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Mismatched Multi-letter Successive
Decoding for the Multiple-Access Channel

Jonathan Scarlett, Alfonso Martinez and Albert Guillén i Fàbregas

Abstract—This paper studies channel coding for the discrete
memoryless multiple-access channel with a given (possibly sub-
optimal) decoding rule. A multi-letter successive decoding rule
depending on an arbitrary non-negative decoding metric is
considered, and achievable rate regions and error exponents are
derived both for the standard MAC (independent codebooks),
and for the cognitive MAC (one user knows both messages)
with superposition coding. In the cognitive case, the rate region
and error exponent are shown to be tight with respect to the
ensemble average. The rate regions are compared with those of
the commonly-considered decoder that chooses the message pair
maximizing the decoding metric, and numerical examples are
given for which successive decoding yields a strictly higher sum
rate for a given pair of input distributions.

I. INTRODUCTION

The mismatched decoding problem [1]–[3] seeks to charac-
terize the performance of channel coding when the decoding
rule is fixed and possibly suboptimal (e.g., due to channel
uncertainty or implementation constraints). Extensions of this
problem to multiuser settings are not only of interest in their
own right, but can also provide valuable insight into the single-
user setting [3]–[5]. In particular, significant attention has
been paid to the mismatched multiple-access channel (MAC),
described as follows. User ν = 1, 2 transmits a codeword
xν from a codebook Cν = {x(1)

ν , · · · ,x(Mν)
ν }, and the

output sequence y is generated according to Wn(y|x1,x2) ,∏n
i=1W (yi|x1,i, x2,i) for some transition law W (y|x1, x2).

The mismatched decoder estimates the message pair as

(m̂1, m̂2) = arg max
(i,j)

qn(x
(i)
1 ,x

(j)
2 ,y), (1)

where qn(x1,x2,y) ,
∏n
i=1 q(x1,i, x2,i, yi) for some

non-negative decoding metric q(x1, x2, y). The metric
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q(x1, x2, y) = W (y|x1, x2) corresponds to optimal maximum-
likelihood (ML) decoding, whereas the introduction of mis-
match can significantly increase the error probability and lead
to smaller achievable rate regions [1], [3]. Even in the single-
user case, characterizing the capacity with mismatch is a long-
standing open problem.

Given that the decoder only knows the metric
qn(x

(i)
1 ,x

(j)
2 ,y) corresponding to each codeword pair,

one may question whether there exists a decoding rule
that provides better performance than the maximum-metric
rule in (1), and that is well-motivated from a practical
perspective. The second of these requirements is not
redundant; for instance, if the values {log q(x1, x2, y)} are
rationally independent (i.e., no values can be written as
linear combinations of the others with rational coefficients),
then one could consider a highly artificial and impractical
decoder that uses these values to infer the joint empirical
distribution of (x1,x2,y), and in turn uses that to implement
the maximum-likelihood (ML) rule. While such a decoder is a
function of {qn(x

(i)
1 ,x

(j)
2 ,y)}i,j and clearly outperforms the

maximum-metric rule, it does not bear any practical interest.
There are a variety of well-motivated decoding rules that

are of interest beyond maximum-metric, including threshold
decoding [6], [7], likelihood decoding [8], [9], and successive
decoding [10], [11]. In this paper, we focus on the latter, and
consider the following two-step decoding rule:

m̂1 = arg max
i

∑
j

qn(x
(i)
1 ,x

(j)
2 ,y), (2)

m̂2 = arg max
j
qn(x

(m̂1)
1 ,x

(j)
2 ,y). (3)

The study of this decoder is of interest for several reasons:
• The decoder depends on the exact same quantities as the

maximum-metric decoder (1) (namely, qn(x
(i)
1 ,x

(j)
2 ,y)

for each (i, j)), meaning a comparison of the two rules is
in a sense fair. We will see the successive rule can some-
times achieve random-coding rates that are not achieved
by the maximum-metric rule, which is the first result of
this kind for the mismatched MAC.

• The first decoding step (2) can be considered a mis-
matched version of the optimal decoding rule for (one
user of) the interference channel. Hence, as well as giving
an achievable rate region for the MAC with mismatched
successive decoding, our results directly quantify the loss
due to mismatch for the interference channel.

• More broadly, successive decoding is of significant practi-
cal interest for multiple-access scenarios, since it permits
the use of single-user codes, as well as linear decoding
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complexity in the number of users [11]. While the specific
successive decoder that we consider does not enjoy these
practical benefits, it may still serve as an interesting point
of comparison for such variants.

The rule in (2) is multi-letter, in the sense that the objective
function does not factorize into a product of n symbols on
(X1,Y). Single-letter successive decoders [10, Sec. 4.5.1]
could also potentially be studied from a mismatched decoding
perspective by introducing a second decoding metric q2(x1, y),
but we focus on the above rule depending only on a single
metric q(x1, x2, y).

Under the above definitions of W , q, Wn and qn, and
assuming the corresponding alphabets X1, X2 and Y to be
finite, we consider two distinct classes of MACs:

1) For the standard MAC [3], encoder ν = 1, 2 takes as
input mν equiprobable on {1, · · · ,Mν}, and transmits
the corresponding codeword x

(mν)
ν from a codebook Cν .

2) For the cognitive MAC [4] (or MAC with degraded
message sets [10, Ex. 5.18]), the messages mν are still
equiprobable on {1, · · · ,Mν}, but user 2 has access to
both messages, while user 1 only knows m1. Thus, C1
contains codewords indexed as x

(i)
1 , and C2 contains

codewords indexed as x
(i,j)
2 .

For each of these, we say that a rate pair (R1, R2) is achievable
if, for all δ > 0, there exist sequences of codebooks C1,n and
C2,n with M1 ≥ en(R1−δ) and M2 ≥ en(R2−δ) respectively,
such that the error probability

pe , P[(m̂1, m̂2) 6= (m1,m2)] (4)

tends to zero under the decoding rule described by (2)–(3).
Our results will not depend on the method for breaking ties,
so for concreteness, we assume that ties are broken as errors.

For fixed rates R1 and R2, an error exponent E(R1, R2) is
said to be achievable if there exists a sequence of codebooks
C1,n and C2,n with M1 ≥ exp(nR1) and M2 ≥ exp(nR2)
codewords of length n such that

lim inf
n→∞

− 1

n
log pe ≥ E(R1, R2). (5)

Letting Eν , {m̂ν 6= mν} for ν = 1, 2, we observe that if
q(x1, x2, y) = W (y|x1, x2), then (2) is the decision rule that
minimizes P[E1]. Using this observation, we show in Appendix
A that the successive decoder with q = W is guaranteed to
achieve the same rate region and error exponent as that of
optimal non-successive maximum-likelihood decoding.

A. Previous Work and Contributions

The vast majority of previous works on mismatched de-
coding have focused on achievability results via random
coding, and the only general converse results are written in
terms of non-computable information-spectrum type quanti-
ties [7]. For the point-to-point setting with mismatch, the
asymptotics of random codes with independent codewords
are well-understood for the i.i.d. [12], constant-composition
[1], [13]–[15] and cost-constrained [2], [16] ensembles. Dual
expressions and continuous alphabets were studied in [2].

The mismatched MAC was introduced by Lapidoth [3], who
showed that (R1, R2) is achievable provided that

R1 ≤ min
P̃X1X2Y

: P̃X1
=Q1,P̃X2Y

=PX2Y
,

EP̃ [log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )]

IP̃ (X1;X2, Y ),

(6)
R2 ≤ min

P̃X1X2Y
: P̃X2

=Q2,P̃X1Y
=PX1Y

,

EP̃ [log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )]

IP̃ (X2;X1, Y ),

(7)
R1 +R2 ≤ min

P̃X1X2Y
: P̃X1

=Q1,P̃X2
=Q2,P̃Y =PY

EP̃ [log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )],
IP̃ (X1;Y )≤R1, IP̃ (X2;Y )≤R2

D(P̃X1X2Y ‖Q1 ×Q2 × P̃Y ), (8)

where Q1 and Q2 are arbitrary input distributions, and
PX1X2Y , Q1 × Q2 × W . The corresponding ensemble-
tight error exponent was given by the present authors in [5],
along with equivalent dual expressions and generalizations to
continuous alphabets. Error exponents were also presented for
the MAC with general decoding rules in [17], but the results
therein are primarily targeted to optimal or universal metrics;
in particular, when applied to the mismatched setting, the
exponents are not ensemble-tight.

The mismatched cognitive MAC was introduced by
Somekh-Baruch [4], who used superposition coding to show
that (R1, R2) is achievable provided that

R2 ≤ min
P̃X1X2Y

: P̃X1X2
=QX1X2

,P̃X1Y
=PX1Y

,

EP̃ [log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )]

IP̃ (X2;Y |X1),

(9)
R1 +R2 ≤ min

P̃X1X2Y
: P̃X1X2

=QX1X2
,P̃Y =PY ,

EP̃ [log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )],
IP̃ (X1,;Y )≤R1

IP̃ (X1, X2;Y ), (10)

where QX1X2
is an arbitrary joint input distribution, and

PX1X2Y , QX1X2 ×W . The ensemble-tight error exponent
was also given therein. Various forms of superposition coding
were also studied by the present authors in [5], but with a focus
on the single-user channel rather than the cognitive MAC.

