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Abstract—We introduce a definition of perfect and quasi-
perfect codes for discrete symmetric channels based on the
packing and covering properties of generalized spheres whose
shape is tilted using an auxiliary probability measure. This
notion generalizes previous definitions of perfect and quasi-
perfect codes and encompasses maximum distance separable
codes. The error probability of these codes, whenever they exist,
is shown to coincide with the estimate provided by the meta-
converse lower bound. We illustrate how the proposed definition
naturally extends to cover almost-lossless source-channel coding
and lossy compression.

Index Terms—Shannon theory, perfect codes, quasi-perfect
codes, maximum likelihood decoding, finite blocklength analysis,
meta-converse, hypothesis testing, channel coding, joint source-
channel coding, rate distortion theory.

I. INTRODUCTION

In the context of reliable communication, binary hypothesis
testing has proved instrumental in the derivation of converse
bounds to the error probability. Using this method, the sphere-
packing bound on the channel coding reliability function was
derived in [1] (see also [2]–[5] for alternative derivations and
refinements). More recently, the meta-converse of Polyanskiy
et al. [6, Th. 27] proved that a surrogate binary hypothesis test
can be used to accurately lower bound the error probability
in the finite blocklength regime. The non-Bayesian optimal
performance of binary hypothesis testing between distributions
P0 and P1 is characterized by the tradeoff αβ

(
P0, P1

)
, where

α denotes the smallest error under P0 achievable by any test
with error under P1 at most β (we refer the reader to Section
II for a formal definition). Then, [6, Th. 27] establishes the
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08010, Spain, and with the Department of Engineering, University of Cam-
bridge, CB2 1PZ Cambridge, U.K. (email: guillen@ieee.org).
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following lower bound on the error probability of a code C
with cardinality M used over a channel PY |X ,

Pe(C) ≥ inf
PX

sup
QY

{
α 1
M

(
PX×PY |X , PX×QY

)}
. (1)

This bound, or the more general [6, Th. 26], are sometimes
referred to as meta-converse bounds, since many previous
converse bounds in the literature can be proven as corollaries
via relaxation. Particularized for n-uses of a memoryless
binary symmetric channel (BSC), the meta-converse bound (1)
recovers the sphere-packing bound for BSCs [7, Eq. (5.8.19)]
(see [6, Sec. III.H]). In this setting, the right-hand side of (1)
coincides with the exact error probability whenever perfect
or quasi-perfect codes exist. In particular, a binary code is
said to be perfect if non-overlapping Hamming spheres of
radius t centered on the codewords exactly fill out the space.
Similarly, a quasi-perfect code is defined as a code in which
Hamming spheres of radius t centered on the codewords are
non-overlapping and Hamming spheres of radius t + 1 cover
the space, possibly with overlaps. This definition coincides
with that of sphere-packed codes introduced by Gallager [7,
Sec. 5.8]. Since quasi-perfect codes attain the lower bound (1),
they achieve the minimum error probability in a BSC among
all the codes with the same blocklength and rate.

In this work, we generalize the definition of perfect and
quasi-perfect codes beyond Hamming distance and show
their optimality for general discrete channels under certain
symmetry conditions. The new definition, which is channel-
dependent, follows from the packing and covering properties
of generalized spheres whose shape is tilted using an auxiliary
probability measure. We show that generalized perfect and
quasi-perfect codes attain equality in (1). Therefore, they
achieve the minimum error probability among all the codes
with the same blocklength and rate. As an example, we study
a family of q-ary symmetric erasure channels and we show that
maximum-distance separable (MDS) codes are generalized
quasi-perfect for these channels. As a result, we obtain an
alternative proof of the optimality of MDS codes for q-
ary symmetric erasure channels. Extensions to almost-lossless
source-channel coding and lossy compression under an excess-
distortion constraint are discussed.

Our results are related to previous works. A tightened
version of the meta-converse, derived for a fixed code, was
shown to coincide with the exact error probability in [8,
Th. 1]. In contrast to [8], in this paper we show that the
bound (1), which applies to every code of cardinality M ,
also yields the exact error probability in certain cases. In [9],
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Hamada also studied a generalization of perfect and quasi-
perfect codes beyond Hamming distance. Using a variation
of the Fano metric [10, Eq. (9.10)], Hamada derived a lower
bound to the channel coding error probability. Our definition
of quasi-perfect codes includes [9, Def. 1] as a special case
and recovers Hamada’s condition for achieving minimum
error probability [9, Th. 3]. Nevertheless, the class of codes
considered here is more general than that in [9] and shows
connections not previously treated in the literature.

The structure of the paper is as follows. In Section II we
introduce the binary hypothesis testing framework and notation
used in the rest of the paper. In Section III we introduce
the system model and show the optimality of the so-called
generalized quasi-perfect codes. A family of erasure channels
is studied in detail under this formulation in Section IV and the
optimality of MDS codes is shown. Sections V and VI extend
the notion of generalized quasi-perfect codes to almost-lossless
source-channel coding and lossy compression under maximum
excess-distortion probability, respectively. Section VII closes
the paper with some final remarks.

