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Abstract

This work studies the deviations of the error exponent of the constant composition
code ensemble around its expectation, known as the error exponent of the typical random
code (TRC). In particular, it is shown that the probability of randomly drawing a codebook
whose error exponent is smaller than the TRC exponent is exponentially small; upper and
lower bounds for this exponent are given, which coincide in some cases. In addition, the
probability of randomly drawing a codebook whose error exponent is larger than the TRC
exponent is shown to be double–exponentially small; upper and lower bounds to the double–
exponential exponent are given. The results suggest that codebooks whose error exponent
is larger than the error exponent of the TRC are extremely rare. The key ingredient in the
proofs is a new large deviations result of type class enumerators with dependent variables.
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1 Introduction

Random coding is the most common method to show that the probability of error vanishes for

rates below the channel capacity. In 1955, Feinstein [1] proved that, for a sequence of codes of

fixed rate and increasing length, the probability of error decays to zero exponentially with the

length of the codes, provided that the rate of the code is below the mutual information of the

channel. In the same year, Elias [2] derived the random coding and sphere–packing bounds and

observed that they exponentially coincide at high rates, for the cases of the binary symmetric

channel (BSC) and the binary erasure channel (BEC). Fano [3] derived the random coding

exponent, namely,

Er(R) = lim
n→∞

{
− 1
n logE [Pe(Cn)]

}
, (1)

where the expectation is with respect to (w.r.t.) a given ensemble of codes, and heuristically

also the sphere–packing bound for the general discrete memoryless channel (DMC). In 1965,

Gallager [4] derived Er(R) in a much simpler way and improved on Er(R) at low rates by the

idea of expurgation.

In random coding analysis, the code is selected at random and remains fixed, and thus,

it seems reasonable to study the performance in terms of error exponent of the very chosen

code, rather than considering the exponent of the averaged probability of error, as in Er(R).

Therefore, it is natural to ask what would be the error exponent associated with the typical

randomly selected code. The error exponent of the typical random code (TRC) is defined as

Etrc(R) = lim
n→∞

{
− 1
nE [logPe(Cn)]

}
. (2)

We find the exponent of the TRC to be the more relevant performance metric as it captures the

true exponential behavior of the probability of error, as opposed to the random coding error

exponent, which is dominated by the relatively poor codes of the ensemble, rather than the

channel noise, at relatively low coding rates.

To the best of our knowledge, not much is known on typical random codes. In [5], Barg

and Forney considered typical random codes with independently and identically distributed

codewords for the BSC with maximum–likelihood (ML) decoding. They also considered typical

linear codes. It was shown that at a certain range of low rates, Etrc(R) lies between Er(R) and
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the expurgated exponent, Eex(R). In [6] Nazari et al. provided bounds on the error exponent

of the TRC for both DMCs and multiple–access channels. In a recent article [7], an exact

single–letter expression has been derived for the error exponent of typical, random, constant

composition codes, over DMCs, and a wide class of (stochastic) decoders, collectively referred

to as the generalized likelihood decoder (GLD), which includes the ML decoder as a special

case. For such decoders, the probability of deciding on a given message is proportional to a

general exponential function of the joint empirical distribution of the codeword and the received

channel output vector. Recently, Merhav has studied error exponents of TRCs for the colored

Gaussian channel [8], as well as typical random trellis codes [9].

Note that the TRC exponent can be viewed as the limit of the expectation of the random

variable

E(Cn) = − 1
n logPe(Cn), (3)

where Pe(Cn) is the error probability of a given code Cn, governed by the randomness of the

codebook Cn. Having defined this random variable, it is interesting to study, not only its

expectation, but also other, more refined, quantities associated with its probability distribution.

One of them is the tail behavior, i.e., the large deviations (LD) rate functions. In particular,

it is partially implied2 from [7], that E(Cn) concentrates around its expectation, i.e., the error

exponent Etrc(R). In this work we prove that E(Cn) indeed concentrates around Etrc(R).

In this paper we are interested in probabilities of large fluctuations around Etrc(R). More

specifically, we investigate the probability of randomly choosing a bad codebook, i.e., a codebook

with a relatively small value of E(Cn). On the other hand, the probability of randomly drawing

a good codebook, i.e., a codebook with a relatively large value of E(Cn) is of interest as well,

since obtaining tight LD bounds is an alternative method to prove upper or lower bounds on

the channel reliability function, a long–standing problem.

To the best of our knowledge, the only known bounds on the probability of drawing code-

books with relatively low error exponents are given in [10, Appendix III]. It is proved in [10]

that P {E(Cn) < Er(R)} is upper bounded by exp{− exp{n(R−Er(R))}}, as long as R > Er(R),

while the entire range of relatively low rates, namely R ≤ Er(R), was hardly considered in [10],

and is one of the main topics in the current work. Furthermore, in this paper, we study the de-

2More specifically, for every ε > 0, P{E(Cn) ≤ Etrc(R) + ε} converges to one exponentially fast as n→∞.
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viations of E(Cn) w.r.t. its actual expected value Etrc(R), and not as in [10], in which considered

deviations w.r.t. Er(R).

Accordingly, the main purpose of this paper is to study the probabilistic behavior of the

tails of E(Cn), i.e., to characterize its large deviations properties. For a given E0 < Etrc(R), we

assess the probability P {E(Cn) ≤ E0} and provide exponentially small lower and upper bounds

on it, which proves that bad codebooks are rare. More refined questions concerning the lower

tail are as follows. Does the probability P {E(Cn) ≤ E0} tend to zero with a finite exponent in

the entire range [0, Etrc(R))? If not, what is the range of E0 for which P {E(Cn) ≤ E0} decays

faster than exponentially? Indeed, we prove that a phase transition occurs in the behavior

of this probability, i.e., at some point below Etrc(R), we observe an abrupt change between

an ordinary exponential decay to a super–exponential decay. In addition, we consider the

probability P {E(Cn) ≥ E0}, for E0 > Etrc(R), and derive double–exponentially small lower and

upper bounds on it. We find the largest value E0, for which P {E(Cn) ≥ E0} is strictly positive,

thereby proving the existence of exceptionally good codebooks.

The remaining part of the paper is organized as follows. In Section 2, we establish notation

conventions. In Section 3, we formalize the model, the decoder, LD quantities, and provide

some preliminaries. In Section 4, we summarize and discuss the main results, and provide

numerical example for the binary z–channel. Sections 5, 6 and 7 include the proofs of our main

theorems.

2 Notation Conventions

Throughout the paper, random variables will be denoted by capital letters, realizations will

be denoted by the corresponding lower case letters, and their alphabets in calligraphic font.

Random vectors and their realizations will be denoted, respectively, by boldfaced capital and

lower case letters. Their alphabets will be superscripted by their dimensions. For a generic

joint distribution QXY = {QXY (x, y), x ∈ X , y ∈ Y}, which will often be abbreviated by Q,

information measures will be denoted in the conventional manner, but with a subscript Q, that

is, IQ(X;Y ) is the mutual information between X and Y , and similarly for other quantities.

Logarithms are taken to the natural base. The probability of an event E will be denoted by

P{E}, and the expectation operator will be denoted by E[·]. The indicator function of an event
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E will be denoted by I{E}. The notation [t]+ will stand for max{0, t}.

For two positive sequences, {an} and {bn}, the notation an
.
= bn will stand for equality in

the exponential scale, that is, limn→∞(1/n) log (an/bn) = 0. Similarly, an
·
≤ bn means that

lim supn→∞(1/n) log (an/bn) ≤ 0, and so on. Accordingly, the notation an
.
= e−n∞ means that

an decays at a super–exponential rate (e.g. double–exponentially).

By the same token, for two positive sequences, {an} and {bn}, the notation an
◦
= bn will

stand for equality in the double–exponential scale, that is,

lim
n→∞

1

n
log

(
log an
log bn

)
= 0. (4)

Similarly, an
◦
≤ bn means that

lim inf
n→∞

1

n
log

(
log an
log bn

)
≥ 0, (5)

and an
◦
≥ bn stands for

lim sup
n→∞

1

n
log

(
log an
log bn

)
≤ 0. (6)

The empirical distribution of a sequence x ∈ X n, which will be denoted by P̂x, is the vector

of relative frequencies, P̂x(x), of each symbol x ∈ X in x. The joint empirical distribution of a

pair of sequences, denoted by P̂xy, is similarly defined. The type class of QX , denoted T (QX),

is the set of all vectors x ∈ X n with P̂x = QX . In the same spirit, the joint type class of QXY ,

denoted T (QXY ), is the set of all pairs of sequences (x,y) ∈ X n × Yn with P̂xy = QXY .

Throughout the paper, we will make a frequent use of the fact that

kn∑
i=1

an(i)
.
= max

1≤i≤kn
an(i) (7)

as long as {an(i)} are positive and kn
.
= 1. This exponential equivalence will be termed

henceforth the summation–maximization equivalence (SME). The sequence kn will represent

the number of joint types possible for a given block length n, which is polynomial in n.

3 Problem Formulation

Consider a DMC W = {W (y|x), x ∈ X , y ∈ Y}, where X and Y are the finite input and output

alphabets, respectively. When the channel is fed with a sequence x = (x1, . . . , xn) ∈ X n, it
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produces y = (y1, . . . , yn) ∈ Yn according to

W (y|x) =
n∏
t=1

W (yt|xt). (8)

Let Cn be a codebook, i.e., a collection {x0,x1, . . . ,xM−1} of M = enR codewords, n being the

block–length and R the coding rate in nats per channel use. When the transmitter wishes to

convey a message m ∈ {0, 1, . . . ,M−1}, it feeds the channel with xm. We assume that messages

are chosen with equal probability. We consider the ensemble of constant composition codes:

for a given distribution QX over X , all vectors in Cn are uniformly and independently drawn

from the type class T (QX). As in [7], [11], we consider here the GLD, which is a stochastic

decoder, that chooses the estimated message m̂ according to the following posterior probability

mass function, induced by the channel output y:

P
{
M̂ = m

∣∣∣y} =
exp{ng(P̂xmy)}∑M−1

m′=0 exp{ng(P̂xm′y)}
, (9)

where P̂xmy is the empirical distribution of (xm,y), and g(·) is a given continuous, real–valued

functional of this empirical distribution. The GLD provides a unified framework which covers

several important special cases, e.g., matched likelihood decoding, mismatched decoding, ML

decoding, and universal decoding (similarly to the α–decoders described in [12]). In particular,

we recover the ML decoder by choosing the decoding metric

g(QXY ) = β
∑
x∈X

∑
y∈Y

QXY (x, y) logW (y|x), (10)

and letting β →∞. A more detailed discussion is given in [11].

The probability of error, associated with a given code Cn and the GLD, is given by

Pe(Cn) =
1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm) ·
exp{ng(P̂xm′y)}∑M−1
m̃=0 exp{ng(P̂xm̃y)}

. (11)

For the constant composition ensemble, Merhav [7] has derived a single–letter expression

for

Etrc(R) = lim
n→∞

{
− 1
nE [logPe(Cn)]

}
. (12)

In order to present this expression, we define first a few quantities. Define the set Q(QX) =

{QXX′ : QX′ = QX} and

α(R,QY ) = max
QX̃|Y ∈S(QX ,QY )

{g(QX̃Y )− IQ(X̃;Y )}+R, (13)
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where S(QX , QY ) = {QX̃|Y : IQ(X̃;Y ) ≤ R, QX̃ = QX}, as well as

Γ(QXX′ , R) = min
QY |XX′

{D(QY |X‖W |QX) + IQ(X ′;Y |X)

+ [max{g(QXY ), α(R,QY )} − g(QX′Y )]+}, (14)

where D(QY |X‖W |QX) is the conditional divergence between QY |X and W , averaged by QX :

D(QY |X ||W |QX) =
∑
x∈X

QX(x)
∑
y∈Y

QY |X(y|x) log
QY |X(y|x)

W (y|x)
. (15)

The TRC error exponent is given by [7]

Etrc(R) = min
{Q(QX): IQ(X;X′)≤2R}

{Γ(QXX′ , R) + IQ(X;X ′)−R}. (16)

In the sequel, we prove that the exponent Etrc(R) is the exact value around which the random

variable E(Cn) concentrates, as was partially implied from the proof in [7, Subsection 5.2]. The

expurgated exponent Eex(R), proved in [11], has exactly the same expression, but with the

minimization constraint in (16) IQ(X;X ′) ≤ 2R replaced by IQ(X;X ′) ≤ R. In case of ML

decoding, define

a(R,QY ) = max
QX̃|Y ∈S(QX ,QY )

EQ[logW (Y |X̃)] (17)

and the set

A(R) = {QX′Y |X : IQ(X;X ′) ≤ 2R, QX′ = QX ,

EQ[logW (Y |X ′)] ≥ max {EQ[logW (Y |X)], a(R,QY )}}. (18)

Then, (16) particularizes to [7, Sec. 4]

EML
trc (R) = min

QX′Y |X∈A(R)
{D(QY |X‖W |QX) + IQ(X,Y ;X ′)−R}. (19)

We are interested in the lower and the upper tails of the distribution of E(Cn). The first is

P {E(Cn) ≤ E0} , E0 < Etrc(R), (20)

which is the probability of drawing a bad codebook. The second one is

P {E(Cn) ≥ E0} , E0 > Etrc(R), (21)

which is the probability of drawing a good codebook. Finding exact expressions for (20) and

(21) appears to be difficult. We derive lower and upper bounds on both (20) and (21).
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4 Main Results

4.1 The Lower Tail

In order to present the error exponents of the lower tail, we define the quantities:

β(R,QY ) = max
{QX̃|Y : QX̃=QX}

{g(QX̃Y ) + [R− IQ(X̃;Y )]+}, (22)

Λ(QXX′ , R) = min
QY |XX′

{D(QY |X‖W |QX) + IQ(X ′;Y |X) + β(R,QY )− g(QX′Y )}, (23)

and,

Ψ(R,E0, QXX′) = Γ(QXX′ , R) +R− E0, (24)

Ξ(R,E0, QXX′) = Λ(QXX′ , R) +R− E0. (25)

Also, define the sets

L(R,E0) = {QXX′ ∈ Q(QX) : [2R− IQ(X;X ′)]+ ≥ Ψ(R,E0, QXX′)}, (26)

M(R,E0) = {QXX′ ∈ Q(QX) : [2R− IQ(X;X ′)]+ ≥ Ξ(R,E0, QXX′)}, (27)

and the error exponent functions

Eub
lt (R,E0) = min

QXX′∈L(R,E0)
[IQ(X;X ′)− 2R]+, (28)

Elb
lt (R,E0) = min

QXX′∈M(R,E0)
[IQ(X;X ′)− 2R]+. (29)

Our first result in this section is the following theorem, which is proved in Section 5.