Both of the above regions are known to be tight with respect
to the ensemble average for constant-composition random
coding, meaning that any looseness is due to the random-
coding ensemble itself, rather than the bounding techniques
used in the analysis [3], [4]. This notion of tightness was first
explored in the single-user setting in [15]. We also note that
the above regions lead to improved achievability bounds for
the single-user setting [3], [4].

The main contributions of this paper are achievable rate re-
gions for both the standard MAC (Section II-A) and cognitive
MAC (Section II-B) under the successive decoding rule in
(2)–(3). For the cognitive case, we also provide an ensemble
tightness result. Both regions are numerically compared to
their counterparts for maximum-metric decoding, and in each
case, it is observed that the successive rule can provide a
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strictly higher sum rate, though neither the successive nor
maximum-metric region is included in the other in general.

A by-product of our analysis is achievable error exponents
corresponding to the rate regions. Our exponent for the stan-
dard MAC is related to that of Etkin et al. [18] for the
interference channel, as both use parallel coding. Similarly, our
exponent for the cognitive MAC is related to that of Kaspi and
Merhav [19], since both use superposition coding. Like these
works, we make use of type class enumerators; however, a key
difference is that we avoid applying a Gallager-type bound in
the initial step, and we instead proceed immediately with type-
based methods.

In a work that developed independently of ours, the in-
terference channel perspective was pursued in depth in the
matched case in [20], with a focus on error exponents. The
error exponent of [20] is similar to that derived in the present
paper, but also contains an extra maximization term that, at
least in principle, could improve the exponent. Currently, no
examples are known where such an improvement is obtained.
Moreover, while the analysis techniques of [20] extend to
the mismatched case, doing so leads to the same achievable
rate region as ours; the only potential improvement is in the
exponent. Finally, we note that while our focus is solely on
codebooks with independent codewords, error exponents were
also given for the Han-Kobayashi construction in [20].

Another line of related work studied the achievable rates
of polar coding with mismatch [21]–[24], using a compu-
tationally efficient successive decoding rule. A single-letter
achievable rate was given, and it was shown that for a
given mismatched transition law (i.e., a conditional probability
distribution incorrectly used as if it were the true channel), this
decoder can sometimes outperform the maximum-metric de-
coder. As mentioned above, we make analogous observations
in the present paper, albeit for a multiple-access scenario with
a very different type of successive decoding.

B. Notation

Bold symbols are used for vectors (e.g., x), and the cor-
responding i-th entry is written using a subscript (e.g., xi).
Subscripts are used to denote the distributions corresponding
to expectations and mutual information quantities (e.g., EP [·],
IP (X;Y )). The marginals of a joint distribution PXY are
denoted by PX and PY . We write PX = P̃X to denote
element-wise equality between two probability distributions
on the same alphabet. The set of all sequences of length n
with a given empirical distribution PX (i.e., type [25, Ch. 2])
is denoted by Tn(PX), and similarly for joint types. We write
f(n)

.
= g(n) if limn→∞

1
n log f(n)

g(n) = 0, and similarly for ≤̇
and ≥̇. We write [α]+ = max(0, α), and denote the indicator
function by 1{·}

II. MAIN RESULTS

A. Standard MAC

Before presenting our main result for the standard MAC, we
state the random-coding distribution that is used in its proof.
For ν = 1, 2, we fix an input distribution Qν ∈ P(Xν), and

let Qν,n be a type with the same support as Qν such that
maxxν |Qν,n(xν)−Qν(xν)| ≤ 1

n . We set

PXν (xν) =
1

|Tn(Qν,n)|
1
{
xν ∈ Tn(Qν,n)

}
, (11)

and consider codewords {X(i)
ν }

Mν
i=1 that are independently

distributed according to PXν
. Thus,(

{X(i)
1 }

M1
i=1, {X

(j)
2 }

M2
i=1

)
∼

M1∏
i=1

PX1
(x

(i)
1 )

M2∏
j=1

PX2
(x

(j)
2 ).

(12)
Our achievable rate region is written in terms of the follow-

ing functions:

F (P̃X1X2Y , P̃
′
X1X2Y , R2) , max

{
EP̃ [log q(X1, X2, Y )],

EP̃ ′ [log q(X1, X2, Y )] +
[
R2 − IP̃ ′(X2;X1, Y )

]+}
,

(13)

F (PX1X2Y , R2) , max

{
EP [log q(X1, X2, Y )],

max
P ′
X1X2Y

∈T ′
1 (PX1X2Y

,R2)
EP ′ [log q(X1, X2, Y )]

+R2 − IP ′(X2;X1, Y )

}
, (14)

where

T ′1 (PX1X2Y , R2) ,
{
P ′X1X2Y : P ′X1Y = PX1Y ,

P ′X2
= PX2

, IP ′(X2;X1, Y ) ≤ R2

}
. (15)

We will see in our analysis that PX1X2Y corresponds to
the joint type of the transmitted codewords and the output
sequence, and P̃X1X2Y corresponds to the joint type of some
incorrect codeword of user 1, the transmitted codeword of
user 2, and the output sequence. Moreover, P ′X1X2Y

and
P̃ ′X1X2Y

similarly correspond to joint types, the difference
being that the X2 marginal is associated with exponentially
many sequences in the summation in (2).

Theorem 1. For any input distributions Q1 and Q2, the
pair (R1, R2) is achievable for the standard MAC with the
mismatched successive decoding rule in (2)–(3) provided that

R1 ≤ min
(P̃X1X2Y

,P̃ ′
X1X2Y

)∈T1(Q1×Q2×W,R2)
IP̃ (X1;X2, Y )

+
[
IP̃ ′(X2;X1, Y )−R2

]+
,

(16)
R2 ≤ min

P̃X1X2Y
∈T2(Q1×Q2×W )

IP̃ (X2;X1, Y ), (17)

where

T1(PX1X2Y , R2) ,
{

(P̃X1X2Y , P̃
′
X1X2Y ) : P̃X2Y = PX2Y ,

P̃X1
= PX1

, P̃ ′X1Y = P̃X1Y , P̃
′
X2

= PX2
,

F (P̃X1X2Y , P̃
′
X1X2Y , R2) ≥ F (PX1X2Y , R2)

}
, (18)

T2(PX1X2Y ) ,
{
P̃X1X2Y : P̃X2

= PX2
, P̃X1Y = PX1Y ,

EP̃ [log q(X1, X2, Y )] ≥ EP [log q(X1, X2, Y )]
}
. (19)
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Figure 1. Achievable rate regions for the standard MAC given in (21) with
mismatched successive decoding and mismatched maximum-metric decoding.

Proof. See Section III.

Although the minimization in (16) is a non-convex opti-
mization problem, it can be cast in terms of convex optimiza-
tion problems, thus facilitating its computation. The details are
provided in Appendix B.

While our focus is on achievable rates, the proof of Theorem
1 also provides error exponents. The exponent corresponding
to (17) is precisely that corresponding to the error event for
user 2 with maximum-metric decoding in [5, Sec. III], and the
exponent corresponding to (16) is given by

min
PX1X2Y

:PX1
=Q1,PX2

=Q2

D(PX1X2Y ‖Q1 ×Q2 ×W )

+
[
Ĩ1(PX1X2Y , R2)−R1

]+
, (20)

where Ĩ1(PX1X2Y , R2) denotes the right-hand side of (16)
with an arbitrary distribution PX1X2Y in place of Q1×Q2×W .
As discussed in Section I-A, this exponent is closely related
to a parallel work on the error exponent of the interference
channel [20].

Numerical Example: We consider the MAC with X1 =
X2 = {0, 1}, Y = {0, 1, 2}, and

W (y|x1, x2) =

{
1− 2δx1x2

y = x1 + x2

δx1x2
otherwise,

(21)

where {δx1x2} are constants. The mismatched decoder uses
q(x1, x2, y) of a similar form, but with a fixed value δ ∈

(
0, 13
)

in place of {δx1x2
}. All such choices of δ are equivalent for

maximum-metric decoding, but not for successive decoding.
We set δ00 = 0.01, δ01 = 0.1, δ10 = 0.01, δ11 = 0.3,

δ = 0.15, and Q1 = Q2 = (0.5, 0.5). Figure 1 plots the
achievable rates regions of successive decoding (Theorem 1),
maximum-metric decoding ((6)–(8)), and matched decoding
(giving the same region for successive and maximum-metric).

Interestingly, neither of the mismatched rate regions is
included in the other, thus suggesting that the two decoding

rules are fundamentally different. For the given input dis-
tribution, the sum rate for successive decoding exceeds that
of maximum-metric decoding. Furthermore, upon taking the
convex hull (which is justified by a time sharing argument),
the region for successive decoding is strictly larger. While
we observed similar behaviors for other choices of Q1 and
Q2, it remains unclear as to whether this is always the
case. Furthermore, while the rate region for maximum-metric
decoding is ensemble-tight, it is unclear whether the same is
true of the region given in Theorem 1.