II. BINARY HYPOTHESIS TESTING

Consider a non-Bayesian binary hypothesis test discrimi-
nating between distributions P0 and P1 defined over some
discrete alphabet Z .1 Let T (z) ∈ [0, 1] denote the probability
of the test deciding hypothesis 0 (corresponding to P0) given
an observation z. Then, 1−T (z) is the probability of deciding
hypothesis 1 (i.e., P1). Let πj|i(T ) denote the probability that
test T decides j when i is the true hypothesis, i.e.,

π0|1(T ) ,
∑
z

T (z)P1(z), (2)

π1|0(T ) , 1−
∑
z

T (z)P0(z), (3)

and we denote the minimum error probability π1|0 among all
tests T with π0|1 at most β, as

αβ
(
P0, P1

)
, inf
T :π0|1(T )≤β

π1|0(T ). (4)

Neyman and Pearson provided in [11] an explicit form for the
test achieving the optimal tradeoff αβ

(
P0, P1

)
. In particular,

for any γ ≥ 0, θ ∈ [0, 1], an optimal test is given by

TNP(z) , 11
[
P0(z)

P1(z)
> γ

]
+ θ11

[
P0(z)

P1(z)
= γ

]
, (5)

where 11[·] denotes the indicator function. TNP achieves the
optimal tradeoff αβ

(
P0, P1

)
= π1|0(TNP) when γ and θ are

chosen such that β = π0|1(TNP). The result is usually known
as the Neyman-Pearson (NP) lemma. A direct consequence of
the NP lemma is the following characterization of the optimal
error probability tradeoff αβ

(
P0, P1

)
.

1The restriction to discrete alphabets can be avoided by simply replacing
the ratio of probability mass functions by the corresponding Radon-Nykodim
derivative.

Lemma 1: For any non-Bayesian binary hypothesis test
discriminating between P0 and P1,

αβ
(
P0, P1

)
= sup

γ≥0

{
P
[
P0(Z0)

P1(Z0)
≤ γ

]
+ γP

[
P0(Z1)

P1(Z1)
> γ

]
− γβ

}
, (6)

where Zi ∼ Pi, i = 0, 1.
Proof: See Appendix A.

III. GENERALIZED PERFECT CODES

An equiprobable message m ∈ {1, . . . ,M} is to be trans-
mitted over a channel with transition probability PY |X , input
x ∈ X and output y ∈ Y , and where X and Y are the one-
shot input/output discrete alphabets.2 A channel code is the set
of codewords C = {x1, . . . , xM} xi ∈ X for i = 1, . . . ,M ,
assigned to each of the messages. Under maximum likelihood
(ML) decoding, the error probability for the code C is

Pe(C) = 1− 1

M

∑
y

max
x∈C

PY |X(y|x). (7)

Henceforth, we will restrict attention to the following class
of random transformations.

Definition 1: Let Fx(τ) , P
[
PY |X(Y |x) ≥ τ

]
, where Y ∼

PY |X=x and τ ∈ [0, 1]. A channel PY |X is symmetric if Fx(τ)
does not depend on the input x,

Fx(τ) = F (τ), ∀x ∈ X , τ ∈ [0, 1]. (8)

In the special case of discrete memoryless channels, Defini-
tion 1 implies that the rows of the channel transition matrix
(with inputs as rows and outputs as columns), PY |X(·|x), are
permutations of each other. This definition coincides with that
of uniformly dispersive channels of Massey [12, Sec. 4.2] and
is less restrictive than those of Cover and Thomas [13, Sec.
7.2] and Gallager [7, p. 94]. The definition in [13, Sec. 7.2]
additionally requires that the columns of the channel transition
matrix are permutations of each other. The definition in [7, p.
94] requires the channel transition matrix to be partitioned in
submatrices such that each submatrix fulfills the conditions in
[13, Sec. 7.2]. Relations among these notions are investigated
in [14, Sec. VI.B].

Let Q be an auxiliary distribution defined on the output
alphabet Y . For an observation y ∈ Y , the codeword x ∈ C that
maximizes the metric PY |X(y|x) also maximizes the metric
q(x, y) =

PY |X(y|x)

Q(y) . We conclude that the decoding regions
induced by the ML decoder (with metric PY |X(y|x)) and those
of the maximum metric decoder (with metric q(x, y)) coincide.
This obvious fact proves to be instrumental next.

For any τ ≥ 0 and any auxiliary distribution Q defined over
Y , we define Sx(τ,Q) ∈ Y to be the set of outputs y with
likelihood given input x at least τQ(y), i.e.,

Sx(τ,Q) ,
{
y ∈ Y

∣∣∣ PY |X(y|x)

Q(y) ≥ τ
}
. (9)

2For example, for a BSC with crossover probability ε and blocklength n,
X = Y = {0, 1}n and PY |X(y|x) = εw(x⊕y)(1 − ε)n−w(x⊕y) where
x = (x1, . . . , xn) and y = (y1, . . . , yn) denote the channel input and
output, respectively, and w(·) denotes the Hamming weight.
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The shape of Sx(τ,Q) in (9) is tilted via the auxiliary
probability measure Q. Note that in contrast to Definition 1,
Sx(τ,Q) is defined for any τ ≥ 0, not necessarily τ ∈ [0, 1].
We refer to Sx(τ,Q) as a sphere of radius τ centered on
x, although in general X 6= Y and q(x, y) ,

PY |X(y|x)

Q(y)
need not be a distance measure. This metric is equivalent to
the Fano metric [10, Eq. (9.10)], defined as − log q(x, y) =

log Q(y)
PY |X(y|x) . For channels such as the BSC, logPY |X(y|x)

is an affine function of the Hamming distance between x and
y and, hence, Sx(τ,Q) becomes a Hamming sphere when the
crossover probability is at most 1

2 and Q is the equiprobable
distribution.