Theorem 1 Consider the ensemble of random constant composition codes Cn of rate R and

composition QX . Then,

P {E(Cn) ≤ E0}
·
≤ exp{−n · Eub

lt (R,E0)}. (30)

Also,

P {E(Cn) ≤ E0}
·
≥ exp{−n · E lb

lt (R,E0)}. (31)

An expression for the special case of ML decoding can be derived, but turns out to be

relatively cumbersome, since it consists of a nested optimization problem. Instead, let us

recall the result of [13] (see also [14]), which asserts that the probability of error for ordinary
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likelihood decoding ([11, Eq. (3)]) is at most twice the error probability of ML decoding. Hence,

it is enough to use the decoding metric g(Q) = EQ[logW (Y |X)] (here and in all of the results

later on) in order to study the LD rate functions under the ML decoder. For example, (13)

particularizes to

α(R,QY ) = max
QX̃|Y ∈S(QX ,QY )

{EQ[logW (Y |X̃)]− IQ(X̃;Y )}+R, (32)

and similarly for Γ(QXX′ , R), β(R,QY ), and Λ(QXX′ , R).

In order to characterize the behavior of the error exponent functions (28) and (29), let us

first define

Ẽ(R) = min
{Q(QX): IQ(X;X′)≤2R}

{Λ(QXX′ , R) + IQ(X;X ′)−R}. (33)

The following proposition is proved in Appendix D.

Proposition 1 Eub
lt (R,E0) and E lb

lt (R,E0) have the following properties:

1. For fixed R, Eub
lt (R,E0) and E lb

lt (R,E0) are decreasing in E0.

2. Eub
lt (R,E0) > 0 if and only if E0 < Etrc(R).

3. E lb
lt (R,E0) > 0 if and only if E0 < Ẽ(R).

4. Eub
lt (R,E0) =∞ for any E0 < Emin

0 (R), where

Emin
0 (R) = min

Q(QX)
{Γ(QXX′ , R)− [2R− IQ(X;X ′)]+}+R. (34)

Note that Ẽ(R) is defined similarly as Etrc(R), with Λ(QXX′ , R) replacing Γ(QXX′ , R). Gener-

ally, Ẽ(R) ≥ Etrc(R), but in some special cases, e.g. the z–channel and the BEC, it can be easily

proved that Ẽ(R) = Etrc(R), as can be seen in Figure 3 below. Moreover, since Eub
lt (R,E0)

is defined similarly as Elb
lt (R,E0), also with Λ(QXX′ , R) replacing Γ(QXX′ , R), it turns out

that for the same special cases, Eub
lt (R,E0) = Elb

lt (R,E0). Hence, we conclude that there exist

channels for which P {E(Cn) ≤ E0} has an exponentially tight expression.

Proposition 1 answers the questions we raised in the Introduction. First, it asserts that

drawing a codebook for which E(Cn) is strictly below the TRC exponent has an exponentially

vanishing probability. This implies that only for a small fraction of constant composition

codes, E(Cn) is significantly lower than the TRC error exponent. Second, the probability that
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E(Cn) falls in the range (Emin
0 (R), Etrc(R)) tends to zero with a finite exponent, but for E0 ∈

[0, Emin
0 (R)), the probability of E(Cn) ≤ E0 converges to zero faster than exponentially; these

codebooks are extremely rare.

We next describe the behavior of Emin
0 (R). Denote by Q∗XX′(R) the minimizer of (34) at

rate R, and let R∗ be the maximal rate for which 2R ≤ IQ∗(R)(X;X ′) holds. On the one hand,

for any R ∈ [0, R∗], the operator [·]+ in (34) is active and Emin
0 (R) is given by

Emin
0 (R) = min

{Q(QX): 2R≤IQ(X;X′)}
Γ(QXX′ , R) +R, (35)

which is a monotonically increasing function. On the other hand, if R ≥ R∗, the operator

[·]+ in (34) is neutral and Emin
0 (R) coincides with the TRC error exponent Etrc(R). Figure

1 illustrates the error exponents, as well as Emin
0 (R), for the binary z–channel with crossover

parameter 0.001, the symmetric input distribution, QX = (1
2 ,

1
2), and the ML decoder. The

highest transmission rate is R ∼= 0.685 [nats/channel use]. As can be seen in Figure 1, the

exponent Etrc(R) lies between Er(R) and Eex(R), a fact that was already asserted for a general

DMC in [7]. Moreover, Etrc(R) is strictly higher than Er(R) for relatively low coding rates,

and above R ∼= 0.279 [nats/channel use], they coincide, i.e., the random coding error exponent

provides the true exponential behavior of the typical codes in the ensemble. As for Emin
0 (R), we

observe the following phenomena: First, note that Emin
0 (0) = 0, which means that all codebooks

that have a sub–exponential number of codewords are drawn with a finite exponent. Second,

in the range (0, R∗), Emin
0 (R) is linear and divides the range [0, Etrc(R)) into two intervals;

in (Emin
0 (R), Etrc(R)) – an exponential decay with a finite exponent, and in [0, Emin

0 (R)) – a

super–exponential decay. Third, for rates above R∗, the curves Emin
0 (R), Etrc(R), and Er(R)

are all equal. We conclude that for relatively high rates, P {E(Cn) < Etrc(R)} converges to zero

super–exponentially fast, a fact that was already proved in [10, Theorem 5].

In order to gain some intuitive insight behind the various types of behavior of Eub
lt (R,E0),

it is instructive to examine the properties of the type class enumerators,

N(QXX′)
∆
=

M−1∑
m=0

∑
m′ 6=m

I {(Xm,Xm′) ∈ T (QXX′)} , (36)

which play a pivotal role in the proofs of the main results of the paper. The summation

(36) contains M(M − 1)
.
= en2R terms. Borrowing from the terminology of binomial random

variables, we refer to it as the number of trials associated with N(QXX′). The expectation
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Figure 1: Various exponents for the z–channel with crossover probability 0.001.

of each binary random variable in (36) is given by P {(Xm,Xm′) ∈ T (QXX′)}
.
= e−nIQ(X;X′),

which is referred to as the success probability. Unlike its one–dimensional counterpart [15]–[17],

N(QXX′) is not a binomial random variable, since its terms are not mutually independent.

We distinguish between two kinds of joint compositions. On the one hand, we have the joint

types QXX′ for which IQ(X;X ′) ≤ 2R, i.e., the exponential rate of the number of trials is higher

than the negative exponential rate of the success probability. Thus, with overwhelmingly high

probability, the respective N(QXX′) will concentrate around its mean, exp{n(2R−IQ(X;X ′))}.

Such compositions are referred to as typically populated (TP) type classes. On the other hand,

for QXX′ with IQ(X;X ′) > 2R, N(QXX′) = 0 with high probability. These compositions are

referred to as the typically empty (TE) type classes.

For E0 ∈ (Emin
0 (R), Etrc(R)), let us denote the minimizer of Eub

lt (R,E0) by Q∗XX′ . Then,

the dominant error event is due to pairs of codewords with joint empirical composition Q∗XX′ .

In this range of exponents, all TP type classes are populated, as well as all TE type classes

with IQ(X;X ′) ≤ IQ∗(X;X ′). The rest of the TE type classes, those with higher value of

IQ(X;X ′), are still empty (see Figure 2b). These are the joint type classes of the “closest”

pairs of sequences in X n, in the sense of high empirical mutual information.

When E0 = Emin
0 (R), the constraint set L(R,E0) becomes empty, all TE type classes become
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(a) For E0 ≤ Emin
0 (R) (b) E0 ∈ (Emin

0 (R), Etrc(R))

(c) Around the Etrc(R) (d) E0 ∈ (Etrc(R), Eex(R))

Figure 2: Typical populations for different E0 values. The center is the true codeword and
each concentric circle around it represents a conditional type class. The radii of the concentric
circles represent distances between codewords, which are measured by the empirical conditional
entropy (also proportional to the negative empirical mutual information), induced by the joint
composition of the codewords. Dots denote the TP type classes and circle–dots represent the
TE type classes. TP type classes are the sets of relatively distant codewords; they include all
joint compositions QXX′ with IQ(X;X ′) ≤ 2R. Red dots/circle–dots mean empty type classes.
For larger E0 values, the minimum distance between codewords increases.

populated (see Figure 2a) and Eub
lt (R,E0) jumps to infinity. In some sense, the curve Emin

0 (R)

exhibits a phase transition. When E0 > Emin
0 (R), the minimum “distance” between pairs of

codewords is still positive, but when E0 ≤ Emin
0 (R), this minimum distance vanishes.

For E0 < Emin
0 (R), the super–exponential behavior of P {E(Cn) ≤ E0} follows from the result

of Lemma 5 in Appendix B, which states that P {N(QXX′) ≥ enε} tends to zero faster than

exponentially for any TE type class. Now, if all TE type classes are populated by exponentially

many pairs, then codebooks with exponentially many identical codewords also exist in the range

of these low exponents. Consider the set Dn = {Cn} of codebooks, such that in each one of

12



them, every TE type class is populated by exponentially many pairs of codewords. Obviously,

E(Cn) ≤ Emin
0 (R) for every Cn ∈ Dn, and it turns out that this set has, in fact, a double–

exponentially small probability. To see why this is true, consider the following upper bound,

which only requires from some enε codewords to be identical:

P {Cn ∈ Dn} ≤
(
enR

enε

)
·
(

1

|T (QX)|

)enε
(37)

◦
=

(
enR

enε

)
· exp {−nHQ(X)enε} . (38)

The binomial coefficient is upper–bounded as(
enR

enε

)
≤ exp {nRenε} , (39)

hence,

P {Cn ∈ Dn}
◦
≤ exp {−n(HQ(X)−R)enε} , (40)

which decays double–exponentially fast, since R < IQ(X;Y ) ≤ HQ(X).

At last, we prove that a concentration property holds:

Proposition 2 E(Cn) concentrates around Etrc(R) as n→∞.

Proof: On the one hand, it follows by Theorem 1 and Proposition 1 that for every ε > 0,

P{E(Cn) ≤ Etrc(R) − ε} → 0, exponentially fast, as n → ∞. On the other hand, the proof in

[7, Subsection 5.2] implies that for every ε > 0, P{E(Cn) ≤ Etrc(R) + ε} → 1, also exponentially

fast, as n→∞. Combining these two facts, it follows that E(Cn) concentrates at Etrc(R).

4.2 The Upper Tail

In this subsection, we study the probability P {E(Cn) ≥ E0}. On the one hand, we are interested

in lower–bounding the probability P {E(Cn) ≥ E0}, such that we can assure the existence of

good codebooks. On the other hand, we would also like to provide a tight upper bound on this

probability, in order to prove that above some critical exponent value, codebooks cease to exist.

13



We begin with a few definitions. Let us define the sets

V(R,E0) = {QXX′ ∈ Q(QX) : IQ(X;X ′) ≤ 2R,

Λ(QXX′ , R) + IQ(X;X ′)−R ≤ E0}, (41)

U(R,E0) = {QXX′ ∈ Q(QX) : IQ(X;X ′) ≤ 2R,

Γ(QXX′ , R) + IQ(X;X ′)−R ≤ E0}, (42)

and the error exponent functions

Eub
ut (R,E0) = max

QXX′∈V(R,E0)
min{2R− IQ(X;X ′), E0 − Λ(QXX′ , R)− IQ(X;X ′) +R,R}, (43)

Elb
ut(R,E0) = max

QXX′∈U(R,E0)
{2R− IQ(X;X ′)}. (44)

The main result in this subsection is the following theorem.

Theorem 2 Consider the ensemble of random constant composition codes Cn of rate R and

composition QX . Then,

P {E(Cn) ≥ E0}
◦
≤ exp {− exp {n · Eub

ut (R,E0)}} . (45)

If E0 ∈ (Etrc(R), Eex(R)), then

P {E(Cn) ≥ E0}
◦
≥ exp {− exp {n · E lb

ut(R,E0)}} . (46)

The proofs of (45) and (46) appear in Sections 6 and 7, respectively. The double–exponential

behavior indicates that the relative number of very good codebooks is extremely small.

The restriction to (Etrc(R), Eex(R)) in the lower bound of Theorem 2 stems from the tech-

nical condition of [18, Theorem 9], which is equivalent to the one found in the Lovász local

lemma [20]. If a large number of events are all independent and each has probability less than

1, then there is a positive probability that none of the events will occur. The Lovász local

lemma allows one to slightly relax the independence condition, as long as the events are only

“weakly” dependent in some sense. More specifically, referring to the type class enumerator

N(QXX′), it turns out that if IQ(X;X ′) > R, then the binary random variables composing

N(QXX′) are only weakly dependent, and the probability P{N(QXX′) = 0}, which appears in

the derivation of the lower bound of Theorem 2, can be lower–bounded using the Lovász local

lemma by exp{− exp{n(2R − IQ(X;X ′))}}. Otherwise, when IQ(X;X ′) < R, this probability

14



is very small, but it cannot be lower–bounded by the Lovász local lemma, since its condition

is not met. In our setting, the condition of the local lemma is met, as long as the number of

codewords is not too high, which results in an upper bound on E0, given by Eex(R).

In order to characterize the behavior of the error exponent functions (43) and (44), we

provide the following proposition, which is proved in Appendix E.

Proposition 3 Eub
ut (R,E0) and E lb

ut(R,E0) have the following properties:

1. For fixed R, Eub
ut (R,E0) and E lb

ut(R,E0) are increasing in E0.

2. E lb
ut(R,E0) > 0 if and only if E0 > Etrc(R).

3. Eub
ut (R,E0) > 0 if and only if E0 > Ẽ(R).

Recall that for the typical code, i.e., any code with E(Cn) ≈ Etrc(R), all TP type classes are

populated and all TE type classes are empty (see Figure 2c). Now, for any E0 in the range

(Etrc(R), Eex(R)), all TE type classes are still empty, but now, also all TP type classes that are

associated with the set U(R,E0) are also empty (see Figure 2d). The dominant error event in

these codebooks is caused by relatively distant pairs of codewords that have a joint composition

Q∗XX′ , which is the maximizer of (44). We conclude that Etrc(R) exhibits a phase transition

in the E0 axis. Below the Etrc(R) curve, TE type classes become populated, and above it, TP

type classes become empty.

When E0 reaches Eex(R), the set U(R,Eex) is a subset of Ũ(R) = {QXX′ ∈ Q(QX) : R <

IQ(X;X ′) ≤ 2R}, and thus

Elb
ut(R,Eex) = max

U(R,Eex)
{2R− IQ(X;X ′)} ≤ max

Ũ(R)
{2R− IQ(X;X ′)} = R. (47)

It means that the lower bound of Theorem 2 is at least as high as the probability of any codebook

in the ensemble, given by
◦
= exp{−nHQ(X)enR}, which implies the existence of codebooks with

E(Cn) ≈ Eex(R). We have the following corollary, which is proved in Appendix F.