To gain insight into the shape of the achievable rate region
for successive decoding, it is instructive to consider the various
parts of the region. When doing so, the reader may wish to
note that the condition in (16) can equivalently be expressed as
three related conditions holding simultaneously; see Appendix
B, leading to the conditions (131), (133), and (134). We have
the following:

• The horizontal line at R2 ≈ 0.54 corresponds to the
requirement on R2 in (17), which is identical to the
condition in (7) for maximum-metric decoding.

• The vertical line at R1 ≈ 0.45 also coincides with a
condition for maximum-metric decoding, namely, (6). It
is unsurprising that the two rate regions coincide at R2 =
0, since if user 2 only has one message then the two
decoding rules are identical. For small but positive R2,
the rate region boundaries still coincide even though the
decoding rules differ, and the successive decoding curve
is dominated by condition (134) in Appendix B.

• The straight diagonal part of the achievable rate re-
gion also matches that of maximum-metric decoding.
In this case, the successive decoding curve is dom-
inated by condition (133) in Appendix B; the term
max{0, IP̃ ′(X2;X1, Y ) − R2} expressed by the [·]+
function is dominated by IP̃ ′(X2;X1, Y ) − R2, and the
overall condition becomes a sum-rate bound, i.e., an
upper bound on R1 +R2.

• In the remaining part of the curve, as R1 decreases, the
rate region boundary bends downwards, and then be-
comes vertical. In this part, the successive decoding curve
is dominated by (131) in Appendix B, with R2 being
large enough for the term max{0, IP̃ ′(X2;X1, Y )−R2}
to equal zero. The step-like behavior at R1 ≈ 0.1
corresponds to a change in the dominant term of F
(see (14)); in the non-vertical part, the dominant term
is EP̃ [log q(X1, X2, Y )], whereas in the vertical part, R2

is large enough for the other term to dominate.

It is worth noting that under optimal decoding for the inter-
ference channel (taking the form (2)), it is known that for R1

below a certain threshold, R2 can be arbitrarily large while still
ensuring that user 1’s message is estimated correctly [26]. This
is in analogy with the step-like behavior in Figure 1.

Finally, we note that the mismatched maximum-metric
decoding region also has a non-pentagonal and non-convex
shape (see the zoomed part of Figure 1), though its deviation
from the usual pentagonal shape is milder than the successive
decoder in this example.
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B. Cognitive MAC

In this section, we consider the analog of Theorem 1 for
the cognitive MAC. Besides being of interest in its own
right, this will provide a case where ensemble-tightness can
be established, and with the numerical results still exhibiting
similar phenomena to those shown in Figure 1.

We again begin by introducing the random coding ensemble.
We fix a joint distribution QX1X2

∈ P(X1×X2), let QX1X2,n

be the corresponding closest joint type in the same way as
the previous subsection, and write the resulting marginals as
QX1

, QX1,n, QX2|X1
, QX2|X1,n, and so on. We consider

superposition coding, treating user 1’s messages as the “cloud
centers”, and user 2’s messages as the “satellite codewords”.
More precisely, defining

PX1(x1) =
1

|Tn(QX1,n)|
1
{
x1 ∈ Tn(QX1,n)

}
, (22)

PX2|X1
(x2|x1) =

1

|Tnx1
(QX2|X1,n)|

1
{
x2 ∈ Tnx1

(QX2|X1,n)
}
,

(23)

the codewords are distributed as follows:{(
X

(i)
1 , {X(i,j)

2 }M2
j=1

)}M1

i=1

∼
M1∏
i=1

(
PX1

(x
(i)
1 )

M2∏
j=1

PX2|X1
(x

(i,j)
2 |x(i)

1 )

)
. (24)

For the remaining definitions, we use similar notation to
the standard MAC, with an additional subscript to avoid
confusion. The analogous quantities to (13)–(15) are

F c(P̃
′
X1X2Y , R2) , EP̃ ′ [log q(X1, X2, Y )]

+
[
R2 − IP̃ ′(X2;Y |X1)

]+
, (25)

F c(PX1X2Y , R2) , max

{
EP [log q(X1, X2, Y )],

max
P ′
X1X2Y

∈T ′
1c(PX1X2Y

,R2)
EP ′ [log q(X1, X2, Y )]

+R2 − IP ′(X2;Y |X1)

}
, (26)

where

T ′1c(PX1X2Y , R2) ,
{
P ′X1X2Y : P ′X1Y = PX1Y ,

P ′X1X2
= PX1X2

, IP ′(X2;Y |X1) ≤ R2

}
. (27)

Our main result for the cognitive MAC is as follows.

Theorem 2. For any input distribution QX1X2
, the pair

(R1, R2) is achievable for the cognitive MAC with the mis-
matched successive decoding rule in (2)–(3) provided that

R1 ≤ min
P̃ ′
X1X2Y

∈T1c(QX1X2
×W,R2)

IP̃ ′(X1;Y )

+
[
IP̃ ′(X2;Y |X1)−R2

]+
,
(28)

R2 ≤ min
P̃X1X2Y

∈T2c(QX1X2
×W )

IP̃ (X2;Y |X1), (29)
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Figure 2. Achievable rate regions for the cognitive MAC given in (21) with
mismatched successive decoding and mismatched maximum-metric decoding.

where

T1c(PX1X2Y , R2) ,
{
P̃ ′X1X2Y : P ′X1X2

= PX1X2
,

P̃ ′Y = PY , F c(P̃
′
X1X2Y , R2) ≥ F c(PX1X2Y , R2)

}
, (30)

T2c(PX1X2Y ) ,
{
P̃X1X2Y :

P̃X1X2 = PX1X2 , P̃X1Y = PX1Y ,

EP̃ [log q(X1, X2, Y )] ≥ EP [log q(X1, X2, Y )]
}
. (31)

Conversely, for any rate pair (R1, R2) failing to meet both of
(28)–(29), the random-coding error probability resulting from
(22)–(24) tends to one as n→∞.

Proof. See Section IV.

In Appendix B, we cast (28) in terms of convex optimization
problems. Similarly to the previous subsection, the exponent
corresponding to (29) is precisely that corresponding to the
second user in [4, Thm. 1], and the exponent corresponding
to (28) is given by

min
PX1X2Y

:PX1X2
=QX1X2

D(PX1X2Y ‖QX1X2
×W )

+
[
I0c(PX1X2Y , R2)−R1

]+
, (32)

where I0c(PX1X2Y , R2) denotes the right-hand side of (28)
with an arbitrary distribution PX1X2Y in place of QX1X2

×W .
Similarly to the rate region, the proof of Theorem 2 shows that
these exponents are tight with respect to the ensemble average
(sometimes called exact random-coding exponents [27]).

Numerical Example: We consider again consider the tran-
sition law (and the corresponding decoding metric with a
single value of δ) given in (21) with δ00 = 0.01, δ01 = 0.1,
δ10 = 0.01, δ11 = 0.3, δ = 0.15, and QX1X2

= Q1 × Q2

with Q1 = Q2 = (0.5, 0.5). Figure 2 plots the achievable
rates regions of successive decoding (Theorem 2), maximum-
metric decoding ((9)–(10)), and matched decoding (again
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yielding the same region whether successive or maximum-
metric, cf. Appendix A).

We see that the behavior of the decoders is analogous to the
non-cognitive case observed in Figure 1. The key difference
here is that we know that all three regions are tight with respect
to the ensemble average. Thus, we may conclude that the
somewhat unusual shape of the region for successive decoding
is not merely an artifact of our analysis, but it is indeed
inherent to the random-coding ensemble and the decoder.

III. PROOF OF THEOREM 1

The proof of Theorem 1 is based on the method of type
class enumeration (e.g. see [26]–[28]), and is perhaps most
similar to that of Somekh-Baruch and Merhav [27].

Step 1: Initial bound

We assume without loss of generality that m1 = m2 = 1,
and we write Xν = X(1)

ν and let Xν denote an arbitrary
codeword X(j)

ν with j 6= 1. Thus,

(X1,X2,Y ,X1,X2) ∼ PX1
(x1)PX2

(x2)

×Wn(y|x1,x2)PX1
(x1)PX2

(x2). (33)

We define the following error events:

(Type 1)
∑
j q

n(X
(i)
1 ,X

(j)
2 ,Y ) ≥

∑
j q

n(X1,X
(j)
2 ,Y )

for some i 6= 1;
(Type 2) qn(X1,X

(j)
2 ,Y ) ≥ qn(X1,X2,Y )

for some j 6= 1.

Denoting the probabilities of these events by pe,1 and pe,2
respectively, it follows that the overall random-coding error
probability pe is upper bounded by pe,1 + pe,2.

The analysis of the type-2 error event is precisely that of one
of the three error types for maximum-metric decoding [3], [5],
yielding the rate condition in (17). We thus focus on the type-
1 event. We let pe,1(x1,x2,y) denote the probability of the
type-1 event conditioned on (X

(1)
1 ,X

(1)
2 ,Y ) = (x1,x2,y),

and we denote the joint type of (x1,x2,y) by PX1X2Y . We
write the objective function in (2) as

Ξx2y(x1) , qn(x1,x2,y) +
∑
j 6=1

qn(x1,X
(j)
2 ,y). (34)

This quantity is random due to the randomness of {X(j)
2 }.