The sphere Sx(γ,Q) corresponds to the decision region
of the NP test (5) with P0 ← PY |X(·|x), P1 ← Q(·), and
θ ← 1. This motivates a new definition of perfect and quasi-
perfect codes that will be presented next, and establishes the
connection between these codes and the meta-converse bound
(1). We define the interior and the outer shell of Sx(τ,Q) as

Si,x(τ,Q) ,
{
y ∈ Y

∣∣∣ PY |X(y|x)

Q(y) > τ
}
, (10)

So,x(τ,Q) ,
{
y ∈ Y

∣∣∣ PY |X(y|x)

Q(y) = τ
}
. (11)

We consider the set of distributions Q such that the tilted
channel P̃Y |X(y|x) ∝ PY |X(y|x)

Q(y) remains symmetric. More
precisely, we define the set of symmetry-preserving auxiliary
output distributions

Q ,
{
Q ∈ P(Y)

∣∣ Fx(τ,Q) = F (τ,Q), ∀x ∈ X , τ ≥ 0
}
,

(12)

where Fx(τ,Q) , P
[
Y ∈ Sx(τ,Q)

]
with Y ∼ PY |X=x,

and P(A) denotes the set of all probability distributions over
alphabet A.

For symmetric channels PY |X , the set Q is non-empty as
it always includes the equiprobable distribution, and it may
include other auxiliary distributions. For example, consider a
single use of the binary erasure channel (BEC) with erasure
symbol e. In this case, any distribution of the form Q(0) =
Q(1) = ξ, Q(e) = 1 − 2ξ, does not alter the symmetry of
the original channel, and therefore it is included in Q. This
example will be studied in detail in Section IV.

For a fixed Q ∈ Q, we use the short-hand notation Q[A] ,
P[Y ∈ A], Y ∼ Q.

Lemma 2: Let PY |X be a symmetric channel and
Q ∈ Q defined in (12). Then, the probabilities Q

[
Sx(τ,Q)

]
,

Q
[
Si,x(τ,Q)

]
and Q

[
So,x(τ,Q)

]
are independent of x ∈ X

for any τ ≥ 0.
Proof: We prove that the term Q

[
So,x(τ,Q)

]
does not

depend on x. Then, the independence of the other two terms
follows since

Q
[
Sx(τ,Q)

]
=

∑
τ ′∈LQ∩[τ,∞)

Q
[
So,x(τ ′, Q)

]
, (13)

Q
[
Si,x(τ,Q)

]
=

∑
τ ′∈LQ∩(τ,∞)

Q
[
So,x(τ ′, Q)

]
, (14)

where the countable set LQ is defined as

LQ ,
{
ν ∈ R

∣∣∣∃x ∈ X ,∃y ∈ Y, PY |X(y|x)

Q(y) = ν
}
. (15)

To show that Q
[
So,x(τ,Q)

]
is independent of x, we write

Q
[
So,x(τ,Q)

]
=
∑

y
Q(y)11

[
PY |X(y|x) = τQ(y)

]
(16)

=
1

τ

∑
y
PY |X(y|x)11

[
PY |X(y|x) = τQ(y)

]
(17)

= lim
δ→0

1

τ
(Fx(τ,Q)− Fx(τ + δ,Q)) , (18)

where (18) holds for any Q ∈ Q in view of (12). The result
follows since Fx(τ,Q) does not depend on x for any Q ∈ Q.

Then, according to Lemma 2, we define for symmetric
channels the probability measures

Q(τ) , Q
[
Sx(τ,Q)

]
, (19a)

Qi(τ) , Q
[
Si,x(τ,Q)

]
, (19b)

Qo(τ) , Q
[
So,x(τ,Q)

]
. (19c)

For a fixed code C and auxiliary distribution Q ∈ Q, we let
η ≥ 0 be the largest value such that∪x∈CSx(η,Q) = Y . Sim-
ilarly, let ν ≥ 0 be the smallest value such that the codeword
centered sets

{
Si,x(ν,Q)

}
x∈C are disjoint. We respectively

refer to η and ν as the covering and packing radii of the
code C with respect to Q. Intuitively, Si,x(ν,Q) is the largest
sphere packed inside the ML decoding region corresponding
to x ∈ C. Similarly, Sx(η,Q) is the smallest sphere centered
at x ∈ C which completely covers the corresponding ML
decoding region.

Definition 2: A code C is generalized perfect for PY |X , if
there exists γ ≥ 0 and Q ∈ Q such that the output alphabet
can be partitioned into the codeword-centered sets Sx(γ,Q),
i.e., ⋃

x∈C
Sx(γ,Q) = Y (20)

where the union is disjoint. A code is generalized quasi-perfect
if there exists γ ≥ 0 and Q ∈ Q such that (20) is satisfied and
the codeword-centered sets

{
Si,x(γ,Q)

}
x∈C are disjoint.34

Note that for generalized quasi-perfect codes the covering
and packing radii coincide. The definition of quasi-perfect
codes includes perfect codes as a special case. To avoid
ambiguities, for perfect codes we require that γ is the largest
value satisfying (20). For this value of γ,⋃

x∈C
Si,x(γ,Q) ⊂ Y. (21)

The main result in this work, Theorem 1, is a consequence
of the following converse result, which is a refinement of [10,
(9.15)-(9.16)].

3Occasionally, it is convenient to specify the auxiliary output distribution
under which the code is generalized perfect or quasi-perfect, in which case
we refer to the code as generalized Q perfect/quasi-perfect.

4While the sets Sx(γ,Q) and Si,x(γ,Q) are a function of the parameters
γ and Q, they depend only on their product (see (9) and (10)). Therefore, the
two parameters γ ≥ 0 and Q ∈ Q appearing in the definition of generalized
perfect and quasi-perfect codes can be replaced by a single unnormalized
measure f(y) = γQ(y).