Corollary 1 If E0 < Eex(R), then there exists at least one code with E(Cn) ≥ E0.

Figure 3 illustrates the upper tail exponents (43) and (44) for the binary z–channel with

crossover parameter 0.001, rate R = 0.2, the symmetric input distribution, QX = (1
2 ,

1
2), and
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the ML decoder. Due to the restriction in the lower bound of Theorem 2, note that Elb
ut(R,E0)

is applicable as long as 0 ≤ Elb
ut(R,E0) ≤ R, while Eub

ut (R,E0) is applicable for any E0, but is

truncated to R for relatively high E0. The lowest E0 for which Eub
ut (R,E0) = R is approximately

0.873, which is strictly lower than the straight–line bound Esl(R) ≈ 1.122, but the truncation3

to R prevents4 us from deducing a tighter upper bound to the reliability function. In the

entire range (Etrc(R), Eex(R)), both Elb
ut(R,E0) and Eub

ut (R,E0) are strictly positive, such that

the lower and the upper bounds on the probability of the upper tail are double–exponentially

small.

0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

E0

Eub
ut (R,E0)

Elb
ut(R,E0)

Figure 3: Upper tail double–exponential rate functions for the z–channel with crossover prob-
ability 0.001 and R = 0.2.

3We conjecture that this truncation to R is artificial, and can be removed by deriving tighter LD bounds.
More specifically, a tighter version of Fact 1 (Appendix A), which may lead to a tighter result in Lemma 2
(Appendix B), which, in turn, may provide a tighter upper bound in Theorem 2

4Had the double–exponential rate of the upper bound strictly bigger than R, we were able to conclude the
absentee of codebooks with error exponents above some threshold.
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5 Proof of Theorem 1

5.1 An Upper Bound on the Probability of the Lower Tail

Let Cn be a constant composition code of rate R and blocklength n and let E0 > 0 be given.

Then,

P
{
− 1

n
logPe(Cn) ≤ E0

}

= P

 1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm) ·
exp{ng(P̂xm′y)}∑
m̃ exp{ng(P̂xm̃y)}

≥ e−n·E0

 . (48)

Let

Zm(y) =
∑
m̃ 6=m

exp{ng(P̂xm̃y)}, (49)

fix ε > 0 arbitrarily small, and for every y ∈ Yn, define the set

Bε(m,y) =
{
Cn : Zm(y) ≤ exp{nα(R− ε, P̂y)}

}
. (50)

Following the result of [11, Appendix B], we know that, considering the ensemble of randomly

selected constant composition codes of type QX ,

P{Bε(m,y)} ≤ exp{−enε + nε+ 1}, (51)

for every m ∈ {0, 1, . . . ,M − 1} and y ∈ Yn, and so, by the union bound,

P


M−1⋃
m=0

⋃
y∈Yn

Bε(m,y)

 ∆
= P {Bε} ≤

M−1∑
m=0

∑
y∈Yn

P {Bε(m,y)} (52)

≤
M−1∑
m=0

∑
y∈Yn

exp{−enε + nε+ 1} (53)

= enR · |Y|n · exp{−enε + nε+ 1}, (54)

which still decays double–exponentially fast. Thus,

P
{
− 1

n
logPe(Cn) ≤ E0

}

= P

 1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm) ·
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ Zm(y)
≥ e−n·E0

 (55)
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= P

Cn ∈ Bc
ε,

1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm) ·
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ Zm(y)
≥ e−n·E0


+ P

Cn ∈ Bε, 1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm) ·
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ Zm(y)
≥ e−n·E0

 (56)

≤ P

Cn ∈ Bc
ε,

1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

×min

{
1,

exp{ng(P̂xm′y)}
exp{ng(P̂xmy)}+ exp{nα(R− ε, P̂y)}

}
≥ e−n·E0

}
+ P{Cn ∈ Bε} (57)

.
= P

Cn ∈ Bc
ε,

1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

× exp
{
−n · [max{g(P̂xmy), α(R− ε, P̂y)} − g(P̂xm′y)]+

}
≥ e−n·E0

}
+ P{Cn ∈ Bε} (58)

.
= P

Cn ∈ Bc
ε,

1

M

M−1∑
m=0

∑
m′ 6=m

exp{−nΓ(P̂xmxm′ , R− ε)} ≥ e
−n·E0

 (59)

≤ P

 1

M

M−1∑
m=0

∑
m′ 6=m

exp{−nΓ(P̂xmxm′ , R− ε)} ≥ e
−n·E0

 , (60)

where in (57), the inner terms in the first expression of (56) were upper–bounded according to

(50) as well as the trivial upper bound of one, and the indicators of the second summand were

trivially upper–bounded by one. In (58), we used the SME (7). In (59), the inner–most sum

over y ∈ Yn was evaluated using the method of types, with the functional Γ(QXX′ , R) defined

in (14) (see [11, Section 5] for more details), and the fact that P{Bε} is double–exponentially

small was used. One of the difficulties in the statistical analysis of N(QXX′) (36) is that it is the

sum of dependent5 (though pairwise independent) binary random variables. This is different

from the more commonly encountered type class enumerators (see, e.g., [15], [16], [17]), which

are sums of independent binary random variables. Hence, existing results concerning the LD

for type class enumerators of independent variables are not applicable, and thus, more refined

tools from LD theory are required, like those of [18], that will allow us to handle dependency

between terms6. In spite of the statistical dependencies, it turns out, that the LD behavior

5This dependence can be demonstrated by the following extreme example. Let QX be uniform over X and let
QXX′(x, x′) = 1/|X | whenever x = x′ and QXX′(x, x′) = 0 otherwise. Then, without any prior knowledge, for
everym′ 6= m, P {Xm = Xm′} = P {(Xm,Xm′) ∈ T (QXX′)} .= exp{−nIQ(X;X ′)}, where IQ(X;X ′) = log |X |.
Now, conditioned on X0 = X1 and X1 = X2, it holds that X0 = X2 with probability 1.

6Also refer to [19, Sec. IV–C], where bounds from [18] were used to handle weak dependencies in joint types.
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of N(QXX′) and the ordinary type class enumerators are the same. This can be seen in the

following theorem, which is proved in Appendix B.

Theorem 3 For any s ∈ R,

P {N(QXX′) ≥ ens}
.
= e−n·E(R,Q,s), (61)

where,

E(R,Q, s) =

{
[IQ(X;X ′)− 2R]+ [2R− IQ(X;X ′)]+ ≥ s
∞ [2R− IQ(X;X ′)]+ < s

. (62)

Then, we rewrite (60) in terms of the enumerators N(QXX′) and get

P
{
− 1

n
logPe(Cn) ≤ E0

}
·
≤ P

 ∑
QXX′∈Q(QX)

N(QXX′) exp{−n · Γ(QXX′ , R− ε)} ≥ en·(R−E0)

 (63)

.
= P

{
max

QXX′∈Q(QX)
N(QXX′) exp{−n · Γ(QXX′ , R− ε)} ≥ en·(R−E0)

}
(64)

= P

 ⋃
QXX′∈Q(QX)

N(QXX′) exp{−n · Γ(QXX′ , R− ε)} ≥ en·(R−E0)

 (65)

.
=

∑
QXX′∈Q(QX)

P
{
N(QXX′) exp{−n · Γ(QXX′ , R− ε)} ≥ en·(R−E0)

}
(66)

.
= max

QXX′∈Q(QX)
P {N(QXX′) ≥ exp {n · (Ψ(R− ε, E0, QXX′) + ε)}} . (67)

where the steps to (64) and (67) are due to the SME of (7). Thanks to Theorem 3, the last

expression decays exponentially with rate Eub
lt (R,E0, ε), which is given by

Eub
lt (R,E0, ε)

= min
QXX′∈Q(QX)

{
[IQ(X;X ′)− 2R]+ [2R− IQ(X;X ′)]+ ≥ Ψ(R− ε, E0, QXX′) + ε

∞ [2R− IQ(X;X ′)]+ < Ψ(R− ε, E0, QXX′) + ε

(68)

= min
{QXX′∈Q(QX): [2R−IQ(X;X′)]+≥Ψ(R−ε,E0,QXX′ )+ε}

[
IQ(X;X ′)− 2R

]
+
, (69)

with the convention that the minimum over an empty set is defined as infinity. Due to the

arbitrariness of ε > 0, it follows that

P
{
− 1

n
logPe(Cn) ≤ E0

}
·
≤ exp{−n · Eub

lt (R,E0)}, (70)

which proves the upper bound of Theorem 1.
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5.2 A Lower Bound on the Probability of the Lower Tail

For a given m, m′ 6= m, and y ∈ Yn, define

Zmm′(y) =
∑

m̃∈{0,1,...,M−1}\{m,m′}

exp{ng(P̂xm̃y)}. (71)

Let σ > 0 and define the set

B̂n(σ,m,m′,y) =
{
Cn : Zmm′(y) ≥ exp{n · (β(R, P̂y) + σ)}

}
, (72)

and its complement Ĝn(σ,m,m′,y), where β(R,QY ) is defined as in (22). Let

B̂n(σ) =

M−1⋃
m=0

⋃
m′ 6=m

⋃
y∈Yn

B̂n(σ,m,m′,y), (73)

and

Ĝn(σ) = B̂c
n(σ). (74)

Let ε > 0 be arbitrary and define

Λ̃(QXX′ , R, ε) = min
QY |XX′

{D(QY |X‖W |QX) + IQ(X ′;Y |X)

+ [max{g(QXY ), β(R,QY ) + ε} − g(QX′Y )]+}. (75)

We get the following

P
{
− 1

n
logPe(Cn) ≤ E0

}

= P

 1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

×
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ exp{ng(P̂xm′y)}+ Zmm′(y)
≥ e−n·E0

}
(76)

≥ P

Cn ∈ Ĝn(ε),
1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

×
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ exp{ng(P̂xm′y)}+ Zmm′(y)
≥ e−n·E0

}
(77)

≥ P

Cn ∈ Ĝn(ε),
1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)
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×
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ exp{ng(P̂xm′y)}+ exp{n · [β(R, P̂y) + ε]}
≥ e−n·E0

}
(78)

.
= P

Cn ∈ Ĝn(ε),
1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

× exp{n · [max{g(P̂xmy), β(R, P̂y) + ε} − g(P̂xm′y)]+} ≥ e−n·E0

}
(79)

.
= P

Cn ∈ Ĝn(ε),
1

M

M−1∑
m=0

∑
m′ 6=m

exp{−n · Λ̃(P̂xmxm′ , R, ε)} ≥ e
−n·E0

 (80)

= P

Cn ∈ Ĝn(ε),
∑

QXX′∈Q(QX)

N(QXX′) · exp{−n · Λ̃(QXX′ , R, ε)} ≥ en·(R−E0)

 , (81)

where (76) follows from the definitions of the probability of error and Zmm′(y) in (11) and

(71), respectively. In (77), we lower–bounded by intersecting with the event Cn ∈ Ĝn(ε). In

(78), the definition of the set Ĝn(·) in (74) was used, in (79), the exponential equivalence

enB/(enA + enB + enC)
.
= exp{−n · [max{A,C} − B]+}, in (80), the method of types and the

definition of Λ̃(QXX′ , R, ε) in (75), and in (81), the definition of the type class enumerators

N(QXX′) in (36).

Next, we simplify the expression of Λ̃(QXX′ , R, ε). First, note that for any Q̂XY with

marginals QX and QY

β(R,QY ) = max
{QX̃|Y : QX̃=QX}

{g(QX̃Y ) + [R− IQ(X̃;Y )]+} (82)

≥ max
{QX̃|Y : QX̃=QX}

g(QX̃Y ) (83)

≥ g(Q̂XY ). (84)

Then,

Λ̃(QXX′ , R, ε)

= min
QY |XX′

{D(QY |X‖W |QX) + IQ(X ′;Y |X)

+ [max{g(QXY ), β(R,QY ) + ε} − g(QX′Y )]+} (85)

= min
QY |XX′

{D(QY |X‖W |QX) + IQ(X ′;Y |X) + [β(R,QY ) + ε− g(QX′Y )]+} (86)

= min
QY |XX′

{D(QY |X‖W |QX) + IQ(X ′;Y |X) + β(R,QY )− g(QX′Y ) + ε} (87)

= Λ(QXX′ , R) + ε, (88)
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where (86) is due to β(R,QY ) ≥ g(QXY ), (87) is because β(R,QY ) ≥ g(QX′Y ), and (88) follows

the definition in (23). Let us now define

G0 =

Cn :
∑

QXX′∈Q(QX)

N(QXX′) · exp{−n · (Λ(QXX′ , R) + ε)} ≥ en·(R−E0)

 , (89)

such that, continuing from (81):

P
{
− 1

n
logPe(Cn) ≤ E0

}
·
≥ P

{
Ĝn(ε) ∩ G0

}
(90)

= P


M−1⋂
m=0

⋂
m′ 6=m

⋂
y∈Yn

Ĝn(ε,m,m′,y)

∣∣∣∣∣∣G0

 · P {G0} (91)

=

1− P


M−1⋃
m=0

⋃
m′ 6=m

⋃
y∈Yn

B̂n(ε,m,m′,y)

∣∣∣∣∣∣G0


 · P {G0} (92)

≥

1−
M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

P
{
B̂n(ε,m,m′,y)

∣∣∣G0

} · P {G0} (93)

= P {G0} −
M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

P
{
B̂n(ε,m,m′,y) ∩ G0

}
. (94)

Assessing P{G0} in (94)

Now,

P{G0} = P

 ∑
QXX′∈Q(QX)

N(QXX′) · exp{−n · (Λ(QXX′ , R) + ε)} ≥ en·(R−E0)

 (95)

.
=

∑
QXX′∈Q(QX)

P {N(QXX′) ≥ exp{n · (Λ(QXX′ , R) +R− E0 + ε)}} (96)

.
= max

QXX′∈Q(QX)
P {N(QXX′) ≥ exp {n · (Ξ(R,E0, QXX′) + ε)}} , (97)

where (96) and (97) follow by the SME and are similar to the steps between (63)–(67). Thanks

to Theorem 3, the last expression decays exponentially with rate Elb
lt (R,E0, ε), which is given

by

Elb
lt (R,E0, ε)

= min
QXX′∈Q(QX)

{
[IQ(X;X ′)− 2R]+ [2R− IQ(X;X ′)]+ ≥ Ξ(R,E0, QXX′) + ε

∞ [2R− IQ(X;X ′)]+ < Ξ(R,E0, QXX′) + ε
(98)