The starting point of our analysis is the union bound:

pe,1(x1,x2,y) ≤ (M1−1)P
[
Ξx2y(X1) ≥ Ξx2y(x1)

]
. (35)

The difficulty in analyzing (35) is that for two different
codewords x1 and x1, Ξx2y(x1) and Ξx2y(x1) are not
independent, and their joint statistics are complicated. We
will circumvent this issue by conditioning on high probability
events under which these random quantities can be bounded
by deterministic values.

Step 2: An auxiliary lemma
We introduce some additional notation. For a given realization
(x1,x2,y) of (X1,X2,Y ), we let P̃X1X2Y denote its joint
type and we write qn(P̃ ′X1X2Y

) , qn(x1,x2,y). In addition,
for a general sequence x1, we define the type enumerator

Nx1y(P̃ ′X1X2Y ) =
∑
j 6=1

1
{

(x1,X
(j)
2 ,y) ∈ Tn(P̃ ′X1X2Y )

}
,

(36)
which represents the random number of X

(j)
2 (j 6= 1) such

that (x1,X
(j)
2 ,y) ∈ Tn(P̃ ′X1X2Y

). As we will see below,
when X1 = x1, the quantity Ξx2y(x1) can be re-written in
terms of Nx1y(·), and Ξx2y(x1) can similarly be re-written
in terms of Nx1y(·).

The key to replacing random quantities by deterministic
ones is to condition on events that hold with probability
one approaching faster than exponentially, thus not affecting
the exponential behavior of interest. The following lemma
will be used for this purpose, characterizing the behavior of
Nx1y(P̃ ′X1X2Y

) for various choices of R2 and P̃ ′X1X2Y
. The

proof can be found in [26], [27], and is based on the fact that

P
[
(x1,X2,y) ∈ Tn(P̃ ′X1X2Y )

] .
= e−nIP̃ ′ (X2;X1,Y ), (37)

which is a standard property of types [25, Ch. 2].

Lemma 1. [26], [27] Fix the pair (x1,y) ∈ Tn(P̃X1Y ), a
constant δ > 0, and a type P̃ ′X1X2Y

∈ S ′1,n(Q2,n, P̃X1Y ).
1) If R2 ≥ IP̃ ′(X2;X1, Y ) + δ, then

M2e
−n(IP̃ ′ (X2;X1,Y )+δ) ≤ Nx1y(P̃ ′X1X2Y )

≤M2e
−n(IP̃ ′ (X2;X1,Y )−δ) (38)

with probability tending to one faster than exponentially.
2) If R2 < IP̃ ′(X2;X1, Y ) + δ, then

Nx1y(P̃ ′X1X2Y ) ≤ en 2δ (39)

with probability tending to one faster than exponentially.

Roughly speaking, Lemma 1 states that if R2 >
IP̃ ′(X2;X1, Y ) then the type enumerator is highly concen-
trated about its mean, whereas if R2 < IP̃ ′(X2;X1, Y ) then
the type enumerator takes a subexponential value (possibly
zero) with overwhelming probability.

Given a joint type P̃X1Y , define the event

Aδ(P̃X1Y )

=
{

(38) holds for all P̃ ′X1X2Y ∈ S
′
1,n(Q2,n, P̃X1Y )

with R2 ≥ IP̃ ′(X2;X1, Y ) + δ
}

∩
{

(39) holds for all P̃ ′X1X2Y ∈ S
′
1,n(Q2,n, P̃X1Y )

with R2 < IP̃ ′(X2;X1, Y ) + δ
}
, (40)

where

S ′1,n(Q2,n, P̃X1Y ) ,
{
P̃ ′X1X2Y ∈ Pn(X1 ×X2 × Y) :

P̃ ′X1Y = P̃X1Y , P̃
′
X2

= Q2,n

}
, (41)



7

and where we recall the definition of Q2,n at the start of Sec-
tion II-A. By Lemma 1 and the union bound, P[Aδ(P̃X1Y )]→
1 faster than exponentially. and hence we can safely condition
any event on Aδ(P̃X1Y ) without changing the exponential
behavior of the corresponding probability. This can be seen
by writing the following for any event E :

P[E ] = P[E ∩ A] + P[E ∩ Ac] (42)
≤ P[E |A] + P[Ac], (43)

P[E ] ≥ P[E ∩ A] (44)
= (1− P[Ac])P[E |A] (45)
≥ P[E |A]− P[Ac]. (46)

Using these observations, we will condition on Aδ several
times throughout the remainder of the proof.

Step 3: Bound Ξx2y(x1) by a deterministic value

From (34), we have

Ξx2y(x1) = qn(P̃X1X2Y )

+
∑

P̃ ′
X1X2Y

Nx1y(P̃ ′X1X2Y )qn(P̃ ′X1X2Y ). (47)

Since the codewords are generated independently,
Nx1y(P̃ ′X1X2Y

) is binomially distributed with M2 − 1 trials
and success probability P

[
(x1,X2,y) ∈ Tn(P̃ ′X1X2Y

)
]
.

By construction, we have Nx1y(P̃ ′X1X2Y
) = 0 unless

P̃ ′X1X2Y
∈ S ′1,n(Q2,n, P̃X1Y ), where S ′1,n is defined in (41).

Conditioned on Aδ(PX1Y ), we have the following:

Ξx2y(x1)

= qn(PX1X2Y ) +
∑

P ′
X1X2Y

Nx1y(P ′X1X2Y )qn(P ′X1X2Y )

(48)
≥ qn(PX1X2Y )

+ max
P ′
X1X2Y

∈S′
1,n(Q2,n,PX1Y

)

R2≥IP ′ (X2;X1,Y )+δ

Nx1y(P ′X1X2Y )qn(P ′X1X2Y )

(49)
≥ qn(PX1X2Y ) +M2

× max
P ′
X1X2Y

∈S′
1,n(Q2,n,PX1Y

)

R2≥IP ′ (X2;X1,Y )+δ

e−n(IP ′ (X2;X1,Y )+δ)qn(P ′X1X2Y )

(50)

, Gδ,n(PX1X2Y ), (51)

where (50) follows from (38). Unlike Ξx2y(x1), the quantity
Gδ,n(PX1X2Y ) is deterministic. Substituting (51) into (35) and
using the fact that P

[
Aδ(P̃X1Y )

]
→ 1 faster than exponen-

tially, we obtain

pe,1(x1,x2,y) ≤̇M1P
[
Ξx2y(X1) ≥ Gδ,n(PX1X2Y )

]
. (52)

Step 4: An expansion based on types
Since the statistics of Ξx2y(x1) depend on x1 only through
the joint type of (x1,x2,y), we can write (52) as follows:

pe,1(x1,x2,y)

≤̇M1

∑
P̃X1X2Y

P
[
(X1,x2,y) ∈ Tn(P̃X1X2Y )

]
× P

[
Ξx2y(x1) ≥ Gδ,n(PX1X2Y )

]
(53)

.
= M1 max

P̃X1X2Y
∈S1,n(Q1,n,PX2Y

)
e−nIP̃ (X1;X2,Y )

× P
[
Ξx2y(x1) ≥ Gδ,n(PX1X2Y )

]
, (54)

where x1 denotes an arbitrary sequence such that
(x1,x2,y) ∈ Tn(P̃X1X2Y ), and

S1,n(Q1,n, PX2Y ) ,
{
P̃X1X2Y ∈ Pn(X1 ×X2 × Y) :

P̃X1
= Q1,n, P̃X2Y = PX2Y

}
. (55)

In (54), we have used an analogous property to (37) and the
fact that by construction, the joint type of (X1,x2,y) is in
S1,n(Q1,n, PX2Y ) with probability one.

Step 5: Bound Ξx2y(x1) by a deterministic value
Next, we again use Lemma 1 in order to replace Ξx2y(x1) in
(54) by a deterministic quantity. We have from (47) that

Ξx2y(x1) ≤ qn(P̃X1X2Y )

+ p0(n) max
P̃ ′
X1X2Y

Nx1y(P̃ ′X1X2Y )qn(P̃ ′X1X2Y ), (56)

where p0(n) is a polynomial corresponding to the total number
of joint types. Substituting (56) into (54), we obtain

pe,1(x1,x2,y) ≤̇M1 max
P̃X1X2Y

∈S1,n(Q1,n,PX2Y
)

max
P̃ ′
X1X2Y

∈S′
1(Q2,n,P̃X1Y

)
e−nIP̃ (X1;X2,Y ) P

[
EP,P̃ (P̃ ′X1X2Y )

]
,

(57)

where

EP,P̃ (P̃ ′X1X2Y )

,
{
qn(P̃X1X2Y ) + p0(n)Nx1y(P̃ ′X1X2Y )qn(P̃ ′X1X2Y )

≥ Gδ,n(PX1X2Y )
}
, (58)

and we have used the union bound to take the maximum over
P̃ ′X1X2Y

outside the probability in (57). Continuing, we have
for any P̃X1X2Y ∈ S1,n(Q1,n, PX2Y ) that

max
P̃ ′
X1X2Y

∈S′
1,n(Q2,n,P̃X1Y

)
P
[
EP,P̃ (P̃ ′X1X2Y )

]
= max

{
max

P̃ ′
X1X2Y

∈S′
1,n(Q2,n,P̃X1Y

)

R2≥IP̃ ′ (X2;X1,Y )+δ

P
[
EP,P̃ (P̃ ′X1X2Y )

]
,

max
P̃ ′
X1X2Y

∈S′
1,n(Q2,n,P̃X1Y

)

R2<IP̃ ′ (X2;X1,Y )+δ

P
[
EP,P̃ (P̃ ′X1X2Y )

]}
.