4

Lemma 3: Let PY |X be a symmetric channel and let Q ∈ Q.
The error probability of any code C with M codewords
satisfies, for any γ ≥ 0 and any Q ∈ Q,

Pe(C) ≥ γ
(
Qi(γ)− 1

M

)
+

∑
τ∈LQ∩[0,γ]

τQo(τ), (22)

where LQ is defined in (15). Furthermore, the lower bound
(22) holds with equality if and only if C is generalized quasi-
perfect and γ and Q are those parameters (not necessarily
unique) satisfying the conditions in Definition 2.

Proof: Let C = {x1, . . . , xM} be an arbitrary code.
We consider a deterministic ML decoder which partitions the
output space into disjoint decoding regions {D1, . . . ,DM}.
The error probability (7) becomes

Pe(C) = 1− 1

M

M∑
m=1

∑
y∈Dm

PY |X(y|xm). (23)

For an observed y, the codeword x ∈ C that maximizes
the metric PY |X(y|x) coincides with the one maximizing the
metric q(x, y) =

PY |X(y|x)

Q(y) . Then, using the definition of the
covering and packing radii η and ν, respectively, it follows
that

Si,xm(ν,Q) ⊆ Dm ⊆ Sxm(η,Q), (24)

for 1 ≤ m ≤M . As a result, Dm can be decomposed as

Dm = Si,xm(ν,Q)
⋃(

∪
τ∈LQ∩[η,ν]

(
Dm ∩ So,xm(τ,Q)

))
,

(25)

and (23) becomes

Pe(C) =1− 1

M

M∑
m=1

( ∑
y∈Si,xm (ν,Q)

PY |X(y|xm)

+
∑

τ∈LQ∩[η,ν]

∑
y∈Dm∩So,xm (τ,Q)

PY |X(y|xm)

)
. (26)

Since PY |X(y|x)

Q(y) = τ for any y ∈ So,x(τ,Q), we write

∑
y∈Si,x(ν)

PY |X(y|x) =
∑

y∈Si,x(ν,Q)

PY |X(y|x)

Q(y)
Q(y) (27)

=
∑

τ∈LQ∩(ν,∞)

∑
y∈So,x(τ,Q)

τQ(y) (28)

=
∑

τ∈LQ∩(ν,∞)

τQo(τ), (29)

where in (29) we used Lemma 2 and Qo(τ) = Q
[
So,x(τ,Q)

]
as defined in (19c). Similarly,∑

y∈Dm∩So,x(τ,Q)

PY |X(y|x) =
∑

y∈Dm∩So,x(τ,Q)

τQ(y) (30)

= τQo,m(τ). (31)

where we abbreviate Qo,m(τ) , Q
[
Dm ∩ So,xm(τ,Q)

]
.

Substituting (29) and (31) in (26), yields

Pe(C) = 1−

( ∑
τ∈LQ∩(ν,∞)

τQo(τ)

+
1

M

M∑
m=1

∑
τ∈LQ∩[η,ν]

τQo,m(τ)

)
. (32)

Since {Dm}Mm=1 defines a partition of the output space,∑M
m=1 Q

[
Dm
]

= 1. Using (25) and the definitions of Qi(·)
and Qo,m(·), we obtain

1 =

M∑
m=1

Q
[
Dm
]

= MQi(ν) +

M∑
m=1

∑
τ∈LQ∩[η,ν]

Qo,m(τ).

(33)

Upon rearranging terms, (33) yields

ν

(
1

M
− Qi(ν)

)
=

1

M

M∑
m=1

∑
τ∈LQ∩[η,ν]

νQo,m(τ) (34)

≥ 1

M

M∑
m=1

∑
τ∈LQ∩[η,ν]

τQo,m(τ). (35)

Then, using (34)-(35) in (32), it follows that Pe(C) ≥ Γ(ν)
where

Γ(ν) , 1−

( ∑
τ∈LQ∩(ν,∞)

τQo(τ) + ν

(
1

M
− Qi(ν)

))
. (36)

For quasi-perfect codes satisfying Definition 2, there exist
Q ∈ Q and γ = ν = η such that covering and packing radii
coincide. Then, for this choice of parameters, inequality (35)
becomes an equality and Pe(C) = Γ(γ). We conclude that, for
a generalized quasi-perfect code C, (22) holds with equality
for any choice (not necessarily unique) of γ and Q satisfying
the conditions in Definition 2.

If C is not generalized quasi-perfect, ν > η for every Q ∈ Q
and the inequality (35) is strict. Then, Pe(C) > Γ(ν). We
next show that Pe(C) > Γ(γ) for any choice of γ ≥ 0 not
necessarily equal to the packing radius ν. First, note that for
γ > ν, both (32) and (34)-(35) still hold substituting ν by γ.
Then, the discussion above still applies.

Assume now that η ≤ γ < ν. We rewrite (32) as

Pe(C) = 1 +
1

M

M∑
m=1

∑
τ∈LQ∩(γ,ν]

τ∆m(τ)

−
∑

τ∈LQ∩(γ,∞)

τQo(τ)− 1

M

M∑
m=1

∑
τ∈LQ∩[η,γ]

τQo,m(τ).

(37)

where ∆m(τ) , Qo(τ)− Qo,m(τ). Similarly, (33) becomes

1 = MQi(γ) +

M∑
m=1

∑
τ∈LQ∩[η,γ]

Qo,m(τ)

−
M∑
m=1

∑
τ∈LQ∩(γ,ν]

∆m(τ). (38)



5

Following analogous steps as in (34)-(35), via (37) we obtain

Pe(C) ≥ Γ(γ) +
1

M

M∑
m=1

∑
τ∈LQ∩(γ,ν]

(τ − γ)∆m(τ). (39)

All terms in the inner sum in (39) satisfy τ − γ > 0 and
∆m(τ) ≥ 0. If the code C is not generalized quasi-perfect,
then, either Pe(C) > Γ(γ) or ∆m(τ) > 0 for at least one term
in the sum. As the same proof steps follow for γ < η, we
conclude that Pe(C) > Γ(γ) for any γ ≥ 0, Q ∈ Q, provided
that C is not quasi-perfect.