= min
{QXX′∈Q(QX): [2R−IQ(X;X′)]+≥Ξ(R,E0,QXX′ )+ε}

[
IQ(X;X ′)− 2R

]
+
, (99)
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and thus

P{G0}
.
= exp{−n · Elb

lt (R,E0, ε)}. (100)

Upper–bounding P{B̂n(ε,m,m′,y) ∩ G0} in (94)

Define the type class enumerator

Ny(QXY ) =

M−1∑
m=0

I {(Xm,y) ∈ T (QXY )} . (101)

Then, we have the following

P{B̂n(ε, m̂, m̈,y) ∩ G0}

= P

 ∑
m̃∈{0,1,...,M−1}\{m̂,m̈}

exp{ng(P̂Xm̃y)} ≥ exp{n · (β(R, P̂y) + ε)},

M−1∑
m=0

∑
m′ 6=m

exp{−n · (Λ(P̂XmXm′ , R) + ε)} ≥ en·(R−E0)

 (102)

≤ P

 ∑
m̃∈{0,1,...,M−1}

exp{ng(P̂Xm̃y)} ≥ exp{n · (β(R, P̂y) + ε)},

M−1∑
m=0

∑
m′ 6=m

exp{−n · (Λ(P̂XmXm′ , R) + ε)} ≥ en·(R−E0)

 (103)

= P

∑
QXY

Ny(QXY ) exp{ng(QXY )} ≥ exp{n · (β(R, P̂y) + ε)},

∑
QXX′

N(QXX′) exp{−n · (Λ(QXX′ , R) + ε)} ≥ en·(R−E0)

 (104)

.
= P

 ⋃
QXY

{
Ny(QXY ) ≥ en·(β(R,P̂y)−g(QXY )+ε)

}
,
⋃
QXX′

{
N(QXX′) ≥ en·(Ξ(R,E0,QXX′ )+ε)

}
(105)

.
=
∑
QXY

∑
QXX′

P
{
Ny(QXY )l ≥ en·(β(R,P̂y)−g(QXY )+ε)·l, N(QXX′)

k ≥ en·(Ξ(R,E0,QXX′ )+ε)·k
}

(106)

.
= max

QXY
max
QXX′

P
{
Ny(QXY )l ≥ en·(β(R,P̂y)−g(QXY )+ε)·l, N(QXX′)

k ≥ en·(Ξ(R,E0,QXX′ )+ε)·k
}

(107)

≤ max
QXY

max
QXX′

P
{
Ny(QXY )l ·N(QXX′)

k ≥ en·(β(R,P̂y)−g(QXY )+ε)·l · en·(Ξ(R,E0,QXX′ )+ε)·k
}

(108)

≤ max
QXY

max
QXX′

P
{
Ny(QXY )l ·N(QXX′)

k ≥ en·([R−IQ(X;Y )]++ε)·l · en·(Ξ(R,E0,QXX′ )+ε)·k
}

(109)
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≤ max
QXY

max
QXX′

E
[
Ny(QXY )l ·N(QXX′)

k
]

en·([R−IQ(X;Y )]++ε)·l · en·(Ξ(R,E0,QXX′ )+ε)·k
, (110)

where k and l are arbitrary positive integers, and where (105) follows from the definition of

Ξ(R,E0, QXX′) in (25). Step (108) is due to the fact that P{X ≥ a, Y ≥ b} ≤ P{X · Y ≥ a · b},

under the assumption that a, b are positive. In (109), we use the definition of β(R,QY ) in (22),

which implies that β(R,QY ) ≥ g(QXY ) + [R− IQ(X;Y )]+ and (110) follows from Markov’s

inequality. After optimizing over l and k,

P{B̂n(ε,m,m′,y) ∩ G0}
·
≤ max

QXY
max
QXX′

inf
l∈N

inf
k∈N

E
[
Ny(QXY )l ·N(QXX′)

k
]

en·([R−IQ(X;Y )]++ε)·l · en·(Ξ(R,E0,QXX′ )+ε)·k
. (111)

For S ≥ 0, a joint distribution QUV , and an integer j ∈ N, define the following quantity

F (S,QUV , j) =

{
exp{nj (S − IQ(U ;V ))} IQ(U ;V ) < S
exp{n (S − IQ(U ;V ))} IQ(U ;V ) > S

. (112)

We use the following proposition, which is proved in Appendix G.

Proposition 4 Let N(QXX′) and Ny(QXY ) be as in (36) and (101), respectively. Then, for

any k, l ∈ N,

E
[
Ny(QXY )lN(QXX′)

k
] ·
≤ F (R,QXY , l) · F (2R,QXX′ , k). (113)

Next, substituting the result of Proposition 4 back into (111) provides

P{B̂n(ε,m,m′,y) ∩ G0}
·
≤ max

QXY
inf
l∈N

exp{n · (l · [R− IQ(X;Y )]+ − [IQ(X;Y )−R]+)}
exp{n · ([R− IQ(X;Y )]+ + ε) · l}

× max
QXX′

inf
k∈N

exp{n · (k · [2R− IQ(X;X ′)]+ − [IQ(X;X ′)− 2R]+)}
exp{n · (Ξ(R,E0, QXX′) + ε) · k}

.

(114)

As for the left–hand term in (114), we have that

− 1

n
log max

QXY
inf
l∈N

exp{n · (l · [R− IQ(X;Y )]+ − [IQ(X;Y )−R]+)}
exp{n · ([R− IQ(X;Y )]+ + ε) · l}

= − 1

n
log max

QXY
inf
l∈N

exp{−n · ([IQ(X;Y )−R]+ + lε)} (115)

= min
QXY

sup
l∈N

([IQ(X;Y )−R]+ + lε) (116)

=∞. (117)
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For the right–hand term in (114), we get the following

− 1

n
log max

QXX′
inf
k∈N

exp{n · (k · [2R− IQ(X;X ′)]+ − [IQ(X;X ′)− 2R]+)}
exp{n · (Ξ(R,E0, QXX′) + ε) · k}

= min
QXX′

sup
k∈N

(
k ·
(
Ξ(R,E0, QXX′) + ε− [2R− IQ(X;X ′)]+

)
+ [IQ(X;X ′)− 2R]+

)
(118)

= min
{QXX′∈Q(QX): [2R−IQ(X;X′)]+≥Ξ(R,E0,QXX′ )+ε}

[
IQ(X;X ′)− 2R

]
+

(119)

= Elb
lt (R,E0, ε). (120)

Thus,

P{B̂n(ε,m,m′,y) ∩ G0}
·
≤ e−n∞ · exp{−n · Elb

lt (R,E0, ε)}. (121)

Final Steps

Finally, we continue from (94) and use the results of (100) and (121) to provide

P
{
− 1

n
logPe(Cn) ≤ E0

}
·
≥ P {G0} −

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

P
{
B̂n(ε,m,m′,y) ∩ G0

}
(122)

·
≥ exp{−n · Elb

lt (R,E0, ε)} −
M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

e−n∞ · exp{−n · Elb
lt (R,E0, ε)} (123)

.
=
(
1− en2R · |Y|n · e−n∞

)
· exp{−n · Elb

lt (R,E0, ε)} (124)

.
= exp{−n · Elb

lt (R,E0, ε)}. (125)

Due to the arbitrariness of ε > 0, it follows that

P
{
− 1

n
logPe(Cn) ≤ E0

}
·
≥ exp{−n · Elb

lt (R,E0)}, (126)

which proves the lower bound of Theorem 1.

6 Proof of the Upper Bound of Theorem 2

Let Zmm′(y), B̂n(σ), and Ĝn(σ) be defined as in (71), (73), and (74), respectively. One of

the main ingredients in the proof of the upper bound on the probability of the lower tail in

Subsection 5.1 is the fact that Zm(y) is lower–bounded by exp{nα(R, P̂y)} with a probability

that approaches one double–exponentially fast. In order to prove an upper bound on the
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probability of the upper tail, we start by showing that exp{nβ(R, P̂y)} serves as an upper bound

on Zmm′(y), simultaneously for every m ∈ {0, 1, . . . ,M − 1}, m′ ∈ {0, 1, . . . ,M − 1} \ {m}, and

y ∈ Yn, with probability that tends to one double–exponentially fast. More specifically, we

have the following result, which is proved in Appendix H.

Proposition 5 For every σ > 0,

P
{
B̂n(σ)

} ◦
≤ exp {−enσ} . (127)

We start with

P
{
− 1

n
logPe(Cn) ≥ E0

}
= P

{
Cn ∈ Ĝn(σ),− 1

n
logPe(Cn) ≥ E0

}
+ P

{
Cn ∈ B̂n(σ),− 1

n
logPe(Cn) ≥ E0

}
(128)

≤ P
{
Cn ∈ Ĝn(σ),− 1

n
logPe(Cn) ≥ E0

}
+ P

{
Cn ∈ B̂n(σ)

}
. (129)

As for the first term,

P
{
Cn ∈ Ĝn(σ),− 1

n
logPe(Cn) ≥ E0

}

= P

Cn ∈ Ĝn(σ),
1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

×
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ exp{ng(P̂xm′y)}+ Zmm′(y)
≤ e−n·E0

}
(130)

≤ P

Cn ∈ Ĝn(σ),
1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

×
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ exp{ng(P̂xm′y)}+ exp{n · [β(R, P̂y) + σ]}
≤ e−n·E0

}
(131)

◦
= P

Cn ∈ Ĝn(σ),
1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

× exp{n · [max{g(P̂xmy), β(R, P̂y) + σ} − g(P̂xm′y)]+} ≤ e−n·E0

}
(132)

◦
= P

Cn ∈ Ĝn(σ),
1

M

M−1∑
m=0

∑
m′ 6=m

exp{−n · Λ̃(P̂xmxm′ , R, σ)} ≤ e−n·E0

 (133)

= P

Cn ∈ Ĝn(σ),
∑

QXX′∈Q(QX)

N(QXX′) · exp{−n · Λ̃(QXX′ , R, σ)} ≤ en·(R−E0)

 (134)
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≤ P

 ∑
QXX′∈Q(QX)

N(QXX′) · exp{−n · Λ̃(QXX′ , R, σ)} ≤ en·(R−E0)

 , (135)

where (130) follows from the definitions of the probability of error and Zmm′(y) in (11) and

(71), respectively. In (131), the definition of the set Ĝn(σ) in (74) was used, in (132), the

exponential equivalence enB/(enA + enB + enC)
.
= exp{−n · [max{A,C} − B]+}, in (133), the

method of types and the definition of Λ̃(QXX′ , R, σ) in (75), in (134), the definition of the type

class enumerators N(QXX′) in (36), and in (135), the event Cn ∈ Ĝn(σ) was taken out.

Next,

P
{
Cn ∈ Ĝn(σ),− 1

n
logPe(Cn) ≥ E0

}
◦
≤ P

 ∑
QXX′∈Q(QX)

N(QXX′) · exp{−n · Λ̃(QXX′ , R, σ)} ≤ en·(R−E0)

 (136)

◦
= P

{
max

QXX′∈Q(QX)
N(QXX′) · exp{−n · Λ̃(QXX′ , R, σ)} ≤ en·(R−E0)

}
(137)

= P

 ⋂
QXX′∈Q(QX)

{
N(QXX′) ≤ en·(Λ̃(QXX′ ,R,σ)+R−E0)

} , (138)

where (137) is due to the SME.

If E0 is relatively small, then for every QXX′ ∈ Q(QX), either IQ(X;X ′) ≥ 2R or 2R −

IQ(X;X ′) ≤ Λ̃(QXX′ , R, σ) + R − E0, and we have an intersection of polynomially many

events whose probabilities all tend to one. Hence, for every σ > 0, we assume that E0 is

sufficiently large, so there must exist at least one QXX′ ∈ Q(QX) for which IQ(X;X ′) ≤ 2R

and Λ̃(QXX′ , R, σ) + R − E0 ≤ 2R − IQ(X;X ′), such that (138) decays double exponentially

fast, according to Lemma 2 in Appendix B. We define the set

Ṽ(R,E0, σ)
∆
= {QXX′ ∈ Q(QX) : IQ(X;X ′) ≤ 2R,

Λ̃(QXX′ , R, σ) + IQ(X;X ′)−R ≤ E0}. (139)

Then,

P
{
Cn ∈ Ĝn(σ),− 1

n
logPe(Cn) ≥ E0

}
◦
≤ P

 ⋂
QXX′∈Q(QX)

{
N(QXX′) ≤ en·(Λ̃(QXX′ ,R,σ)+R−E0)

} (140)
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≤ P

 ⋂
QXX′∈Ṽ(R,E0,σ)

{
N(QXX′) ≤ en·(Λ̃(QXX′ ,R,σ)+R−E0)

} . (141)

Since Λ̃(QXX′ , R, σ) +R− E0 ≤ 2R− IQ(X;X ′), we obtain

P

 ⋂
QXX′∈Ṽ(R,E0,σ)

{
N(QXX′) ≤ en·(Λ̃(QXX′ ,R,σ)+R−E0)

} (142)

≤ min
QXX′∈Ṽ(R,E0,σ)

P
{
N(QXX′) ≤ en·(Λ̃(QXX′ ,R,σ)+R−E0)

}
(143)

◦
≤ min

QXX′∈Ṽ(R,E0,σ)
exp

{
−min

(
en(2R−IQ(X;X′)), enR

)}
(144)

= min
QXX′∈Ṽ(R,E0,σ)

exp
{
−en·min{2R−IQ(X;X′),R}

}
(145)

= exp

{
− exp

{
n · max

QXX′∈Ṽ(R,E0,σ)
min{2R− IQ(X;X ′), R}

}}
, (146)

where (144) follows from Lemma 2 in Appendix B. Let us define

E1(R,E0, σ) = max
QXX′∈Ṽ(R,E0,σ)

min{2R− IQ(X;X ′), R}, (147)

such that

P
{
Cn ∈ Ĝn(σ),− 1

n
logPe(Cn) ≥ E0

}
◦
≤ exp {− exp {n · E1(R,E0, σ)}} . (148)

Final Steps

Finally, it follows from (148) and Proposition 5 that

P
{
− 1

n
logPe(Cn) ≥ E0

}
≤ P

{
Cn ∈ Ĝn(σ),− 1

n
logPe(Cn) ≥ E0

}
+ P

{
Cn ∈ B̂n(σ)

}
(149)

◦
≤ exp

{
−en·E1(R,E0,σ)

}
+ exp {−enσ} (150)

◦
= exp {− exp{n ·min[E1(R,E0, σ), σ]}} . (151)