(59)
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Step 5a – Simplify the First Term: For the first term
on the right-hand side of (59), observe that conditioned on
Aδ(P̃X1Y ) in (40), we have for P̃ ′X1X2Y

satisfying R2 ≥
IP̃ ′(X2;X1, Y ) + δ that

Nx1y(P̃ ′X1X2Y )qn(P̃ ′X1X2Y )

≤M2e
−n(IP̃ ′ (X2;X1,Y )−δ)qn(P̃ ′X1X2Y ), (60)

where we have used (38). Hence, and since P
[
Aδ(P̃X1Y )

]
→

1 faster than exponentially, we have

P
[
EP,P̃ (P̃ ′X1X2Y )

]
≤̇1
{
qn(P̃X1X2Y ) +M2p0(n)e−n(IP̃ ′ (X2;X1,Y )−δ)qn(P̃ ′X1X2Y )

≥ Gδ,n(PX1X2Y )
}
. (61)

Step 5b – Simplify the Second Term: For the second
term on the right-hand side of (59), we define the event
B ,

{
Nx1y(P̃ ′X1X2Y

) > 0
}

, yielding

P[B] ≤̇M2e
−nIP̃ ′ (X2;X1,Y ), (62)

which follows from the union bound and (37). Whenever R2 <
IP̃ ′(X2;X1, Y ) + δ, we have

P
[
EP,P̃ (P̃ ′X1X2Y )

]
≤ P

[
EP,P̃ (P̃ ′X1X2Y )

∣∣Bc]+ P[B]P
[
EP,P̃ (P̃ ′X1X2Y )

∣∣B]
(63)

≤̇1
{
qn(P̃X1X2Y ) ≥ Gδ,n(PX1X2Y )

}
+M2e

−nIP̃ ′ (X2;X1,Y )P
[
EP,P̃ (P̃ ′X1X2Y )

∣∣B], (64)

≤̇1
{
qn(P̃X1X2Y ) ≥ Gδ,n(PX1X2Y )

}
+M2e

−nIP̃ ′ (X2;X1,Y )1
{
qn(P̃X1X2Y )

+ p0(n)en 2δqn(P̃ ′X1X2Y ) ≥ Gδ,n(PX1X2Y )
}
, (65)

where (64) follows using (62) and (58) along with the fact
that Bc implies Nx1y(P̃ ′X1X2Y

) = 0, and (65) follows by
conditioning on Aδ(P̃X1Y ) and using (39).

Step 6: Deduce the exponent for fixed (x1,x2,y)

Observe that F (PX1X2Y , R2) in (14) equals the exponent of
Gδ,n in (51) in the limit as δ → 0 and n→∞. Similarly, the
exponents corresponding to the other quantities appearing in
the indicator functions in (61) and (65) tend to

F 1(P̃X1X2Y , P̃
′
X1X2Y , R2) , max

{
EP̃ [log q(X1, X2, Y )],

EP̃ ′ [log q(X1, X2, Y )] +R2 − IP̃ ′(X2;X1, Y )
}
, (66)

F 2(P̃X1X2Y , P̃
′
X1X2Y ) , max

{
EP̃ [log q(X1, X2, Y )],

EP̃ ′ [log q(X1, X2, Y )]
}
. (67)

We claim that combining these expressions with (57), (59),
(61) and (65) and taking δ → 0 (e.g., analogously to [4,
p. 737], we may set δ = n−1/2), gives the following:

pe,1(x1,x2,y) ≤̇

max

{
max

(P̃X1X2Y
,P̃ ′
X1X2Y

)∈T (1)
1 (PX1X2Y

,R2)

M1e
−nIP̃ (X1;X2,Y ),

max
(P̃X1X2Y

,P̃ ′
X1X2Y

)∈T (2)
1 (PX1X2Y

,R2)

M1e
−nIP̃ (X1;X2,Y )

×M2e
−nIP̃ ′ (X2;X1,Y )

}
, (68)

where1

T (1)
1 (PX1X2Y , R2) ,

{
(P̃X1X2Y , P̃

′
X1X2Y ) :

P̃X1X2Y ∈ S1(Q1, PX2Y ),

P̃ ′X1X2Y ∈ S
′
1(Q2, P̃X1Y ),

IP̃ ′(X2;X1, Y ) ≤ R2,

F 1(P̃X1X2Y , P̃
′
X1X2Y , R2) ≥ F (PX1X2Y , R2)

}
, (69)

T (2)
1 (PX1X2Y , R2) ,

{
(P̃X1X2Y , P̃

′
X1X2Y ) :

P̃X1X2Y ∈ S1(Q1, PX2Y ),

P̃ ′X1X2Y ∈ S
′
1(Q2, P̃X1Y ),

IP̃ ′(X2;X1, Y ) ≥ R2,

F 2(P̃X1X2Y , P̃
′
X1X2Y ) ≥ F (PX1X2Y , R2)

}
, (70)

and

S1(Q1, PX2Y ) ,
{
P̃X1X2Y ∈ P(X1 ×X2 × Y) :

P̃X1
= Q1, P̃X2Y = PX2Y

}
, (71)

S ′1(Q2, P̃X1Y ) ,
{
P̃ ′X1X2Y ∈ P(X1 ×X2 × Y) :

P̃ ′X1Y = P̃X1Y , P̃
′
X2

= Q2

}
. (72)

To see that this is true, we note the following:

• For the first term on the right-hand side of (68), the
objective function follows from (56), and the additional
constraint F 1(P̃X1X2Y , P̃

′
X1X2Y

, R2) ≥ F (PX1X2Y , R2)
in (69) follows since the left-hand side in (61) has
exponent F 1 and the right-hand side has exponent F by
the definition of Gδ,n in (51).

• For the second term on the right-hand side of (68), the
objective function follows from (56) and the second term
in (65), and the latter (along with Gδ,n in (51)) also leads
to the final constraint in (70).

• The first term in (65) is upper bounded by the right-hand
side of (61), and we already analyzed the latter in order to
obtain the first term in (68). Hence, this term can safely
be ignored.

1Strictly speaking, these sets depend on (Q1, Q2), but this dependence
need not be explicit, since we have PX1

= Q1 and PX2
= Q2.
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Step 7: Deduce the achievable rate region
By a standard property of types [25, Ch. 2], P

[
(X1,X2,Y ) ∈

Tn(PX1X2Y )
]

decays to zero exponentially fast when PX1X2Y

is bounded away from Q1×Q2×W . Therefore, we can safely
substitute PX1X2Y = Q1 × Q2 ×W to obtain the following
rate conditions for the first decoding step:

R1 ≤ min
(P̃X1X2Y

,P̃ ′
X1X2Y

)∈T (1)
1 (Q1×Q2×W,R2)

IP̃ (X1;X2, Y ),

(73)
R1 +R2 ≤ min

(P̃X1X2Y
,P̃ ′
X1X2Y

)∈T (2)
1 (Q1×Q2×W,R2)

IP̃ (X1;X2, Y ) + IP̃ ′(X2;X1, Y ). (74)

Finally, we claim that (73)–(74) can be united to obtain (16).
To see this, we consider two cases:
• If R2 > IP̃ ′(X2;X1, Y ), then the [·]+ term in (16) equals

zero, yielding the objective in (73). Similarly, in this case,
the term F in (13) simplifies to F 1 in (66).

• If R2 ≤ IP̃ ′(X2;X1, Y ), then the [·]+ term in (16) equals
IP̃ ′(X2;X1, Y ) − R2, yielding the objective in (73). In
this case, the term F in (13) simplifies to F 2 in (67).

IV. PROOF OF THEOREM 2

The achievability and ensemble tightness proofs for Theo-
rem 2 follow similar steps; to avoid repetition, we focus on
the ensemble tightness part. The achievability part is obtained
using exactly the same high-level steps, while occasionally
replacing upper bounds by lower bounds as needed via the
techniques presented in Section III.

Step 1: Initial bound
We consider the two error events introduced at the beginning
of Section III, and observe that pe ≥ 1

2 max{pe,1, pe,2}. The
analysis of pe,2 is precisely that given in [4, Thm. 1], so we
focus on pe,1.