We are now ready to state the main result of this section,
which shows that the ML decoding error probability of gener-
alized perfect and quasi-perfect codes coincides with the meta-
converse lower bound (1).

Theorem 1: Let PY |X be a symmetric discrete channel and
C be generalized quasi-perfect code. Then, C attains the min-
imum error probability among all codes with M codewords,
which is given by

Pe(C) = min
PX

max
Q∈Q

α 1
M

(
PX×PY |X , PX×Q

)
(40)

= max
Q∈Q

α 1
M

(
PY |X=x, Q

)
, for every x ∈ X . (41)

Conversely, any code for which (40)-(41) hold is generalized
quasi-perfect.

Proof: Let us consider the hypothesis test in (40). We
apply Lemma 1 with P0 ← PX × PY |X and P1 ← PX ×Q.
Using the definition of the set Si,x(·) and Qi(·) in Lemma 2
yields

α 1
M

(
PX×PY |X , PX×Q

)
= sup

γ≥0

{ ∑
x,y/∈Si,x(γ,Q)

PX(x)PY |X(y|x) + γQi(γ)− γ

M

}
.

(42)

For any y ∈ So,x(τ,Q), τ ∈ LQ, where LQ is defined in (15),
it holds that PY |X(y|x)

Q(y) = τ . Then,∑
y/∈Si,x(γ,Q)

PY |X(y|x) =
∑

τ∈LQ∩[0,γ]

∑
y∈So,x(τ,Q)

PY |X(y|x)

(43)

=
∑

τ∈LQ∩[0,γ]

∑
y∈So,x(τ,Q)

τQ(y) (44)

=
∑

τ∈LQ∩[0,γ]

τQo(τ), (45)

which does not depend on x (see Lemma 2). Then, (42)
becomes

α 1
M

(
PX×PY |X , PX×Q

)
= max

γ≥0

{ ∑
τ∈LQ∩[0,γ]

τQo(τ) + γQi(γ)− γ
M

}
. (46)

According to (1), the right-hand side of (46) is a lower
bound to Pe(C). According to Lemma 3, the term in braces in
(46) is precisely the error probability of a generalized quasi-
perfect code with parameters Q and γ. Therefore, whenever
such a code exists the lower bound (46) is achievable and (40)

holds with equality. Moreover, (41) holds since (46) does not
depend on PX for symmetric channels and Q ∈ Q.

Let now Q ∈ Q achieve (40)-(41), and let γ be the
maximizer in (46). It follows from Lemma 3 that the term
in braces in (46) is the error probability of a code C if and
only if C is generalized quasi-perfect and the parameters γ and
Q satisfy the conditions in Definition 2. We conclude that, if
(40)-(41) hold, C must be generalized quasi-perfect.

For any codebook C = {x1, . . . , xM}, we let P CX denote
the empirical input distribution induced by C, i. e., P CX(x) ,
1
M

∑M
m=1 1{x = xm}. It was shown in [8, Th. 1] that the

error probability of any code can be expressed as

Pe(C) = max
Q

{
α 1
M

(
P CX×PY |X , P CX×Q

)}
(47)

≥ min
PX

max
Q

{
α 1
M

(
PX×PY |X , PX×Q

)}
, (48)

Eq. (47) shows that the meta-converse bound, when applied
to a fixed code C, coincides with the exact error probability
Pe(C). Theorem 1 shows that, under certain symmetry condi-
tions, the relaxation (48) also coincides with the exact error
probability, provided that a quasi-perfect code of cardinality
M exists for this channel. Note that Theorem 1 is more general
than the result obtained by Hamada in [9, Th. 3]. For instance,
Theorem 1 can be used to prove the finite-blocklength opti-
mality of MDS codes for q-ary erasure channels, as we show
in the next section.

IV. SYMMETRIC ERASURE/ERROR CHANNELS

Consider a symmetric erasure/error channel PY |X with
discrete input alphabet X , |X | = q, and output alphabet
Y = X ∪ {e} where e corresponds to the erasure symbol:

PY |X(y|x) =


1− δ − ε, y = x,

δ, y = e,
ε

q−1 , otherwise.
(49)

When q = 2, this channel includes as particular cases the BSC
and the BEC by letting δ = 0 and ε = 0, respectively.

We consider n uses of this channel. Let x = (x1, . . . , xn)
and y = (y1, . . . , yn) denote the channel input and output,
respectively. For a given pair of x and y, we define the number
of erasures and the number of flip-errors, respectively, as

ey ,
n∑
i=1

11[yi = e], (50)

dx,y ,
n∑
i=1

11[xi 6= yi 6= e]. (51)

The n-dimensional channel transition probability is given by

PY |X(y|x) = δey
(

ε
q−1

)dx,y
(1− δ − ε)n−ey−dx,y . (52)

We assume that ε
q−1 < 1 − δ − ε. Otherwise, observing the

transmitted symbol at the output of the channel would be
less likely than observing any of the other q − 1 symbols.
Particularized to the BSC (with q = 2, δ = 0), this assumption
boils down to the crossover probability being ε < 1

2 .
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We define the auxiliary distribution