As a last step, we optimize over σ > 0, which resulting in

P
{
− 1

n
logPe(Cn) > E0

}
◦
≤ exp

{
− exp

{
n · sup

σ>0
min[E1(R,E0, σ), σ]

}}
. (152)

A Simplified Expression

Note that E1(R,E0, σ) is continuous and monotonically non–increasing in σ, hence we can solve

for the optimal σ > 0 by finding the maximal σ for which σ ≤ E1(R,E0, σ). Let us abbreviate
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IQ(X;X ′) by IQ, and then

E1(R,E0, σ)

= max
QXX′∈Ṽ(R,E0,σ)

min{2R− IQ, R} (153)

= max
{QXX′∈Q(QX): IQ≤2R}

inf
µ≥0

{
min{2R− IQ, R}+ µ · (E0 − Λ̃(QXX′ , R, σ)− IQ +R)

}
(154)

= max
{QXX′∈Q(QX): IQ≤2R}

inf
µ≥0
{min{2R− IQ, R}+ µ · (E0 − Λ(QXX′ , R)− σ − IQ +R)} (155)

= max
{QXX′∈Q(QX): IQ≤2R}

inf
µ≥0
{min{2R− IQ, R}+ µ · (E0 − Λ(QXX′ , R)− IQ +R)− µσ} ,

(156)

where (154) is due to (139) and the fact that max{Q: g(Q)≥0} f(Q) = maxQ infµ≥0{f(Q) + µ ·

g(Q)} and (155) is true thanks to (88). Now, we would like to solve for

σ ≤ max
{QXX′∈Q(QX): IQ≤2R}

inf
µ≥0
{min{2R− IQ, R}+ µ · (E0 − Λ(QXX′ , R)− IQ +R)− µσ} ,

(157)

which is equivalent to the statement

∃QXX′ ∈ Q(QX) s.t. IQ ≤ 2R, ∀µ ≥ 0 :

σ ≤ min{2R− IQ, R}+ µ · (E0 − Λ(QXX′ , R)− IQ +R)− µσ, (158)

or,

∃QXX′ ∈ Q(QX) s.t. IQ ≤ 2R, ∀µ ≥ 0 :

σ ≤
min{2R− IQ, R}+ µ · (E0 − Λ(QXX′ , R)− IQ +R)

1 + µ
, (159)

or, equivalently,

σ ≤ max
{QXX′∈Q(QX): IQ≤2R}

inf
µ≥0

{
min{2R− IQ, R}+ µ · (E0 − Λ(QXX′ , R)− IQ +R)

1 + µ

}
. (160)

For simplicity, let us denote

A = min{2R− IQ, R}, (161)

B = E0 − Λ(QXX′ , R)− IQ +R, (162)
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such that

σ ≤ max
{QXX′∈Q(QX): IQ≤2R}

inf
µ≥0

{
A+ µB

1 + µ

}
(163)

= max
{QXX′∈Q(QX): IQ≤2R}

min{A,B} (164)

= max

{
max{QXX′∈Q(QX): IQ≤2R, B≥0}min{A,B}
max{QXX′∈Q(QX): IQ≤2R, B<0}min{A,B} (165)

= max

{
max{QXX′∈Q(QX): IQ≤2R, B≥0}min{A,B}
max{QXX′∈Q(QX): IQ≤2R, B<0}B

(166)

= max
{QXX′∈Q(QX): IQ≤2R, B≥0}

min{A,B} (167)

= max
QXX′∈V(R,E0)

min{2R− IQ, E0 − Λ(QXX′ , R)− IQ +R,R} (168)

= Eub
ut (R,E0), (169)

where (166) and (167) are due to the fact that A ≥ 0, while (168) and (169) follow from the

definitions in (41) and (43), respectively. Thus,

P
{
− 1

n
logPe(Cn) ≥ E0

}
◦
≤ exp

{
− exp

{
n · sup

σ>0
min[E1(R,E0, σ), σ]

}}
(170)

= exp

{
− exp

{
n · sup

0<σ≤Eub
ut (R,E0)

σ

}}
(171)

= exp
{
−en·Eub

ut (R,E0)
}
, (172)

and the proof of the upper bound of Theorem 2 is complete.

7 Proof of the Lower Bound of Theorem 2

Let the sets Bε(m,y) and Bε be as defined in (50) and (52), respectively. Also define Gε(m,y) =

Bc
ε(m,y) and Gε = Bc

ε. Let E0 > 0 be given. Then,

P
{
− 1

n
logPe(Cn) ≥ E0

}

= P

 1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm) ·
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ Zm(y)
≤ e−n·E0

 (173)

≥ P

 1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm) ·
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ Zm(y)
≤ e−n·E0 , Cn ∈ Gε

 (174)

◦
≥ P

 1

M

M−1∑
m=0

∑
m′ 6=m

exp{−nΓ(P̂xmxm′ , R− ε)} ≤ e
−n·E0 , Cn ∈ Gε

 , (175)
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where (173) follows from the definitions of the probability of error and Zm(y) in (11) and (49),

respectively. Step (175) follows from the same considerations as in eqs. (56)–(59). Now, define

the event

E0 =

 1

M

M−1∑
m=0

∑
m′ 6=m

exp{−nΓ(P̂xmxm′ , R− ε)} ≤ e
−n·E0

 , (176)

such that, continuing from (175),

P {Cn ∈ E0, Cn ∈ Gε} = P


M−1⋂
m̄=0

⋂
y∈Yn

Gε(m̄,y)

∣∣∣∣∣∣E0

 · P {E0} (177)

=

1− P


M−1⋃
m̄=0

⋃
y∈Yn

Bε(m̄,y)

∣∣∣∣∣∣E0


 · P {E0} (178)

≥

1−
M−1∑
m̄=0

∑
y∈Yn

P {Bε(m̄,y)|E0}

 · P {E0} (179)

= P {E0} −
M−1∑
m̄=0

∑
y∈Yn

P {Bε(m̄,y) ∩ E0} . (180)

Lower–bounding P{E0} in (180)

First of all, note that

P {E0} = P

 1

M

M−1∑
m=0

∑
m′ 6=m

exp{−nΓ(P̂xmxm′ , R− ε)} ≤ e
−n·E0

 (181)

= P

 ∑
QXX′∈Q(QX)

N(QXX′) exp{−nΓ(QXX′ , R− ε)} ≤ en·(R−E0)

 (182)

◦
= P

{
max

QXX′∈Q(QX)
N(QXX′) exp{−nΓ(QXX′ , R− ε)} ≤ en·(R−E0)

}
(183)

= P

 ⋂
QXX′∈Q(QX)

{
N(QXX′) ≤ en·(Γ(QXX′ ,R−ε)+R−E0)

} , (184)

where in (182), the definition of N(QXX′) in (36) was used, and (183) is due to the SME in (7).

Now, if there exists at least one QXX′ ∈ Q(QX) for which IQ(X;X ′) < 2R and 2R −

IQ(X;X ′) > Γ(QXX′ , R − ε) + R − E0, then this QXX′ alone is responsible for a double

exponential decay of the probability of the event {N(QXX′) ≤ en·(Γ(QXX′ ,R−ε)+R−E0)} (thanks

to Lemma 2 in Appendix B), such that the probability in (184), which is of the intersection
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over all QXX′ ∈ Q(QX), decays double exponentially fast. On the other hand, if for every

QXX′ ∈ Q(QX), either IQ(X;X ′) ≥ 2R or 2R − IQ(X;X ′) ≤ Γ(QXX′ , R − ε) + R − E0, then

we have an intersection of polynomially many events whose probabilities all tend to one. Thus,

this probability is exponentially equal to one if and only if for every QXX′ ∈ Q(QX), either

IQ(X;X ′) ≥ 2R or 2R− IQ(X;X ′) ≤ Γ(QXX′ , R− ε) +R− E0, or equivalently,

2R ≤ min
QXX′∈Q(QX)

{
IQ(X;X ′) + [Γ(QXX′ , R− ε) +R− E0]+

}
. (185)

Let us now find what is the maximum value of E0 for which this inequality holds true. The

condition is equivalent to

min
QXX′∈Q(QX)

max
0≤a≤1

{IQ(X;X ′) + a (Γ(QXX′ , R− ε) +R− E0)} ≥ 2R, (186)

or

∀QXX′ ∈ Q(QX) ∃a ∈ [0, 1] : IQ(X;X ′) + a (Γ(QXX′ , R− ε) +R− E0) ≥ 2R, (187)

or

∀QXX′ ∈ Q(QX) ∃a ∈ [0, 1] : Γ(QXX′ , R− ε) +R+
1

a

(
IQ(X;X ′)− 2R

)
≥ E0, (188)

or, equivalently,

E0 ≤ min
QXX′∈Q(QX)

max
0≤a≤1

{
Γ(QXX′ , R− ε) +R+

1

a

(
IQ(X;X ′)− 2R

)}
(189)

= min
QXX′∈Q(QX)

[
Γ(QXX′ , R− ε) +R+

{
IQ(X;X ′)− 2R 2R ≥ IQ(X;X ′)
∞ 2R < IQ(X;X ′)

]
(190)

= min
{QXX′∈Q(QX): IQ(X;X′)≤2R}

{
Γ(QXX′ , R− ε) + IQ(X;X ′)−R

}
(191)

≤ Etrc(R). (192)

Thus, we assume that E0 > Etrc(R), which ensures that there exists at least one QXX′ ∈ Q(QX)

for which IQ(X;X ′) ≤ 2R and Γ(QXX′ , R − ε) + R − E0 ≤ 2R − IQ(X;X ′), such that the

probability in (184) decays double exponentially fast. Define

A1 = {QXX′ ∈ Q(QX) : IQ(X;X ′) > 2R} (193)

A2 = {QXX′ ∈ Q(QX) : IQ(X;X ′) ≤ 2R, Γ(QXX′ , R− ε) + IQ(X;X ′)−R ≤ E0 + ε} (194)

A3 = {QXX′ ∈ Q(QX) : IQ(X;X ′) ≤ 2R, Γ(QXX′ , R− ε) + IQ(X;X ′)−R > E0 + ε}.
(195)
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Defining the event

F0 =
⋂

QXX′∈A1∪A2

{N(QXX′) = 0} , (196)

then considering the probability in (184), we have that

P

 ⋂
QXX′∈Q(QX)

{
N(QXX′) ≤ en·(Γ(QXX′ ,R−ε)+R−E0)

} (197)

= P

 ⋂
QXX′∈A1∪A2∪A3

{
N(QXX′) ≤ en·(Γ(QXX′ ,R−ε)+R−E0)

} (198)

≥ P

 ⋂
QXX′∈A3

{
N(QXX′) ≤ en·(Γ(QXX′ ,R−ε)+R−E0)

}
,

⋂
QXX′∈A1∪A2

{N(QXX′) = 0}

 (199)

= P

 ⋂
QXX′∈A3

{
N(QXX′) ≤ en·(Γ(QXX′ ,R−ε)+R−E0)

}∣∣∣∣∣∣F0

 · P {F0} (200)

=

1− P

 ⋃
QXX′∈A3

{
N(QXX′) ≥ en·(Γ(QXX′ ,R−ε)+R−E0)

}∣∣∣∣∣∣F0


 · P {F0} (201)

≥

1−
∑

QXX′∈A3

P
{
N(QXX′) ≥ en·(Γ(QXX′ ,R−ε)+R−E0)

∣∣∣F0

} · P {F0} . (202)

Next, it follows from Markov’s inequality that

P
{
N(QXX′) ≥ en·(Γ(QXX′ ,R−ε)+R−E0)

∣∣∣F0

}
(203)

≤ E [N(QXX′)|F0]

en·(Γ(QXX′ ,R−ε)+R−E0)
(204)

=
E
[∑M−1

m=0

∑
m′ 6=m I {(Xm,Xm′) ∈ T (QXX′)}

∣∣∣F0

]
en·(Γ(QXX′ ,R−ε)+R−E0)

(205)

=

∑M−1
m=0

∑
m′ 6=m P {(Xm,Xm′) ∈ T (QXX′)|F0}
en·(Γ(QXX′ ,R−ε)+R−E0)

(206)

≤ en2R · P {(X0,X1) ∈ T (QXX′)|F0}
en·(Γ(QXX′ ,R−ε)+R−E0)

. (207)

We continue from (202) and get that

P

 ⋂
QXX′∈Q(QX)

{
N(QXX′) ≤ en·(Γ(QXX′ ,R−ε)+R−E0)

} (208)

≥

1−
∑

QXX′∈A3

en2R · P {(X0,X1) ∈ T (QXX′)|F0}
en·(Γ(QXX′ ,R−ε)+R−E0)

 · P {F0} (209)
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= P {F0} −
∑

QXX′∈A3

en2R · P {(X0,X1) ∈ T (QXX′),F0}
en·(Γ(QXX′ ,R−ε)+R−E0)

. (210)

In order to upper–bound the probabilities in the summation in (210), we define the following

truncated enumerators

Ñ(QXX′)
∆
=

M−1∑
m=2

∑
m′∈{2,3,...,M−1}\{m}

I {(xm,xm′) ∈ T (QXX′)} , (211)

and the event

F1 =
⋂

QXX′∈A2

{
Ñ(QXX′) = 0

}
. (212)

Then,

P {(X0,X1) ∈ T (QXX′),F0} (213)

= P

(X0,X1) ∈ T (QXX′),
⋂

Q̂XX′∈A1∪A2

{
N(Q̂XX′) = 0

} (214)

= P

(X0,X1) ∈ T (QXX′),
⋂

Q̂XX′∈A1∪A2

M−1⋂
m=0

⋂
m′∈{0,1,...,M−1}\{m}

{
(Xm,Xm′) /∈ T (Q̂XX′)

}
(215)

≤ P

(X0,X1) ∈ T (QXX′),
⋂

Q̂XX′∈A1∪A2

M−1⋂
m=2

⋂
m′∈{2,3,...,M−1}\{m}

{
(Xm,Xm′) /∈ T (Q̂XX′)

}
(216)

= P {(X0,X1) ∈ T (QXX′)}

× P

 ⋂
Q̂XX′∈A1∪A2

M−1⋂
m=2

⋂
m′∈{2,3,...,M−1}\{m}

{
(Xm,Xm′) /∈ T (Q̂XX′)

} (217)

= P {(X0,X1) ∈ T (QXX′)} · P

 ⋂
Q̂XX′∈A1∪A2

{
Ñ(Q̂XX′) = 0

} (218)

≤ P {(X0,X1) ∈ T (QXX′)} · P

 ⋂
Q̂XX′∈A2

{
Ñ(Q̂XX′) = 0

} (219)

= P {(X0,X1) ∈ T (QXX′)} · P {F1} . (220)