We assume without loss of generality that m1 = m2 = 1,
and we write Xν = X(1)

ν (ν = 1, 2), let X(j)
2 denote X

(1,j)
2 ,

let X(j)
2 denote X(i,j) for some fixed i 6= 1, and let (X1,X2)

denote (X
(i)
1 ,X

(i,j)
2 ) for some fixed (i, j) with i 6= 1. Thus,

(X1,X2,Y ,X1,X2) ∼ PX1(x1)PX2|X1
(x2|x1)

×Wn(y|x1,x2)PX1(x1)PX2|X1
(x2|x1). (75)

Moreover, analogously to (34), we define

Ξx2y(x1) , qn(x1,x2,y) +
∑
j 6=1

qn(x1,X
(1,j)
2 ,y) (76)

Ξ̃y(x
(i)
1 ) ,

∑
j

qn(x
(i)
1 ,X

(i,j)
2 ,y). (77)

Note that here we use separate definitions corresponding to
x1 and x

(i)
1 (i 6= 1) since in the cognitive MAC, each user-1

sequence is associated with a different set of user-2 sequences.
Fix a joint type PX1X2Y and a triplet (x1,x2,y) ∈

Tn(PX1X2Y ), and let pe,1(x1,x2,y) be the type-1 error
probability conditioned on (X

(1)
1 ,X

(1,1)
2 ,Y ) = (x1,x2,y);

here we assume without loss of generality that m1 = m2 = 1.
We have

pe,1(x1,x2,y)

= P
[ M1⋃
i=2

{
Ξ̃y(X

(i)
1 ) ≥ Ξx2y(x1)

}]
(78)

≥ 1

2
min

{
1, (M1 − 1)P

[
Ξ̃y(X1) ≥ Ξx2y(x1)

]}
, (79)

where (79) follows since the truncated union bound is tight to
within a factor of 1

2 for independent events [29, Lemma A.2].
Note that this argument fails for the standard MAC; there,
the independence requirement does not hold, so it is unclear
whether (35) is tight upon taking the minimum with 1.

We now bound the inner probability in (79), which we
denote by Φ1(PX1X2Y ). By similarly defining

Φ2(PX1X2Y , P̃X1Y )

, P
[
Ξ̃y(X1) ≥ Ξx2y(x1) | (X1,y) ∈ Tn(P̃X1Y )

]
, (80)

we obtain

Φ1(PX1X2Y )

≥ max
P̃X1Y

P
[
(X1,y) ∈ Tn(P̃X1Y )

]
Φ2(PX1X2Y , P̃X1Y ) (81)

.
= max
P̃X1Y

: P̃X1
=QX1

,P̃Y =PY

e−nIP̃ (X1;Y )Φ2(PX1X2Y , P̃X1Y ),

(82)

where (82) is a standard property of types [25, Ch. 2]. We
proceed by bounding Φ2; to do so, we let x1 be an arbitrary
sequence such that (x1,y) ∈ Tn(P̃X1Y ). By symmetry, any
such sequence may be considered.

Step 2: Type class enumerators
We write each metric Ξx2y in terms of type class enumerators.
Specifically, again writing qn(PX1X2Y ) to denote the n-fold
product metric for a given joint type, we note the following
analogs of (47):

Ξx2y(x1) = qn(PX1X2Y ) +
∑

P ′
X1X2Y

Ξy(x1, P
′
X1X2Y ) (83)

Ξ̃y(x1) =
∑

P̃ ′
X1X2Y

Ξ̃y(x1, P̃
′
X1X2Y ), (84)

where

Ξy(x1, P
′
X1X2Y ) , Nx1y(P ′X1X2Y )qn(P ′X1X2Y ), (85)

Ξ̃y(x1, P̃
′
X1X2Y ) , Ñx1y(P̃ ′X1X2Y )qn(P̃ ′X1X2Y ), (86)

and

Nx1y(P ′X1X2Y ) ,
∑
j 6=1

1
{

(x1,X
(j)
2 ,y) ∈ Tn(P ′X1X2Y )

}
,

(87)

Ñx1y(P̃ ′X1X2Y ) ,
∑
j

1
{

(x1,X
(j)
2 ,y) ∈ Tn(P̃ ′X1X2Y )

}
.

(88)



10

Note the minor differences in these definitions compared to
those for the standard MAC, resulting from the differing code-
book structure associated with superposition coding. Using
these definitions, we can bound (80) as follows:

Φ2(PX1X2Y , P̃X1Y )

= P
[ ∑
P̃ ′
X1X2Y

Ξ̃y(x1, P̃
′
X1X2Y )

≥ qn(PX1X2Y ) +
∑

P ′
X1X2Y

Ξy(x1, P
′
X1X2Y )

]
(89)

≥ P
[

max
P̃ ′
X1X2Y

Ξ̃y(x1, P̃
′
X1X2Y )

≥ qn(PX1X2Y ) + p0(n) max
P ′
X1X2Y

Ξy(x1, P
′
X1X2Y )

]
(90)

≥ max
P̃ ′
X1X2Y

P
[
Ξ̃y(x1, P̃

′
X1X2Y )

≥ qn(PX1X2Y ) + p0(n) max
P ′
X1X2Y

Ξy(x1, P
′
X1X2Y )

]
(91)

, max
P̃ ′
X1X2Y

Φ3(PX1X2Y , P̃X1Y , P̃
′
X1X2Y ), (92)

where p0(n) is a polynomial corresponding to the number of
joint types.

Step 3: An auxiliary lemma
We define the sets

S1c,n(QX1,n, PY ) ,
{
P̃X1Y ∈ Pn(X1 × Y) :

P̃X1
= QX1,n, P̃Y = PY

}
, (93)

S ′1c,n(QX1X2,n, P̃X1Y ) ,
{
P̃ ′X1X2Y ∈ Pn(X1 ×X2 × Y) :

P̃ ′X1Y = P̃X1Y , P̃X1X2 = QX1X2,n

}
. (94)

The following lemma provides analogous properties to Lemma
1 for joint types within S ′1c,n, with suitable modifications
to handle the fact that we are proving ensemble tight-
ness rather than achievability. It is based on the fact that
Nx1y(P̃ ′X1X2Y

) has a binomial distribution with success
probability P[(x1,X2,y) ∈ Tn(P̃ ′X1X2Y

) |X1 = x1]
.
=

e−nIP̃ ′ (X2;Y |X1) by (23).

Lemma 2. Fix a joint type P̃X1Y and a pair
(x1,y) ∈ Tn(P̃X1Y ). For any joint type P̃ ′X1X2Y

∈
S ′1,n(QX1X2,n, P̃X2Y ) and constant δ > 0, the type
enumerator Nx1y(P̃ ′X1X2Y

) satisfies the following:
1) If R2 ≥ IP̃ ′(X2;Y |X1) − δ, then Nx1y(P̃ ′X1X2Y

) ≤
M2e

−n(IP̃ ′ (X2;Y |X1)−2δ) with probability approaching
one faster than exponentially.

2) If R2 ≥ IP̃ ′(X2;Y |X1) + δ, then Nx1y(P̃ ′X1X2Y
) ≥

M2e
−n(IP̃ ′ (X2;Y |X1)+δ) with probability approaching

one faster than exponentially.
3) If R2 ≤ IP̃ ′(X2;Y |X1)− δ, then

a) Nx1y(P̃ ′X1X2Y
) ≤ enδ with probability approaching

one faster than exponentially;

b) P
[
Nx1y(P̃ ′X1X2Y

) > 0
] .

= M2e
−nIP̃ ′ (X2;Y |X1).

Moreover, the analogous properties hold for the type enu-
merator Nx1y(P ′X1X2Y

) and any joint types PX1Y (with
PX1 = QX1,n) and P̃ ′X1X2Y

∈ S ′1,n(QX1X2,n, PX1Y ).

Proof. Parts 1, 2 and 3a are proved in the same way as Lemma
1; we omit the details to avoid repetition with [26], [27].
Part 3b follows by writing the probability that Nx1y > 0
as a union of the M1 − 1 events in (87) holding, and using
the fact that the truncated union bound is tight to within
a factor of 1

2 [29, Lemma A.2]. The truncation need not
explicitly be included, since the assumption of part 3 implies
that M2e

−nIP̃ ′ (X2;Y |X1) → 0.

Given a joint type PX2Y (respectively, P̃X1Y ), let
Aδ(P̃X1Y ) (respectively, Ãδ(P̃X1Y )) denote the union of the
high-probability events in Lemma 2 (in parts 1, 2 and 3a)
taken over all P ′X1X2Y

∈ S1,n(QX1X2
, PX2Y ) (respectively,

P̃ ′X1X2Y
∈ S ′1,n(QX1X2

, P̃X1Y )). By the union bound, the
probability of these events tends to one faster than exponen-
tially, and hence we can safely condition any event accordingly
without changing the exponential behavior of the correspond-
ing probability (see (42)–(46)).