Q?Y (y) , 1
c δ
ey
(

ε
q−1

)Ψ(ey)
(1− δ − ε)n−ey−Ψ(ey), (53)

where c is a normalizing constant, and Ψ(e) ≥ 0 is some non-
negative function of the number of erasures e, which can be
optimized over. Intuitively, Ψ(e) corresponds to the average
number of flip-errors that a good code can correct when the
output sequence is affected by e erasures. For binary-input
channels, a good choice for Ψ(e) is given by

Ψ(e) = max
(

0,
⌊
dn−log2Me−e+1

2

⌋)
. (54)

Since Q?Y (y) only depends on y via the number of erasures
ey , it does not affect the symmetry of the vector channel
PY |X and thus Q?Y ∈ Q. We particularize Theorem 1 for
this channel and fix the tilting probability measure Q = Q?Y
to obtain the following lower bound, which can be maximized
over auxiliary functions Ψ(e) ≥ 0.

Corollary 1: The error probability of any code C with
cardinality M used over the channel (52) satisfies

Pe(C) ≥
n∑
e=0

n−e∑
d=0

(
n

e

)(
n− e
d

)
(q − 1)dδe(1− δ − ε)n−e

×
(
ϕmax(d,Ψ(e)) − ϕΨ(e)

M

)
, (55)

where ϕ , ε
q−1 (1 − δ − ε)−1 < 1 and Ψ(e) ≥ 0 is any

positive function of the number of erasures e. Moreover, if C
is a generalized quasi-perfect code that satisfies Definition 2
with γ = c and Q = Q?Y then (55) holds with equality.

Proof: Let us consider the lower bound that follows from
(46) by fixing Q = Q?Y , defined in (53), and fixing γ = c to
be the normalization factor appearing in (53). In view of the
channel symmetry and the choice of Q, we can write for any
x ∈ Xn

max
Q∈Q

{
α 1
M

(
PX×PY |X , PX×Q

)}
≥

∑
y/∈Si,x(c,Q?Y )

PY |X(y|x)− c

(
1

M
−

∑
y∈Si,x(c,Q?Y )

Q?Y (y)

)
.

(56)

For the choice γ = c and Q = Q?Y , the sets Si,x(γ,Q) become

Si,x(c,Q?Y ) =
{
y ∈ Y

∣∣∣ dx,y < Ψ(ey)
}
. (57)

We parametrize each output sequence y by the indices e =
ey ∈ [0, n] and d = dx,y ∈ [0, n − ey]. For a given x, there
are exactly

(
n
e

)(
n−e
d

)
(q−1)d output sequences y with indices

e, d. Using this parametric representation, the sets (57), and
the definitions of PY |X in (52) and Q?Y in (53), we obtain

∑
y/∈Si,x(c,Q?Y )

PY |X(y|x) =

n∑
e=0

n−e∑
d=Ψ(e)

(
n

e

)(
n− e
d

)
(q − 1)d

× (1− δ − ε)n−eδeϕd, (58)

and ∑
y∈Si,x(c,Q?Y )

Q?Y (y) =
1

c

n∑
e=0

Ψ(e)−1∑
d=0

(
n

e

)(
n− e
d

)
(q − 1)d

× (1− δ − ε)n−eδeϕΨ(e). (59)

Substituting (58) and (59) in (56), reorganizing terms, yields

max
Q∈Q

{
α 1
M

(
PX×PY |X , PX×Q

)}
≥

n∑
e=0

n−e∑
d=0

(
n

e

)(
n−e
d

)
× (q − 1)d(1− δ − ε)n−eδeϕmax(d,Ψ(e)) − c

M
. (60)

Finally, noting that
n−e∑
d=0

(
n− e
d

)
(q − 1)d = qn−e, (61)

we obtain for the normalizing constant in (53),

c =

n∑
e=0

(
n

e

)
qn−e(1− δ − ε)n−eδeϕΨ(e). (62)

Substituting (62) in (60), via the meta-converse bound (1), we
obtain (55). According to Lemma 3, (55) holds with equality
if C is generalized Q?Y -quasi-perfect with parameter γ = c.

Let dmin denote the minimum Hamming distance between
any pair of codewords in C. The Singleton bound [15, Th.
4.5.6] establishes the maximum number of codewords M in a
q-ary block code C of length n and minimum distance dmin,

logqM ≤ n− dmin + 1. (63)

Those codes achieving the Singleton bound with equality are
termed MDS codes. Examples of MDS codes include those
that have only two complementary codewords thus having
dmin = n, non-redundant codes, i.e., C = X , for which
dmin = 1, codes with a single parity symbol for which
dmin = 2, and their corresponding dual codes. These are often
called trivial MDS codes. In the case of binary alphabets,
only trivial MDS codes exist. For non-binary alphabets, Reed-
Solomon codes are the most famous non-trivial MDS codes.

MDS codes are indeed generalized quasi-perfect codes for
the q-ary erasure channel (ε = 0 in (52)). Then, for any
function Ψ(e) ≥ 0 such that Ψ(e) = 0 if, and only if,
e > n− logqM , (53) becomes

Q?Y (y) =

{
0, ey ≤ n− logqM,
1
c δ
ey (1− δ)n−ey , ey > n− logqM,

(64)

since (53) abides by the convention 00 = 1.
Consider a generalized Q?Y -quasi-perfect code. For the

definition of the spheres Sx(·) we use the convention that,
whenever Q?Y (y) = 0,

PY |X(y|x)

Q?Y (y)
=

{
0, if PY |X(y|x) = 0,

∞, if PY |X(y|x) > 0.
(65)