Substituting it back into (210), now yields

P

 ⋂
QXX′∈Q(QX)

{
N(QXX′) ≤ en·(Γ(QXX′ ,R−ε)+R−E0)

} (221)
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≥ P {F0} −
∑

QXX′∈A3

en2R · P {(X0,X1) ∈ T (QXX′),F0}
en·(Γ(QXX′ ,R−ε)+R−E0)

(222)

≥ P {F0} −
∑

QXX′∈A3

en2R · P {(X0,X1) ∈ T (QXX′)} · P {F1}
en·(Γ(QXX′ ,R−ε)+R−E0)

(223)

= P {F0} − P {F1} ·
∑

QXX′∈A3

en2R · P {(X0,X1) ∈ T (QXX′)}
en·(Γ(QXX′ ,R−ε)+R−E0)

. (224)

Generally, it follows that P {F0} ≤ P {F1}. First, we lower–bound P {F0}. The following

proposition is proved in Appendix I:

Proposition 6 If E0 < Eex(R), then

P {F0}
◦
≥ exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

. (225)

In addition, we can easily prove that under the condition of E0 < Eex(R), P {F1} can be

upper–bounded by the same expression that lower–bounds P {F0}. We have that

P {F1} = P

 ⋂
QXX′∈A2

{
Ñ(QXX′) = 0

} (226)

≤ min
QXX′∈A2

P
{
Ñ(QXX′) = 0

}
(227)

◦
≤ min

QXX′∈A2

exp
{
−min

(
en(2R−IQ(X;X′)), enR

)}
(228)

= min
QXX′∈A2

exp
{
−en(2R−IQ(X;X′))

}
(229)

= exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

, (230)

where (228) is due to Lemma 2 in Appendix B and (229) follows from the fact that E0 < Eex(R)

is equivalent to minQXX′∈A2 IQ(X;X ′) > R (Appendix I). Hence,

P {F0}
◦
= P {F1}

◦
= exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

. (231)

Using the definition of the set A3 provides

P {E0}

◦
= P

 ⋂
QXX′∈Q(QX)

{
N(QXX′) ≤ en·(Γ(QXX′ ,R−ε)+R−E0)

} (232)

≥ P {F0} − P {F1} ·
∑

QXX′∈A3

en2R · P {(X0,X1) ∈ T (QXX′)}
en·(Γ(QXX′ ,R−ε)+R−E0)

(233)
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◦
=

1−
∑

QXX′∈A3

en·(2R−IQ(X;X′))

en·(Γ(QXX′ ,R−ε)+R−E0)

 · exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}
(234)

◦
=
(
1− e−nε

)
· exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

(235)

◦
= exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

. (236)

Upper–bounding P {Bε(m̄,y) ∩ E0} in (180)

Recall that

P {Bε(m̄,y) ∩ E0} = P

 ∑
m̃∈{0,1,...,M−1}\{m̄}

exp{ng(P̂Xm̃y)} ≤ en·α(R−ε,P̂y),

M−1∑
m=0

∑
m′ 6=m

exp{−nΓ(P̂XmXm′ , R− ε)} ≤ e
n·(R−E0)

 . (237)

In order to upper–bound this probability, we do the following. In the first event, instead of

summing over {0, 1, . . . ,M − 1} \ {m̄}, we sum over {bM/2c, bM/2c+ 1, . . . ,M − 1} \ {m̄}, and

in the second event, instead of summing over {(m,m′) : m,m′ ∈ {0, 1, . . . ,M − 1}, m 6= m′},

we sum over {(m,m′) : m,m′ ∈ {0, 1, . . . , bM/2c−1}, m 6= m′}, hence, the two events become

independent:

P {Bε(m̄,y) ∩ E0}

≤ P

 ∑
m̃∈{bM/2c,...,M−1}\{m̄}

exp{ng(P̂Xm̃y)} ≤ en·α(R−ε,P̂y)


× P


bM/2c−1∑
m=0

∑
m′∈{0,1,...,bM/2c−1}\{m}

exp{−nΓ(P̂XmXm′ , R− ε)} ≤ e
n·(R−E0)

 . (238)

As for the first factor in (238), note that its sum has exponentially many terms as Zm(y), and

hence is also upper–bounded as in (51). The second factor in (238) can be upper–bounded

using similar analysis as in the proof in Section 6, which results an upper bound similar to

(230). Thus,

P {Bε(m̄,y) ∩ E0} ≤ exp{−enε + nε+ 1} · exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

.

(239)
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Final Steps

Finally, we continue from (180) and use the results of (234) and (239) to obtain

P
{
− 1

n
logPe(Cn) ≥ E0

}
◦
≥ P {E0} −

M−1∑
m̄=0

∑
y∈Yn

P {Bε(m̄,y) ∩ E0} (240)

◦
≥ exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

−
M−1∑
m̄=0

∑
y∈Yn

exp{−enε + nε+ 1} · exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

(241)

=
(
1− enR · |Y|n · exp{−enε + nε+ 1}

)
· exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

(242)

◦
= exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

, (243)

which proves the lower bound of Theorem 2.

Appendix A

Preliminaries

The main purpose of this appendix is to provide the general setting and the main results that

are borrowed from [18].

Let {Uk}k∈K, where K is a set of multidimensional indexes, be a family of Bernoulli random

variables. Let G be a dependency graph for {Uk}k∈K, i.e., a graph with vertex set K such that

if A and B are two disjoint subsets of K, and G contains no edge between A and B, then the

families {Uk}k∈A and {Uk}k∈B are independent. Let S =
∑

k∈K Uk and ∆ = E[S]. Moreover,

we write i ∼ j if (i, j) is an edge in the dependency graph G. Let

Φ = max
i∈K

E[Ui], (A.1)

Ωi =
∑

j∈K,j∼i
E[Uj ], (A.2)

Ω = max
i∈K

∑
j∈K,j∼i

E[Uj ], (A.3)
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and

Θ =
1

2

∑
i∈K

∑
j∈K,j∼i

E[UiUj ]. (A.4)

The following result will be used in the proof of Lemma 2 in Appendix B:

Fact 1 With notations as above, [18, Theorem 10] states that for any 0 ≤ a ≤ 1,

P{S ≤ a∆} ≤ exp

{
−min

(
(1− a)2 ∆2

8Θ + 2∆
, (1− a)

∆

6Ω

)}
. (A.5)

The following result will be used in the proof of Lemma 6 in Appendix B:

Fact 2 With notations as above, [18, Theorem 3] states that,

P{S = 0} ≤ exp

{
−min

(
∆2

8Θ
,

∆

6Ω
,
∆

2

)}
. (A.6)

Next, define ϕ(x), 0 ≤ x ≤ e−1, to be the smallest root t of the equation

t = ext. (A.7)

It is well known that ϕ(x) is well defined in [0, e−1], in particular, ϕ(x) = 1 + x+ O(x2). The

following lower bound will be useful in the proof of Proposition 6 in Appendix I.

Fact 3 With notations as above, suppose further that Ω + Φ ≤ e−1. Then, with ϕ defined by

(A.7), [18, Theorem 9] states that

P{S = 0} ≥ exp{−∆ · ϕ(Ω + Φ)}. (A.8)

Appendix B

Proof of Theorem 3

Let us abbreviate I(m,m′)
∆
= I {(xm,xm′) ∈ T (QXX′)}, such that the enumerator N(QXX′)

can also be written by

N(QXX′) =
∑

(m,m′)∈[M ]2∗

I(m,m′), (B.1)

where the set [M ]2∗ is an abbreviation for the set {(m,m′) : m,m′ ∈ {0, 1, . . . ,M−1}, m 6= m′}.

Before proving Theorem 3, we start with the following series of partial results, that are

going to be instrumental in proving Theorem 3.
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Lemma 1 For any two pairs (i, j), (i, k) ∈ [M ]2∗, j 6= k,

E[I(i, j)I(i, k)]
.
= exp{−2nIQ(X;X ′)}. (B.2)

Proof: Since all codewords are independent, it follows by the method of types that

E[I(i, j)I(i, k)]

= P {(Xi,Xj) ∈ T (QXX′), (Xi,Xk) ∈ T (QXX′)} (B.3)

=
∑

x∈T (QX)

P{Xi = x} · P {(x,Xj) ∈ T (QXX′), (x,Xk) ∈ T (QXX′)} (B.4)

=
∑

x∈T (QX)

P{Xi = x} · P {(x,Xj) ∈ T (QXX′)} · P {(x,Xk) ∈ T (QXX′)} (B.5)

.
=

∑
x∈T (QX)

P{Xi = x} · exp{−nIQ(X;X ′)} · exp{−nIQ(X;X ′)} (B.6)

= exp{−2nIQ(X;X ′)}, (B.7)

where (B.5) is because Xj and Xk are statistically independent. Lemma 1 is proved.

Now, we have the following Lemma, which proposes an upper bound on the probability of

the lower tail in the case of TP type classes.

Lemma 2 Let ε > 0 be given. Then, for any QXX′ such that IQ(X;X ′) ≤ 2R− ε,

P
{
N(QXX′) ≤ e−nε · E[N(QXX′)]

} ◦
≤ exp

{
−min

(
en(2R−IQ(X;X′)), enR

)}
. (B.8)

Proof: We use the result of Fact 1, that appears in Appendix A. In our case, we have a = e−nε

and ∆
.
= en(2R−IQ(X;X′)), and it only remains to assess the quantities Θ and Ω. One can easily

check that the indicator random variables I(i, j) and I(k, l) are independent as long as i 6= k

and j 6= l. Thus, we define our dependency graph in a way that each vertex (i, j) is connected

to exactly enR+enR−2 vertices of the form (i, l), l 6= j or (k, j), k 6= i. If the vertices (i, j) and

(k, l) are connected, we denote it by (i, j) ∼ (k, l). Using the result of Lemma 1, we get that

Θ =
1

2

∑
(i,j)∈[M ]2∗

∑
(k,l)∈[M ]2∗,(k,l)∼(i,j)

E[I(i, j)I(k, l)] (B.9)

.
=

1

2
e2nR · (enR + enR − 2) · e−2nIQ(X;X′) (B.10)

.
= en(3R−2IQ(X;X′)), (B.11)
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and

Ω = max
(i,j)∈[M ]2∗

∑
(k,l)∈[M ]2∗,(k,l)∼(i,j)

E[I(k, l)] (B.12)

.
= (enR + enR − 2) · e−nIQ(X;X′) (B.13)

.
= en(R−IQ(X;X′)). (B.14)

Then,

∆

6Ω

.
=
en(2R−IQ(X;X′))

en(R−IQ(X;X′))
= enR, (B.15)

and,

∆2

8Θ + 2∆

.
=

en(4R−2IQ(X;X′))

en(3R−2IQ(X;X′)) + en(2R−IQ(X;X′))
(B.16)

=
en(2R−IQ(X;X′))

en(R−IQ(X;X′)) + 1
(B.17)

.
=
en(2R−IQ(X;X′))

en[R−IQ(X;X′)]+
. (B.18)

Hence,

P
{
N(QXX′) ≤ e−nε · E[N(QXX′)]

} ◦
≤ exp

{
−min

(
en(2R−IQ(X;X′))

en[R−IQ(X;X′)]+
, enR

)}
(B.19)

= exp
{
−min

(
en(2R−IQ(X;X′)), enR

)}
. (B.20)

Now, if IQ(X;X ′) ≤ R, we get

P
{
N(QXX′) ≤ e−nε · E[N(QXX′)]

} ◦
≤ exp

{
−enR

}
, (B.21)

and otherwise, if R < IQ(X;X ′) ≤ 2R− ε,

P
{
N(QXX′) ≤ e−nε · E[N(QXX′)]

} ◦
≤ exp

{
−en(2R−IQ(X;X′))

}
(B.22)

≤ exp {−enε} , (B.23)

which completes the proof of Lemma 2.

Before moving on to the upper tail, we need the following lemma, proved in Appendix C.

Lemma 3 For any k ∈ N,

E
[
N(QXX′)

k
] ·
≤
{

exp{nk (2R− IQ(X;X ′))} IQ(X;X ′) < 2R
exp{n (2R− IQ(X;X ′))} IQ(X;X ′) > 2R

. (B.24)
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Concerning the upper tail, we have the following result.

Lemma 4 Let ε > 0 be given. Then, for any QXX′ such that IQ(X;X ′) ≤ 2R,

P {N(QXX′) ≥ enε · E[N(QXX′)]}
·
≤ e−n∞. (B.25)

Proof: For any k ∈ N, Markov’s inequality and Lemma 3 implies that

P {N(QXX′) ≥ enε · E[N(QXX′)]} ≤ inf
k∈N

E[N(QXX′)
k]

enkε · (E[N(QXX′)])k
(B.26)

·
≤ inf

k∈N

exp {nk (2R− IQ(X;X ′))}
enkε · (exp {n (2R− IQ(X;X ′))})k

(B.27)

= inf
k∈N

exp{−nkε}, (B.28)

thus,

lim inf
n→∞

− 1

n
logP {N(QXX′) ≥ enε · E[N(QXX′)]} ≥ sup

k∈N
kε =∞, (B.29)

which proves Lemma 4.

Next, we treat the TE type classes.

Lemma 5 Let ε > 0 be given. Then, for any QXX′ such that IQ(X;X ′) ≥ 2R,

P {N(QXX′) ≥ enε}
·
≤ e−n∞. (B.30)

Proof: For any k ∈ N, Markov’s inequality and Lemma 3 implies that

P {N(QXX′) ≥ enε} ≤ inf
k∈N

E[N(QXX′)
k]

enkε
(B.31)

·
≤ inf

k∈N

exp {n (2R− IQ(X;X ′))}
enkε

(B.32)

= inf
k∈N

exp
{
−n
(
IQ(X;X ′)− 2R+ kε

)}
, (B.33)

and hence,

lim inf
n→∞

− 1

n
logP {N(QXX′) ≥ enε} ≥ sup

k∈N

{
IQ(X;X ′)− 2R+ kε

}
=∞, (B.34)

which completes the proof of Lemma 5. Furthermore, we have

Lemma 6 For any QXX′ such that IQ(X;X ′) ≥ 2R,

P {N(QXX′) ≥ 1} .= exp{n(2R− IQ(X;X ′))}. (B.35)
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Proof: An upper bound simply follows from Markov’s inequality:

P {N(QXX′) ≥ 1} ≤ E[N(QXX′)]
.
= exp{n(2R− IQ(X;X ′))}. (B.36)

For the lower bound, we use Fact 2 from Appendix A. Similarly to (B.15) and (B.16), we have

∆2

8Θ

.
=
en(4R−2IQ(X;X′))

en(3R−2IQ(X;X′))
= enR, (B.37)

and,

∆

6Ω

.
=
en(2R−IQ(X;X′))

en(R−IQ(X;X′))
= enR. (B.38)

Now, since IQ(X;X ′) ≥ 2R,

P {N(QXX′) = 0} ≤ exp

{
−min

(
enR, enR,

1

2
· en(2R−IQ(X;X′))

)}
(B.39)

= exp

{
−1

2
· en(2R−IQ(X;X′))

}
(B.40)

≤ 1− 1

2
· en(2R−IQ(X;X′)) +

1

8
· en(4R−2IQ(X;X′)), (B.41)

where (B.41) is due to the fact that for t ≥ 0, e−t ≤ 1− t+ 1
2 t

2, and so,

P {N(QXX′) ≥ 1} = 1− P {N(QXX′) = 0} (B.42)

≥ 1

2
· exp{n(2R− IQ(X;X ′))} − 1

8
· exp{n(4R− 2IQ(X;X ′))} (B.43)

.
= exp{n(2R− IQ(X;X ′))}, (B.44)

which is compatible with the above upper bound, proving Lemma 6.