Step 4: Bound Ξy(x1, P
′
X1X2Y

) by a deterministic value
We first deal with Ξy(x1, P

′
X1X2Y

) in (91). Defining the event

Bδ ,
{
Nx1y(P ′X1X2Y ) = 0 for all P ′X1X2Y

such that R2 ≤ IP̃ ′(X2;Y |X1)− δ
}
, (95)

we immediately obtain from Property 3b in Lemma 2 that
P
[
Bcδ
]
≤̇ e−nδ → 0, and hence

Φ3(PX1X2Y , P̃X1Y , P̃
′
X1X2Y )

≥ P
[
Ξ̃y(x1, P̃

′
X1X2Y ) ≥ qn(PX1X2Y )

+ p0(n) max
P ′
X1X2Y

Ξy(x1, P
′
X1X2Y ) ∩ Bδ

]
(96)

.
= P

[
Ξ̃y(x1, P̃

′
X1X2Y ) ≥ qn(PX1X2Y )

+ p0(n) max
P ′
X1X2Y

Ξy(x1, P
′
X1X2Y )

∣∣∣Bδ]. (97)

Next, conditioned on Bδ and the events in Lemma 2, we have

qn(PX1X2Y ) + p0(n) max
P ′
X1X2Y

Ξy(x1, P
′
X1X2Y )

= qn(PX1X2Y )

+ p0(n) max
P ′
X1X2Y

∈S′
1c,n(QX1X2,n

,P̃X1Y
) :

R2≥IP ′ (X2;Y |X1)−δ

Ξy(x1, P
′
X1X2Y )

(98)
≤ qn(PX1X2Y ) + p0(n)

× max
P ′
X1X2Y

∈S′
1c,n(QX1X2,n

,P̃X1Y
) :

R2≥IP ′ (X2;Y |X1)−δ

M2e
−n(IP̃ ′ (X2;Y |X1)−2δ)

× qn(P ′X1X2Y ) (99)
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, Gδ,n(PX1X2Y ), (100)

where in (99) we used part 1 of Lemma 2. It follows that

Φ3(PX1X2Y , P̃X1Y , P̃
′
X1X2Y )

≥̇P
[
Ξ̃y(x1, P̃

′
X1X2Y ) ≥ Gδ,n(PX1X2Y )

]
, (101)

where the conditioning on Bδ has been removed since it is
independent of the statistics of Ξ̃y(x1, P̃

′
X1X2Y

).

Step 5: Bound Ξx2y(x1) by a deterministic value

We now deal with the quantity Ξ̃y(x1, P̃
′
X1X2Y

). Substituting
(101) into (92) and constraining the maximization in two
different ways, we obtain

Φ2(PX1X2Y , P̃X1Y ) ≥̇ max

{
max

P̃ ′
X1X2Y

∈S′
1c,n(QX1X2,n

,P̃X1Y
) :

R2≥IP̃ ′ (X2;Y |X1)+δ

P
[
Ξ̃y(x1, P̃

′
X1X2Y ) ≥ Gδ,n(PX1X2Y )

]
,

max
P̃ ′
X1X2Y

∈S′
1c,n(QX1X2,n

,P̃X1Y
) :

R2≤IP̃ ′ (X2;Y |X1)−δ

P
[
Ξ̃y(x1, P̃

′
X1X2Y ) ≥ Gδ,n(PX1X2Y )

]}
. (102)

For R2 ≥ IP̃ ′(X2;Y |X1)+δ, we have from part 2 of Lemma
2 that, conditioned on Ãδ(P̃X1Y ),

Ξ̃y(x1, P̃
′
X1X2Y ) ≥M2e

−n(IP̃ ′ (X2;Y |X1)+δ)qn(P̃ ′X1X2Y ).
(103)

On the other hand, for R2 ≤ IP̃ ′(X2;Y |X1)− δ, we have

P
[
Ξ̃y(x1, P̃

′
X1X2Y ) ≥ Gδ,n(PX1X2Y )

]
(104)

= P
[
Ξ̃y(x1, P̃

′
X1X2Y ) ≥ Gδ,n(PX1X2Y )

∩ Nx1y(P̃ ′X1X2Y ) > 0
]

(105)

= P
[
Nx1y(P̃ ′X1X2Y ) > 0

]
P
[
Ξ̃y(x1, P̃

′
X1X2Y )

≥ Gδ,n(PX1X2Y )
∣∣Nx1y(P̃ ′X1X2Y ) > 0

]
(106)

.
= M2e

−nIP̃ ′ (X2;Y |X1)P
[
Ξ̃y(x1, P̃

′
X1X2Y )

≥ Gδ,n(PX1X2Y )
∣∣Nx1y(P̃ ′X1X2Y ) > 0

]
(107)

≥̇1
{
qn(P̃ ′X1X2Y ) ≥ Gδ,n(PX1X2Y )

}
M2e

−nIP̃ ′ (X2;Y |X1),

(108)

where (105) follows since the event under consideration is
zero unless Nx1y(P̃ ′X1X2Y

) > 0, (107) follows from part 3b
of Lemma 2, and (108) follows since when Nx1y(P̃ ′X1X2Y

)
is positive it must be at least one.

Step 6: Deduce the exponent for fixed (x1,x2,y)

We have now handled both cases in (102). Combining them,
and substituting the result into (82), we obtain

Φ1(PX1X2Y ) ≥̇ max
P̃X1Y

∈S1c,n(QX1,n
,PY )

e−nIP̃ (X1;Y )

×max

{
max

P̃ ′
X1X2Y

∈S′
1c,n(QX1X2,n

,P̃X1Y
) :

R2≥IP̃ ′ (X2;Y |X1)+δ

1
{
M2e

−n(IP̃ ′ (X2;Y |X1)+δ)

× qn(P̃ ′X1X2Y ) ≥ Gδ,n(PX1X2Y )
}
,

max
P̃ ′
X1X2Y

∈S′
1c,n(QX1X2,n

,P̃X1Y
) :

R2≤IP̃ ′ (X2;Y |X1)−δ

M2e
−nIP̃ ′ (X2;Y |X1)

× 1
{
qn(P̃ ′X1X2Y ) ≥ Gδ,n(PX1X2Y )

}}
. (109)

Observe that F c(PX1X2Y ) in (14) equals the exponent of Gδ,n
in (100) in the limit as δ → 0 and n → ∞. Similarly, the
exponent corresponding to the quantity in the first indicator
function in (109) tends to

F 1c(P̃
′
X1X2Y , R2)

, EP̃ ′ [log q(X1, X2, Y )] +R2 − IP̃ ′(X2;Y |X1). (110)

Recalling that Φ1 is the inner probability in (79), we obtain
the following by taking δ → 0 sufficiently slowly and using
the continuity of the underlying terms in the optimizations:

pe,1(x1,x2,y) ≥̇ max

{
max

(P̃X1Y
,P̃ ′
X1X2Y

)∈T (1)
1c (PX1X2Y

,R2)

M1e
−nIP̃ (X1;Y ),

max
(P̃X1Y

,P̃ ′
X1X2Y

)∈T (2)
1c (PX1X2Y

,R2)

M1e
−nIP̃ (X1;Y )

×M2e
−nIP̃ ′ (X2;Y |X1)

}
, (111)

where

T (1)
1c (PX1X2Y , R2) ,

{
(P̃X1Y , P̃

′
X1X2Y ) :

P̃X1Y ∈ S1c(QX1
, PY ),

P̃ ′X1X2Y ∈ S
′
1c(QX1X2

, P̃X1Y ),

IP̃ ′(X2;Y |X1) ≤ R2,

F 1c(P̃
′
X1X2Y , R2) ≥ F c(PX1X2Y , R2)

}
, (112)

T (2)
1c (PX1X2Y , R2) ,

{
(P̃X1Y , P̃

′
X1X2Y ) :

P̃X1Y ∈ S1c(QX1 , PY ),

P̃ ′X1X2Y ∈ S
′
1c(QX1X2 ,

P̃X1Y ), IP̃ ′(X2;Y |X1) ≥ R2,

EP̃ ′ [log q(X1, X2, Y )] ≥ F (PX1X2Y , R2)
}
, (113)
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and

S1c(QX1 , PY ) ,
{
P̃X1X2Y ∈ P(X1 ×X2 × Y) :

P̃X1
= QX1

, P̃Y = PY

}
, (114)

S ′1c(QX1X2
, P̃X1Y ) ,

{
P̃ ′X1X2Y ∈ P(X1 ×X2 × Y) :

P̃ ′X1Y = P̃X1Y , P̃
′
X1X2

= QX1X2

}
. (115)

More specifically, this follows from the same argument as Step
6 in Section III.

Step 7: Deduce the achievable rate region
Similarly to Section III, the fact that the joint type of
(X1,X2,Y ) approaches QX1X2

× W with probability ap-
proaching one means that we can substitute PX1X2Y =
QX1X2

×W to obtain the following rate conditions:

R1 ≤ min
(P̃X1Y

,P̃ ′
X1X2Y

)∈T (1)
1c (QX1X2

×W,R2)

IP̃ (X1;Y ),

(116)
R1 +R2 ≤ min

(P̃X1Y
,P̃ ′
X1X2Y

)∈T (2)
1c (QX1X2

×W,R2)

IP̃ (X1;Y )

+ IP̃ ′(X2;Y |X1). (117)

The proof of (28) is now concluded via the same argument
as Step 7 in Section III, using the definitions of F c, F 1c,
S1c, S ′1c, T (1)

1c and T (2)
1c to unite (116)–(117). Note that the

optimization variable P̃X1Y can be absorbed into P̃ ′X1X2Y
due

to the constraint P̃ ′X1Y
= P̃X1Y .

V. CONCLUSION

We have obtained error exponents and achievable rates for
both the standard and cognitive MAC using a mismatched
multi-letter successive decoding rule. For the cognitive case,
we have proved ensemble tightness, thus allowing us to
conclusively establish that there are cases in which neither the
mismatched successive decoding region nor the mismatched
maximum-metric decoding region [3] dominate each other in
the random coding setting.

An immediate direction for further work is to establish the
ensemble tightness of the achievable rate region for the stan-
dard MAC in Theorem 1. A more challenging open question is
to determine whether either of the true mismatched capacity
regions (rather than just achievable random-coding regions)
for the two decoding rules contain each other in general.

