 IEEE 802.15.4, Microwaves, etc.
- No planning is required
- Mutual Interference
- Potential low performance

BSS1, BSS2, BSS3

f





#### **Transmission Rates**





### **Transmission Rates**

#### 802.11ac

|     |            |      | Minimum Sensitivity [dBm] |        |        |         |
|-----|------------|------|---------------------------|--------|--------|---------|
| MCS | Modulation | Rate | 20 MHz                    | 40 MHz | 80 MHz | 160 MHz |
| 0   | BPSK       | 1/2  | -82                       | -79    | -76    | -73     |
| 1   | QPSK       | 1/2  | -79                       | -76    | -73    | -70     |
| 2   | QPSK       | 3/4  | -77                       | -74    | -71    | -68     |
| 3   | 16-QAM     | 1/2  | -74                       | -71    | -68    | -65     |
| 4   | 16-QAM     | 3/4  | -70                       | -67    | -64    | -61     |
| 5   | 64-QAM     | 2/3  | -66                       | -63    | -60    | -57     |
| 6   | 64-QAM     | 3/4  | -65                       | -62    | -59    | -56     |
| 7   | 64-QAM     | 5/6  | -64                       | -61    | -58    | -55     |
| 8   | 256-QAM    | 3/4  | -59                       | -56    | -53    | -50     |
| 9   | 256-QAM    | 5/6  | -57                       | -54    | -51    | -48     |

| MCS | Sensitivity (dBm)-20 MHz | Rate (Mbps) |
|-----|--------------------------|-------------|
| 0   | -82                      | 6.5         |
| 1   | -79                      | 13          |
| 2   | -77                      | 19.5        |
| 3   | -74                      | 26          |
| 4   | -70                      | 39          |
| 5   | -66                      | 52          |
| 6   | -65                      | 58.5        |
| 7   | -64                      | 65          |
| 8   | -59                      | 78          |
| 9   | -57                      | 86.67       |



# Link-layer

- Multiple nodes, and a single (half-duplex) shared channel.
- If two or more nodes transmit at the same time, we have a collision.
- The channel access arbitration is done using the **Distributed Coordination Function (DCF)**, which consists of:
  - CSMA protocol.
  - Backoff (BEB).
  - Stop & Wait ARQ protocol, for packet retransmissions.
- Other relevant features:
  - The Backoff countdown is paused if channel activity is detected.
  - After any transmission, all nodes are synchronized.



#### New Random selected backoff value (orange slots)

DCF



# Automatic ReQuest prtocol (Stop & Wait)

- Unconfirmed Packets are retransmitted until they are acknowledged or discarded.
- There is a maximum number of retransmissions:  $R_{max}$
- Stop & Wait ARQ protocol.





### Frame Structure

• A single and common structure



### **Packet Transmission Time**



## Packet Transmission time







- Pt=20 dBm, PL(dB)=95 dB, Pr=Pt-PL(dB)=20-92 =-72 dBm
- Rate: MCS =  $3 \rightarrow R$ = 26 Mbps
- L=12000 bits
- $T_{DATA} = T_{PHY} + (L_{MAC} + L)/R = 40E-6 + (240+12000)/26E6 = 0.51 \text{ ms}$
- $T_{ACK} = T_{PHY} + (L_{ACK})/R = 40E6 + 112 / 26E6 = 0.044 \text{ ms}$
- T = 0.51E-3+16E-6+0.044E-3+34E-6+9E-6=0.613 ms



#### Exercise

• Calculate the transmission time for STA A and STA B in the following WLAN if STA A transmits packets of size LA=1000 bits and LB=12000 bits.



• Considering they alternate transmissions, which station will transmit more packets to the AP? How many?