Proof of Theorem 3:

We use the results of Lemmas 2, 4, 5, and 6, and get the following exponential rate of decay

for P {N(QXX′) ≥ ens}:

E(R,Q, s) =


IQ(X;X ′)− 2R IQ(X;X ′) ≥ 2R, s ≤ 0
∞ IQ(X;X ′) ≥ 2R, s > 0
0 IQ(X;X ′) ≤ 2R, s ≤ 2R− IQ(X;X ′)
∞ IQ(X;X ′) ≤ 2R, s > 2R− IQ(X;X ′)

(B.45)

=


[IQ(X;X ′)− 2R]+ IQ(X;X ′) ≥ 2R, s ≤ [2R− IQ(X;X ′)]+
∞ IQ(X;X ′) ≥ 2R, s > [2R− IQ(X;X ′)]+
[IQ(X;X ′)− 2R]+ IQ(X;X ′) ≤ 2R, s ≤ [2R− IQ(X;X ′)]+
∞ IQ(X;X ′) ≤ 2R, s > [2R− IQ(X;X ′)]+

(B.46)

=

{
[IQ(X;X ′)− 2R]+ [2R− IQ(X;X ′)]+ ≥ s
∞ [2R− IQ(X;X ′)]+ < s

, (B.47)

which proves Theorem 3.
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Appendix C

Proof of Lemma 3

For a set of indices J let us denote J 2
∗ = {(j, j′) ∈ J 2 : j 6= j′}. Recall that I(m,m′) =

I{(Xm,Xm′) ∈ T (QXX′)} and N(QXX′) =
∑

(m,m′)∈[M ]2∗
I(m,m′). We show by induction

that

E
[
N(QXX′)

k
] ·
≤
{
enk(2R−I) I < 2R

e−n(I−2R) I > 2R
, (C.1)

where I is a shorthand notation for IQ(X;X ′). This clearly holds for k = 1 by linearity of

expectation. We assume it holds up to k − 1 and show this for k.

Proof for k: Assume that {(mi,m
′
i)}

k−1
i=1 are given, where (mi,m

′
i) ∈ [M ]2∗ for all i ∈ [k− 1].

Let Mk−1 =
⋃k−1
i=1 {{mi} ∪ {m′i}} be the set of indices of the k − 1 pairs of codeword indices

{(mi,m
′
i)}

k−1
i=1 . We condition on all these codewords, and then compute expectation w.r.t. all

other codewords. For any fixed k, the number of codewords in the first k − 1 indicators is

negligible to the number of all other codewords. Specifically, |Mk−1| ≤ 2(k − 1) holds. Now,∑
(mk,m

′
k)∈[M ]2∗

I(mk,m
′
k) =

∑
(mk,m

′
k)∈([M ]\Mk−1)2∗

I(mk,m
′
k)

+
∑

mk∈Mk−1

∑
m′k∈[M ]\Mk−1

(
I(mk,m

′
k) + I(m′k,mk)

)
+

∑
(mk,m

′
k)∈(Mk−1)2∗

I(mk,m
′
k). (C.2)

By (C.2), linearity of expectation, the independence of codewords assumption, and the trivial

fact that I(mk,m
′
k) ≤ 1,

E

 ∑
(mk,m

′
k)∈[M ]2∗

I(mk,m
′
k)

∣∣∣∣∣∣{X l}l∈Mk−1

 ·
≤ en(2R−I) + 4(k − 1)en(R−I) + 4(k − 1)2 (C.3)

.
= max{en(2R−I), 1}. (C.4)

Now,

E
[
N(QXX′)

k
]

=
∑

{
(mi,m

′
i)∈[M ]2∗,

1≤i≤k

}E

[
k∏
i=1

I(mi,m
′
i)

]
(C.5)

=
∑

{
(mi,m

′
i)∈[M ]2∗,

1≤i≤k−1

}E

k−1∏
i=1

I(mi,m
′
i) ·

 ∑
(mk,m

′
k)∈[M ]2∗

I(mk,m
′
k)

 . (C.6)
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The expectation in (C.6) is given by

E

k−1∏
i=1

I(mi,m
′
i) ·

 ∑
(mk,m

′
k)∈[M ]2∗

I(mk,m
′
k)


= E

E
k−1∏
i=1

I(mi,m
′
i) ·

 ∑
(mk,m

′
k)∈[M ]2∗

I(mk,m
′
k)

∣∣∣∣∣∣{X l}l∈Mk−1

 (C.7)

= E

k−1∏
i=1

I(mi,m
′
i) · E

 ∑
(mk,m

′
k)∈[M ]2∗

I(mk,m
′
k)

∣∣∣∣∣∣{X l}l∈Mk−1

 (C.8)

·
≤ max{en(2R−I), 1} · E

[
k−1∏
i=1

I(mi,m
′
i)

]
, (C.9)

where (C.8) is due to the fact that upon conditioning on {X l}l∈Mk−1
,
∏k−1
i=1 I(mi,m

′
i) is fixed,

and (C.9) follows from (C.4). Substituting it back into (C.6) and using the induction assumption

provides

E
[
N(QXX′)

k
] ·
≤ max{en(2R−I), 1}

∑
{

(mi,m
′
i)∈[M ]2∗,

1≤i≤k−1

}E

[
k−1∏
i=1

I(mi,m
′
i)

]
(C.10)

= max{en(2R−I), 1} · E
[
(N(QXX′))

k−1
]

(C.11)

·
≤ max{en(2R−I), 1} ·

{
en(k−1)(2R−I) I < 2R

e−n(I−2R) I > 2R
(C.12)

=

{
enk(2R−I) I < 2R

e−n(I−2R) I > 2R
. (C.13)

Thus, Lemma 3 is proved.

Appendix D

Proof of Proposition 1

The monotonicity is straightforward, and follows the fact that L(R,E0) andM(R,E0), defined

in (26) and (27), respectively, become larger when E0 grows. In order to show the fourth item,

observe that when E0 < Emin
0 , the set L(R,E0) is empty. As for the second item, we seek a

condition on E0 such that Eub
lt (R,E0) > 0:

min
QXX′∈L(R,E0)

[IQ(X;X ′)− 2R]+ > 0. (D.1)
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Explicitly,

min
{QXX′∈Q(QX): [2R−IQ(X;X′)]+≥Γ(QXX′ ,R)+R−E0}

[IQ(X;X ′)− 2R]+ > 0, (D.2)

and by using the identity min{Q: g(Q)≤0} f(Q) = minQ sups≥0{f(Q) + s · g(Q)}, it can also be

written as

min
QXX′∈Q(QX)

sup
s≥0

{
s · (Γ(QXX′ , R) +R− E0 − [2R− IQ(X;X ′)]+) + [IQ(X;X ′)− 2R]+

}
> 0,

which means that for every QXX′ ∈ Q(QX) there exists some s ≥ 0, such that

s · (Γ(QXX′ , R) +R− E0 − [2R− IQ(X;X ′)]+) + [IQ(X;X ′)− 2R]+ > 0, (D.3)

or equivalently,

E0 < Γ(QXX′ , R) +R− [2R− IQ(X;X ′)]+ +
[IQ(X;X ′)− 2R]+

s
. (D.4)

Thus,

E0 < min
QXX′∈Q(QX)

sup
s≥0

{
Γ(QXX′ , R) +R− [2R− IQ(X;X ′)]+ +

[IQ(X;X ′)− 2R]+
s

}
(D.5)

= min
QXX′∈Q(QX)

[
Γ(QXX′ , R) +R− [2R− IQ(X;X ′)]+ +

{
0 IQ(X;X ′) ≤ 2R
∞ IQ(X;X ′) > 2R

]
(D.6)

= min
{QXX′∈Q(QX): IQ(X;X′)≤2R}

{
Γ(QXX′ , R) +R− [2R− IQ(X;X ′)]+

}
(D.7)

= min
{QXX′∈Q(QX): IQ(X;X′)≤2R}

{
Γ(QXX′ , R) + IQ(X;X ′)−R

}
(D.8)

= Etrc(R), (D.9)

where the∞ in (D.6) is because the maximizing s ≥ 0 in (D.5) when IQ(X;X ′) > 2R is s∗ = 0.

The proof of the third item is very similar to the proof of the second item and hence omitted.

Appendix E

Proof of Proposition 3

The monotonicity is immediate, since both V(R,E0) and U(R,E0), defined in (41) and (42),

respectively, become larger when E0 grows. In order to show the second item, we seek a

condition on E0 such that Elb
ut(R,E0) > 0:

max
QXX′∈U(R,E0)

{2R− IQ(X;X ′)} > 0. (E.1)
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Explicitly,

max
{QXX′∈Q(QX): IQ(X;X′)≤2R, Γ(QXX′ ,R)+IQ(X;X′)−R≤E0}

{2R− IQ(X;X ′)} > 0, (E.2)

and thanks to the fact that max{Q: g(Q)≥0} f(Q) = maxQ infµ≥0{f(Q) + µ · g(Q)}, it can also

be written as

max
{QXX′∈Q(QX): IQ(X;X′)≤2R}

inf
µ≥0
{2R− IQ(X;X ′)

+ µ · (E0 − Γ(QXX′ , R)− IQ(X;X ′) +R)} > 0, (E.3)

or, equivalently,

∃QXX′ ∈ Q(QX) s.t. IQ(X;X ′) ≤ 2R, ∀µ ≥ 0 :

µ · E0 > IQ(X;X ′)− 2R+ µ · (Γ(QXX′ , R) + IQ(X;X ′)−R), (E.4)

or,

E0 > min
{QXX′∈Q(QX): IQ(X;X′)≤2R}

sup
µ≥0

{
IQ(X;X ′)− 2R

µ
+ Γ(QXX′ , R) + IQ(X;X ′)−R

}
(E.5)

= min
{QXX′∈Q(QX): IQ(X;X′)≤2R}

{
Γ(QXX′ , R) + IQ(X;X ′)−R

}
(E.6)

= Etrc(R), (E.7)

where (E.6) is because the maximizing µ ≥ 0 in (E.5) is µ∗ = ∞, since IQ(X;X ′) ≤ 2R. The

proof of the third item is very similar to the proof of the second item and hence omitted.

Appendix F

Proof of Corollary 1

The probability of any codebook in the ensemble is given asymptotically by exp{−nHQ(X)enR},

hence, in order to assure that a code exists, we demand that

P
{
− 1

n
logPe(Cn) ≥ E0

}
> exp{−nHQ(X)enR}. (F.1)

Now, the lower bound of Theorem 2 reads

P
{
− 1

n
logPe(Cn) ≥ E0

}
◦
≥ exp

{
− exp

{
n · max

QXX′∈U(R,E0)
{2R− IQ(X;X ′)}

}}
, (F.2)
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thus (F.1) will obviously be satisfied if

max
QXX′∈U(R,E0)

{2R− IQ(X;X ′)} < R, (F.3)

or, equivalently,

min
QXX′∈U(R,E0)

IQ(X;X ′) > R, (F.4)

which is exactly (I.19). Then, following some algebraic work, that can be found in (I.20)–(I.30),

we found that (F.4) is equivalent to E0 < Eex(R).

Appendix G

Proof of Proposition 4

For a set of indices J let us denote J 2
∗ = {(j, j′) ∈ J 2 : j 6= j′}. Recall that I(m,m′) =

I{(Xm,Xm′) ∈ T (QXX′)} and N(QXX′) =
∑

(m,m′)∈[M ]2∗
I(m,m′). Let us abbreviate I(m) =

I {(Xm,y) ∈ T (QXY )}, such that

Ny(QXY ) =
∑
m∈[M ]

I(m). (G.1)

Recall the definition of F (S,QUV , j) in (112). We show by induction that

E
[
Ny(QXY )lN(QXX′)

k
] ·
≤ F (R,QXY , l) · F (2R,QXX′ , k). (G.2)

Checking for k = l = 1: Note that due to the symmetry of the random draw over the type

class:

E
[
I(m,m′)I(m)

]
= E

[
I(m)E

[
I(m,m′) |Xm

]]
(G.3)

= E [I(m)] · E
[
I(m,m′)

]
(G.4)

and similarly, E [I(m,m′)I(m′)] = E [I(m′)] · E [I(m,m′)]. Thus, for k = l = 1:

E [Ny(QXY )N(QXX′)]

=
∑

(m,m′)∈[M ]2∗

∑
r∈[M ]

E
[
I(m,m′)I(r)

]
(G.5)

=
∑

(m,m′)∈[M ]2∗

 ∑
r∈[M ]\{m,m′}

E
[
I(m,m′)

]
E [I(r)] + E

[
I(m,m′)I(m)

]
+ E

[
I(m,m′)I(m′)

]
(G.6)
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=
∑

(m,m′)∈[M ]2∗

∑
r∈[M ]

E
[
I(m,m′)

]
E [I(r)] (G.7)

.
= en(2R−IQ(X;X′)) · en(R−IQ(X;Y )). (G.8)

Induction assumption: Assume that (G.2) holds up for some (k− 1, l− 1). We show by two

inductive steps that this holds for (k, l − 1) and (k − 1, l) and thus for any (k, l).