APPENDIX A
BEHAVIOR OF SUCCESSIVE DECODER WITH q = W

Here we show that a rate pair (R1, R2) or error exponent
E(R1, R2) is achievable under maximum-likelihood (ML)
decoding if and only if it is achievable under the successive
rule in (2)–(3) with q(x1, x2, y) = W (y|x1, x2). This is shown
in the same way for the standard MAC and the cognitive MAC,
so we focus on the former.

It suffices to show that, for any fixed codebooks C1 =

{x(i)
1 }

M1
i=1 and C2 = {x(j)

2 }
M2
j=1, the error probability under

ML decoding is lower bounded by a constant times the
error probability under successive decoding. It also suffices to
consider the variations where ties are broken as errors, since
doing so reduces the error probability by at most a factor of
two [30]. Formally, we consider the following:

1) The ML decoder maximizing Wn(y|x(i)
1 ,x

(j)
2 );

2) The successive decoder in (2)–(3) with q = W ;
3) The genie-aided successive decoder using the true value

of m1 on the second step rather than m̂1 [11]:

m̂1 = arg max
i

∑
j

Wn(x
(i)
1 ,x

(j)
2 ,y), (118)

m̂2 = arg max
j
Wn(x

(m1)
1 ,x

(j)
2 ,y). (119)

We denote the probabilities under these decoders by P(ML)[·],
P(S)[·] and P(Genie)[·] respectively. Denoting the random mes-
sage pair by (m1,m2), the resulting estimate by (m̂1, m̂2), and
the output sequence by Y , we have

P(ML)[(m̂1, m̂2) 6= (m1,m2)]

≥ max

{
P(ML)[m̂1 6= m1],

P(ML)

[ ⋃
j 6=m2

{ Wn(x
(m1)
1 ,x

(j)
2 ,Y )

Wn(x
(m1)
1 ,x

(m2)
2 ,Y )

≥ 1
}]}

(120)

≥ max

{
P(Genie)[m̂1 6= m1],

P(Genie)

[ ⋃
j 6=m2

{ Wn(x
(m1)
1 ,x

(j)
2 ,Y )

Wn(x
(m1)
1 ,x

(m2)
2 ,Y )

≥ 1
}]}

(121)

≥ 1

2
P(Genie)[(m̂1, m̂2) 6= (m1,m2)] (122)

=
1

2
P(S)[(m̂1, m̂2) 6= (m1,m2)], (123)

where (121) follows since the two steps of the genie-aided de-
coder correspond to minimizing the two terms in the max{·, ·},
(122) follows by writing max{P[A],P[B]} ≥ 1

2 (P[A] +
P[B]) ≥ 1

2P[A∪B], and (123) follows since the overall error
probability is unchanged by the genie [11].

APPENDIX B
FORMULATIONS OF (16) AND (28) IN TERMS OF CONVEX

OPTIMIZATION PROBLEMS

In this section, we provide an alternative formulation of (16)
that is written in terms of convex optimization problems. We
start with the alternative formulation in (73)–(74). We first
note that (74) holds if and only if

R1 ≤ min
(P̃X1X2Y

,P̃ ′
X1X2Y

)∈T (2)
1 (Q1×Q2×W,R2)

IP̃ (X1;X2, Y )

+
[
IP̃ ′(X2;X1, Y )−R2

]+
, (124)

since the argument to [·]+ is non-negative when
IP̃ ′(X2;X1, Y ) ≥ R2. Next, we claim that when combining
(73) and (124), the rate region is unchanged if the constraint
IP̃ ′(X2;X1, Y ) ≥ R2 is omitted from (124). This is seen by
noting that whenever IP̃ ′(X2;X1, Y ) < R2, the objective in
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T (1,1)
1 (PX1X2Y , R2) ,

{
(P̃X1X2Y , P̃

′
X1X2Y ) : P̃X1X2Y ∈ S1(Q1, PX2Y ),

P̃ ′X1X2Y ∈ S
′
1(Q2, P̃X1Y ), IP̃ ′(X2;X1, Y ) ≤ R2,EP̃ [log q(X1, X2, Y )] ≥ F (PX1X2Y , R2)

}
, (125)

T (1,2)
1 (PX1X2Y , R2) ,

{
(P̃X1X2Y , P̃

′
X1X2Y ) : P̃X1X2Y ∈ S1(Q1, PX2Y ),

P̃ ′X1X2Y ∈ S
′
1(Q2, P̃X1Y ), IP̃ ′(X2;X1, Y ) ≤ R2,

EP̃ ′ [log q(X1, X2, Y )] +R2 − IP̃ ′(X2;X1, Y ) ≥ F (PX1X2Y , R2)
}
, (126)

T (2,1)
1 (PX1X2Y , R2) ,

{
(P̃X1X2Y , P̃

′
X1X2Y ) : P̃X1X2Y ∈ S1(Q1, PX2Y ),

P̃ ′X1X2Y ∈ S
′
1(Q2, P̃X1Y ),EP̃ [log q(X1, X2, Y )] ≥ F (PX1X2Y , R2)

}
, (127)

T (2,2)
1 (PX1X2Y , R2) ,

{
(P̃X1X2Y , P̃

′
X1X2Y ) : P̃X1X2Y ∈ S1(Q1, PX2Y ),

P̃ ′X1X2Y ∈ S
′
1(Q2, P̃X1Y ),EP̃ ′ [log q(X1, X2, Y )] ≥ F (PX1X2Y , R2)

}
. (128)

(124) coincides with that of (73), whereas the latter has a
less restrictive constraint since F 1 > F 2 (see (66)–(67)).

We now deal with the non-concavity of the functions F 1

and F 2 appearing in the sets T (1)
1 and T (2)

1 . Using the identity

min
x≤max{a,b}

f(x) = min
{

min
x≤a

f(x),min
x≤b

f(x)
}
, (129)

we obtain the following rate conditions from (73) and (124):

R1 ≤ min
(P̃X1X2Y

,P̃ ′
X1X2Y

)∈T (1,1)
1 (Q1×Q2×W,R2)

IP̃ (X1;X2, Y ),

(130)
R1 ≤ min

(P̃X1X2Y
,P̃ ′
X1X2Y

)∈T (1,2)
1 (Q1×Q2×W,R2)

IP̃ (X1;X2, Y ),

(131)
R1 ≤ min

(P̃X1X2Y
,P̃ ′
X1X2Y

)∈T (2,1)
1 (Q1×Q2×W,R2)

IP̃ (X1;X2, Y )

+
[
IP̃ ′(X2;X1, Y )−R2

]+
, (132)

R1 ≤ min
(P̃X1X2Y

,P̃ ′
X1X2Y

)∈T (2,2)
1 (Q1×Q2×W,R2)

IP̃ (X1;X2, Y )

+
[
IP̃ ′(X2;X1, Y )−R2

]+
, (133)

where the constraint sets are defined in (125)–(128) at the
top of the page. These are obtained from T (k) (k = 1, 2) by
keeping only one term in the definition of F k (see (66)–(67)),
and by removing the constraint IP̃ ′(X2;X1, Y ) ≥ R2 when
k = 2 in accordance with the discussion following (124).

The variable P̃ ′X1X2Y
can be removed from both (130) and

(132), since in each case the choice P̃ ′X1X2Y
(x1, x2, y) =

Q2(x2)P̃X1Y (x1, y) is feasible and yields IP̃ ′(X2;X1, Y ) =
0. It follows that (130) and (132) yield the same value, and
we conclude that (16) can equivalently be expressed in terms
of three conditions: (131), (133), and

R1 ≤ min
P̃X1X2Y

∈T (1,1′)
1 (Q1×Q2×W,R2)

IP̃ (X1;X2, Y ), (134)

where the set

T (1,1′)
1 (PX1X2Y , R2) ,

{
P̃X1X2Y ∈ S1(Q1, PX2Y ) :

EP̃ [log q(X1, X2, Y )] ≥ F (PX1X2Y , R2)
}

(135)

is obtained by eliminating P̃ ′X1X2Y
from either (125) or (127).

These three conditions are all written as convex optimization
problems, as desired.

Starting with (116)–(117), one can follow a (a simplified
version of) the above arguments for the cognitive MAC to
show that (28) holds if and only if

R1 ≤ min
(P̃X1Y

,P̃ ′
X1X2Y

)∈T (1)
1c (QX1X2

×W,R2)

IP̃ (X1;Y ), (136)

R1 ≤ min
(P̃X1Y

,P̃ ′
X1X2Y

)∈T (2′)
1c (QX1X2

×W,R2)

IP̃ (X1;Y )

+
[
IP̃ ′(X2;Y |X1)−R2

]+
. (137)

where

T (2′)
1c (PX1X2Y , R2) ,

{
(P̃X1Y , P̃

′
X1X2Y ) :

P̃X1Y ∈ S1c(QX1
, PY ), P̃ ′X1X2Y ∈ S

′
1c(QX1X2

, P̃X1Y ),

EP̃ ′ [log q(X1, X2, Y )] ≥ F (PX1X2Y , R2)
}
, (138)

and where T (1)
1c , S1c and S ′1c are defined in (112)–(115).
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