The spheres induced by this code are such that their
interior Si,x(c,Q?Y ) is the set of output sequences y that
are compatible with the input x with a number of erasures
ey ≤ n − logqM . Since the codeword-centered interiors
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Figure 1. Error probability for n uses of the channel (52), with q = 2, M = 4
and BSC: (ε, δ) = (0.25, 0), erasures and errors: (ε, δ) = (0.05, 0.2), and
BEC: (ε, δ) = (0, 0.25).

do not overlap, the minimum distance of the code is at
least bn − logqMc + 1. Since the codeword centered shells
So,x(c,Q?Y ) overlap at some point, then dmin is exactly

dmin = bn− logqMc+ 1, (66)

which coincides with the Singleton bound (63) when M is
a power of q. As a result, we conclude that MDS codes are
also quasi-perfect. By letting ε → 0 in Corollary 1 for any
Ψ(e) such that Ψ(e) = 0 iff e > n − logqM , we obtain the
following result.

Corollary 2: The error probability of any code C with
cardinality M used over a q-ary erasure channel satisfies

Pe(C) ≥
n∑

e=bn−logqMc+1

(
n

e

)
δe(1− δ)n−e

(
1− qn−e

M

)
, (67)

with equality if C is generalized quasi-perfect with parameters
γ = c and Q = Q?Y , as defined in (64).

The bound in (67) coincides with the converse bound [6,
Th. 38]. As observed in [6], this lower bound is tight when C
is an MDS code. Here this result is recovered via the definition
of generalized quasi-perfect codes.

We conclude this section with two numerical examples.
First, let us consider the transmission of M = 4 codewords
over a blocklength-n binary input channel (52) for three sets
of parameters: BSC with (ε, δ) = (0.25, 0), a channel with
erasures and errors with (ε, δ) = (0.05, 0.2) and BEC with
(ε, δ) = (0, 0.25). Figure 1 depicts the exact error probability
Pe(C) of the best code compared to the lower bound (55) with
the choice of Ψ(e) given in (54). The optimal codes for the
BSC and BEC are taken from [16] and [17], respectively. For
the channel with combined erasures and errors optimal codes
are not known for n ≥ 4 and we use the the optimal codes
for the BEC from [17], since they offer better performance.
Figure 1 shows that the bound (55) for the BSC coincides
with the code error probability at the points were quasi-
perfect codes exist with respect to the Hamming distance
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10−2

10−1

100

erasures + errors

only erasures

Blocklength, n

E
rr

or
pr

ob
ab

ili
ty

,P
e(
C)

Lower bound, (55)
Lower bound, (67)
Reed-Solomon code

Figure 2. Error probability for n uses of the channel (52) with q = 32, fixed
transmission rate R = 1

n
log32M = 1

2
, and erasures and errors: (ε, δ) =

(0.01, 0.36), only erasures: (ε, δ) = (0, 0.36).

(n = 2, 3, 4, 5, 6, 8). For the BEC, the bound (55) (which
coincides with (67)) provides the exact error probability at
those points where (trivial) MDS codes exist (n = 2, 3), as
they are generalized quasi-perfect. For the combined errors-
erasures channel, to match the lower bound, the codes need
to be generalized quasi-perfect for both the BSC and BEC,
which only occurs at n = 2, 3.

Second, we consider a 32-ary channel (49), and fixed trans-
mission rate R = 1

n log32M = 1
2 . Figure 2 depicts the lower

bound (55) (optimized over a family of functions Ψ(e)5) for
combined erasures and errors with (ε, δ) = (0.01, 0.36), and
the lower bound (67) for erasures only with (ε, δ) = (0, 0.36).
For even blocklengths, we have estimated the performance
of the Reed-Solomon code in both scenarios with 106 Monte
Carlo realizations. Recall that Reed-Solomon codes are defined
for blocklengths n ≤ q − 1 and they are generalized quasi-
perfect for the q-ary erasure channel. Therefore, they attain the
lower bound (67) with equality in the erasure-only case. While
their performance with errors and erasures is not far from the
lower bound (55) evaluated with the functions in footnote 5,
a gap does exist in this case. Reed-Solomon codes can be
extended for blocklengths n = q and n = q + 1, but there
exist no MDS codes for longer blocklengths in general [18].

V. ALMOST-LOSSLESS SOURCE-CHANNEL CODING

In this section, the notion of quasi-perfect codes is gener-
alized to allow non-equiprobable messages, hence an optimal
code needs be matched both to the source and the channel.

We consider the almost-lossless source-channel coding set-
ting. A source generates messages v ∈ V , where V is a finite
alphabet, according to PV . The message v is to be transmitted
over a channel PY |X , x ∈ X and y ∈ Y , using a channel
encoder that maps each source message v into a codeword

5In particular, the lower bound (55) has been maximized over the func-
tions Ψ(e) of the form Ψ0(e) = max

(
0,
⌊
n−log2 M−e+1

A

⌋)
, Ψ1(e) =

max
(

0,
⌊
dn−log2 Me−e+1

A

⌋)
, and Ψ2(e)=max

(
0,
⌈
bn−log2 Mc−e+1

A

⌉)
where A ∈ {1.25, 1.5, 1.75, 2}.
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xv ∈ X . We let P CX|V denote the conditional distribution
PX|V induced by the codebook C ,

{
x1, . . . , x|V|

}
. The

receiver uses maximum-a-posteriori (MAP) decoding to decide
on the transmitted message v̂ ∈ V . This decoder minimizes the
average error probability, which is given by

Pe(C) = P
[
V̂ 6= V

]
(68)

= 1−
∑
y

max
v

PV (v)PY |X
(
y|xv

)
. (69)

Next, the concept of generalized quasi-perfect codes pre-
sented in Section III is further generalized to match both
source and channel.