Proof for (k, l − 1): Assume that {(mi,m
′
i)}

k−1
i=1 and {rj}l−1

j=1 are given, where (mi,m
′
i) ∈

[M ]2∗ for all i ∈ [k − 1], and rj ∈ [M ] for all j ∈ [l − 1]. Let Mk−1,l−1 =
⋃k−1
i=1 {{mi} ∪ {m′i}} ∪⋃l−1

j=1{rj} be the set of indices of the k − 1 pairs of codeword indices {(mi,m
′
i)}

k−1
i=1 and of the

l − 1 codeword indices {rj}l−1
j=1. Clearly |Mk−1,l−1| ≤ 2(k − 1) + l − 1

∆
= ck−1,l−1 holds. Now,

∑
(mk,m

′
k)∈[M ]2∗

I(mk,m
′
k) =

∑
(mk,m

′
k)∈([M ]\Mk−1,l−1)2∗

I(mk,m
′
k)

+
∑

mk∈Mk−1,l−1

∑
m′k∈[M ]\Mk−1,l−1

(
I(mk,m

′
k) + I(m′k,mk)

)
+

∑
(mk,m

′
k)∈(Mk−1,l−1)2∗

I(mk,m
′
k).

(G.9)

By (G.9), linearity of expectation, the independence of codewords assumption, and the fact

that I(mk,m
′
k) ≤ 1,

E

 ∑
(mk,m

′
k)∈[M ]2∗

I(mk,m
′
k)

∣∣∣∣∣∣{Xs}s∈Mk−1,l−1


≤̇en(2R−IQ(X;X′)) + 2ck−1,l−1e

n(R−IQ(X;X′)) + c2
k−1,l−1 (G.10)

=̇ max{en(2R−IQ(X;X′)), 1}. (G.11)

Next,

E
[
Ny(QXY )l−1N(QXX′)

k
]

=
∑

{
(mi,m

′
i)∈[M ]2∗,

1≤i≤k

}
∑

{
rj∈[M ],

1≤j≤l−1

}E

 k∏
i=1

I(mi,m
′
i)
l−1∏
j=1

I(rj)

 (G.12)

=
∑

{
(mi,m

′
i)∈[M ]2∗,

1≤i≤k−1

}
∑

{
rj∈[M ],

1≤j≤l−1

}E

k−1∏
i=1

I(mi,m
′
i) ·

l−1∏
j=1

I(rj)

 ∑
(mk,m

′
k)∈[M ]2∗

I(mk,m
′
k)

 . (G.13)
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The expectation in (G.13) is given by

E

k−1∏
i=1

I(mi,m
′
i) ·

l−1∏
j=1

I(rj)

 ∑
(mk,m

′
k)∈[M ]2∗

I(mk,m
′
k)


= E

E
k−1∏
i=1

I(mi,m
′
i) ·

l−1∏
j=1

I(rj)

 ∑
(mk,m

′
k)∈[M ]2∗

I(mk,m
′
k)

∣∣∣∣∣∣{Xs}s∈Mk−1,l−1

 (G.14)

= E

k−1∏
i=1

I(mi,m
′
i) ·

l−1∏
j=1

I(rj) · E

 ∑
(mk,m

′
k)∈[M ]2∗

I(mk,m
′
k)

∣∣∣∣∣∣{Xs}s∈Mk−1,l−1

 (G.15)

·
≤ max{en(2R−IQ(X;X′)), 1} · E

k−1∏
i=1

I(mi,m
′
i) ·

l−1∏
j=1

I(rj)

 , (G.16)

where (G.15) is thanks to the conditioning on {Xs}s∈Mk−1,l−1
, and (G.16) is due to (G.11).

Substituting it back into (G.13) and using the induction assumption provides

E
[
Ny(QXY )l−1N(QXX′)

k
]

·
≤ max{en(2R−IQ(X;X′)), 1} ·

∑
{

(mi,m
′
i)∈[M ]2∗,

1≤i≤k−1

}
∑

{
rj∈[M ],

1≤j≤l−1

}E

k−1∏
i=1

I(mi,m
′
i) ·

l−1∏
j=1

I(rj)

 (G.17)

= max{en(2R−IQ(X;X′)), 1} · E
[
Ny(QXY )l−1N(QXX′)

k−1
]

(G.18)

·
≤ max{en(2R−IQ(X;X′)), 1} · F (R,QXY , l − 1) · F (2R,QXX′ , k − 1) (G.19)

= F (R,QXY , l − 1) · F (2R,QXX′ , k), (G.20)

which completes the proof of the first inductive step. The proof of the second inductive step

follows exactly the same lines and hence omitted. The proof of Proposition 4 is complete.

Appendix H

Proof of Proposition 5

By the union bound,

P
{
B̂n(σ)

}
= P


M−1⋃
m=0

⋃
m′ 6=m

⋃
y∈Yn

B̂n(σ,m,m′,y)

 (H.1)

≤
M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

P
{
B̂n(σ,m,m′,y)

}
. (H.2)
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Now,

P
{
B̂n(σ,m,m′,y)

}
= P

 ∑
m̃∈{0,1,...,M−1}\{m,m′}

exp{ng(P̂Xm̃y)} ≥ exp{n · (β(R,QY ) + σ)}

 (H.3)

= P

∑
QXY

N(QXY )eng(QXY ) ≥ exp{n · (β(R,QY ) + σ)}

 (H.4)

.
=
∑
QXY

P {N(QXY ) ≥ exp{n(β(R,QY ) + σ − g(QXY ))}} (H.5)

=
∑

{QXY : IQ(X;Y )≤R}

P {N(QXY ) ≥ exp{n(β(R,QY ) + σ − g(QXY ))}}

+
∑

{QXY : IQ(X;Y )>R}

P {N(QXY ) ≥ exp{n(β(R,QY ) + σ − g(QXY ))}} , (H.6)

where (H.3) is due to the definition of Zmm′(y) in (71), in (H.4) we introduced the type class

enumerator N(QXY ), which is the number of codewords in Cn, other than xm and xm′ , that

have a joint composition QXY together with y, and where (H.5) is due to the SME. The first

summand of (H.6) is upper–bounded by

P {N(QXY ) ≥ exp {n (β(R,QY ) + σ − g(QXY ))}}

= P
{
N(QXY ) ≥ exp

{
n
(
σ + β(R,QY )− g(QXY )− [R− IQ(X;Y )]+ + [R− IQ(X;Y )]+

)}}
≤ P

{
N(QXY ) ≥ exp

{
n
(
σ + [R− IQ(X;Y )]+

)}}
(H.7)

= P
{
N(QXY ) ≥ en(σ+R−IQ(X;Y ))

}
(H.8)

≤ exp
{
−enRD(e−n[R−(σ+R−IQ(X;Y ))]‖e−nIQ(X;Y ))

}
(H.9)

= exp
{
−enRD(e−n(IQ(X;Y )−σ)‖e−nIQ(X;Y ))

}
(H.10)

< exp

{
−enR · e−n(IQ(X;Y )−σ) ·

(
ln
e−n(IQ(X;Y )−σ)

e−nIQ(X;Y )
− 1

)}
(H.11)

= exp
{
−en(R−IQ(X;Y )+σ) · (nσ − 1)

}
(H.12)

≤ exp {−enσ} . (H.13)

In (H.7), we use the definition of β(R,QY ) in (22), which implies that β(R,QY ) ≥ g(QXY ) +

[R− IQ(X;Y )]+, and for (H.8), recall that R ≥ IQ(X;Y ). Step (H.9) is according to Chernoff’s

bound [15, Appendix], [11, Appendix B], (H.11) is due to the following lower bound to the binary
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divergence [21, Sec. 6.3, p. 167]

D(a‖b) > a
(

ln
a

b
− 1
)
, (H.14)

and (H.13) is true since R ≥ IQ(X;Y ). Similarly, for the second summand of (H.6), we have

P {N(QXY ) ≥ exp {n (β(R,QY ) + σ − g(QXY ))}}

≤ P
{
N(QXY ) ≥ exp

{
n
(
σ + [R− IQ(X;Y )]+

)}}
(H.15)

= P {N(QXY ) ≥ enσ} (H.16)

≤ exp
{
−enRD(e−n(R−σ)‖e−nIQ(X;Y ))

}
(H.17)

< exp

{
−enR · e−n(R−σ) ·

(
ln

e−n(R−σ)

e−nIQ(X;Y )
− 1

)}
(H.18)

= exp {−enσ · [n(IQ(X;Y )−R+ σ)− 1]} (H.19)

≤ exp {−enσ} , (H.20)

where (H.15) is true for the same reason as (H.7), (H.16) is because IQ(X;Y ) > R, (H.17) is

again due to Chernoff’s bound, (H.18) is true thanks to (H.14), and (H.20) is due to IQ(X;Y )−

R+ σ > 0. Hence, we conclude that for every σ > 0

P{B̂n(σ,m,m′,y)} = P{Zmm′(y) ≥ exp{n · (β(R,QY ) + σ)}} (H.21)

◦
≤ exp {−enσ} , (H.22)

and so, continuing from (H.2), this means that

P
{
B̂n(σ)

} ◦
≤

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

exp {−enσ} (H.23)

◦
= exp {−enσ} , (H.24)

which completes the proof of the proposition.

Appendix I

Proof of Proposition 6

First, note that

F0 =

 ∑
QXX′∈A1∪A2

N(QXX′) = 0

 . (I.1)
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Let us define

N(A1 ∪ A2)
∆
=

∑
QXX′∈A1∪A2

N(QXX′), (I.2)

and the binary random variables

I(m,m′, QXX′)
∆
= I {(Xm,Xm′) ∈ T (QXX′)} , (I.3)

such that,

N(A1 ∪ A2) =
∑

QXX′∈A1∪A2

M−1∑
m=0

∑
m′ 6=m

I(m,m′, QXX′). (I.4)

In order to use Fact 3 that appears in Appendix A, let us first define an appropriate depen-

dency graph. One can easily check that the indicator random variables I(i, j, Q) and I(k, l, Q̃)

are independent as long as i 6= k, j 6= l, and Q 6= Q̃. Thus, we define our dependency graph

in a way that each vertex (i, j, Q) is connected to exactly enR − 1 vertices of the form (k, j,Q),

k 6= i, to enR− 1 vertices of the form (i, l, Q), l 6= j, and to exactly |A1 ∪A2| − 1 vertices of the

form (i, j, Q̃), Q̃ 6= Q. Let us now examine the quantities ∆, Ω, and Φ. First,

∆ = E[N(A1 ∪ A2)] (I.5)

=
∑

QXX′∈A1∪A2

E[N(QXX′)] (I.6)

.
=

∑
QXX′∈A1∪A2

en·(2R−IQ(X;X′)) (I.7)

.
= max

QXX′∈A1∪A2

en·(2R−IQ(X;X′)) (I.8)

= exp

{
n · max

QXX′∈A1∪A2

{2R− IQ(X;X ′)}
}

(I.9)

= exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}
, (I.10)

where the last equality follows from the definitions of A1 and A2 and the assumption that A2

is nonempty. Regarding the quantity Ωi,j,Q of (A.2), notice that it actually depends only on Q.

Thus, for some Q ∈ A1 ∪ A2,

ΩQ
.
= (enR + enR − 2) · e−nIQ(X;X′) +

∑
Q̃∈A1∪A2\{Q}

e−nIQ̃(X;X′) (I.11)

.
= en(R−IQ(X;X′)) +

∑
Q̃∈A1∪A2

e−nIQ̃(X;X′) (I.12)

.
= en(R−IQ(X;X′)) + max

Q̃∈A1∪A2

e−nIQ̃(X;X′), (I.13)
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and hence

Ω = max
Q∈A1∪A2

ΩQ
.
= max

Q∈A1∪A2

en(R−IQ(X;X′)). (I.14)

Furthermore,

Φ
.
= max

Q∈A1∪A2

e−nIQ(X;X′), (I.15)

such that

Ω + Φ
.
= max

Q∈A1∪A2

en(R−IQ(X;X′)) (I.16)

= max
Q∈A2

en(R−IQ(X;X′)). (I.17)

Now, we would like to have Ω + Φ ∈ [0, e−1]. Specifically, if Ω + Φ → 0 as n → ∞, then

ϕ(Ω + Φ)
.
= 1. In order to have Ω + Φ→ 0, we need that

max
Q∈A2

{R− IQ(X;X ′)} < 0, (I.18)

or

min
QXX′∈A2

IQ(X;X ′) > R. (I.19)

Let us abbreviate IQ(X;X ′) by IQ. In order to find the highest E0 for which (I.19) holds, let

us derive minQXX′∈A2 IQ(X;X ′) as follows:

min
QXX′∈A2

IQ

= min
{QXX′∈Q(QX): IQ≤2R, Γ(Q,R−ε)+IQ−R≤E0}

IQ (I.20)

= min
QXX′∈Q(QX)

sup
σ≥0

sup
µ≥0
{IQ + σ · (IQ − 2R) + µ · (Γ(Q,R− ε) + IQ −R− E0)} , (I.21)

where in (I.21) we used twice the fact that min{Q: g(Q)≤0} f(Q) = minQ supσ≥0{f(Q)+σ ·g(Q)}.

For (I.21) to be strictly larger than R, it is equivalent to require that for all QXX′ ∈ A2 there

exist σ ≥ 0 and µ ≥ 0 such that

IQ + σ · (IQ − 2R) + µ · (Γ(Q,R− ε) + IQ −R− E0) > R, (I.22)

or, equivalently,

E0 <
IQ −R+ σ · (IQ − 2R)

µ
+ Γ(Q,R− ε) + IQ −R. (I.23)
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Thus,

E0 < min
QXX′∈Q(QX)

sup
µ≥0

sup
σ≥0

{
Γ(Q,R− ε) + IQ −R+

IQ −R+ σ · (IQ − 2R)

µ

}
(I.24)

= min
QXX′∈Q(QX)

sup
µ≥0

[
Γ(Q,R− ε) + IQ −R+

{
IQ−R
µ IQ ≤ 2R

∞ IQ > 2R

]
(I.25)

= min
{QXX′∈Q(QX): IQ≤2R}

sup
µ≥0

{
Γ(Q,R− ε) + IQ −R+

IQ −R
µ

}
(I.26)

= min
{QXX′∈Q(QX): IQ≤2R}

[
Γ(Q,R− ε) + IQ −R+

{
0 IQ ≤ R
∞ IQ > R

]
(I.27)

= min
{QXX′∈Q(QX): IQ≤2R, IQ≤R}

{Γ(Q,R− ε) + IQ −R} (I.28)

= min
{QXX′∈Q(QX): IQ≤R}

{Γ(Q,R− ε) + IQ −R} (I.29)

≡ Eex(R, ε), (I.30)

where the ∞ in (I.25) is because the maximizing σ ≥ 0 in (I.24) when IQ > 2R is σ∗ = ∞.

The ∞ in (I.27) is due to the fact that when IQ > R, the maximizing µ ≥ 0 in (I.26) is µ∗ = 0.

Note that the exponent function Eex(R, ε) converges to Eex(R) when ε ↓ 0. Finally, we use these

results in Fact 3 and get the desired lower bound on P{F0}.
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