Definition 3: A source-channel code C is generalized perfect
with respect to a given source PV and channel PY |X , if there
exists γ̃ ≥ 0 and an auxiliary distribution Q ∈ Q such that⋃

v∈V
Sxv

(
γ̃

PV (v)
, Q

)
= Y, (70)

where the union is disjoint. More generally, a code is gen-
eralized quasi-perfect if there exists γ̃ ≥ 0 and Q ∈ Q
such that (70) is satisfied and the codeword-centered sets{
Si,xv

(
γ̃

PV (v) , Q
)
, v ∈ V

}
are disjoint.

The definition of a source-channel quasi-perfect code in-
duces a packing of spheres whose radii depend on the proba-
bility of the associated source message – more probable source
messages are associated to larger spheres. Naturally, if the
source messages are equiprobable, then the radii of the spheres
become independent of the associated source message and
Definition 3 boils down to Definition 2. The generalization
of Theorem 1 is as follows.

Theorem 2: Let PV be the distribution of the source mes-
sages, PY |X be a symmetric channel, and C be a generalized
quasi-perfect source-channel code. Then,

Pe(C)

= min
PX|V

max
Q∈Q

{
α 1
|V|

(
PV ×PX|V ×PY |X , P̄V ×PX|V ×Q

)}
,

(71)

where P̄V (v) = 1
|V| for all v ∈ V . Conversely, if (71)

holds, then C is generalized Q-quasi-perfect with respect to
the source PV and channel PY |X .

Proof: See Appendix B.
The right-hand side of (71) is precisely the converse bound

[19, Th. 4] particularized to the almost-lossless setting. There-
fore, Theorem 2 shows that [19, Th. 4] is tight provided that
a generalized quasi-perfect code matched to the source and
channel exists.

As a particular case, consider a noiseless channel such that
y = x with X = Y = {1, . . . ,M}, and |V| > M . In this
case, Definition 3 yields “spheres” of size 1 for the M most
probable messages and the |V| −M least probable messages
are assigned to “empty spheres”. In practice, the messages
associated to these “empty spheres” can be assigned to an
arbitrary channel index, as they always yield to a decoding
error given their smaller probability. This code corresponds
precisely to the well-known optimal almost-lossless block
source code. When the M most probable messages have

a strictly larger probability than that of the |V| − M least
probable messages, the code is generalized perfect according
to Definition 3. When the M -th and (M+1)-th most probable
messages have the same probability, the code is generalized
quasi-perfect.

VI. LOSSY SOURCE CODING

In this section, we consider the lossy source coding problem
with a maximum distortion constraint. A source generates
messages v ∈ V with probability distribution PV . The source
encoder maps the message v to a codeword w ∈ W belonging
to a length-M codebook C = {w1, w2, . . . , wM}. Here W
denotes the reconstruction alphabet. We define a non-negative
real-valued distortion measure d(v, w) : V × W → R+ and
consider a maximum allowed distortion D. The minimum
excess-distortion probability of a given code C is defined as

Ped(C, D) , P
[
d(V,W ) > D

]
(72)

= 1− P
[
min
w∈C

d(V,w) ≤ D
]
, (73)

where in (73) we used that the minimum excess distortion
probability is attained by assigning each source message to
the closest (in terms of distortion measure) codeword w ∈ C.

Quasi-perfect codes have good packing and covering prop-
erties simultaneously. Therefore, they are both good channel,
as shown in the previous sections, and source codes, as shown
next. According to Definition 2 whether a code is generalized
quasi-perfect code depends on the channel. In the lossy source-
coding setting, this channel turns out to correspond to the test
channel induced by the rate-distortion function, although the
latter only gives the asymptotic fundamental limit.

Consider a block source encoder that encodes n independent
realizations of the source PV using a codebook of cardinal-
ity 2nR. Rate-distortion theory states that, as the blocklength n
grows large, the largest rate R of a codebook with maximum
distortion D and vanishing excess-distortion probability is
given by

R(D) , min
PW |V :E[d(V,W )]≤D

I(V ;W ). (74)

The optimal P ?W |V in (74) induces a test channel P ?V |W that
maps the reconstruction points into the source alphabet. More
precisely, let P ?W (w) =

∑
v PV (v)P ?W |V (w|v), then, Bayes’

rule yields P ?V |W (v|w) =
PV (v)P?W |V (w|v)

P?W (w) . It is shown in [13,
Sec. 10.7] that the optimal test channel has the form

P ?V |W (v|w) =
PV (v)e−λ

?d(v,w)

µ(v)
, (75)

for some λ? ≥ 0, such that the normalization factor µ(v) =∑
w P

?
W (w)e−λ

?d(v,w) is independent of w.
Let us consider the channel coding problem, as described

in Section III, of transmitting M messages over the channel
P ?V |W . Good channel codes for P ?V |W become good source
codes for the source PV and distortion measure d(v, w). In
particular, quasi-perfect codes attain the minimum excess-
distortion probability, as the next result shows.

Theorem 3: Consider a source PV with PV (v) > 0, v ∈ V ,
distortion measure d(v, w) and maximum distortion D. Let
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the test channel P ?V |W in (75) be symmetric and let Q̃(v) =
1
cµ

PV (v)
µ(v) satisfy Q̃ ∈ Q, where µ(v) is the normalizing factor

in (75) and cµ ,
∑
v′
PV (v′)
µ(v′) . Then, the excess-distortion

probability of any size-M generalized quasi-perfect code C
with parameters γ and Q = Q̃ is equal to

Ped(C, D) = max
QV

{
αMξC(D)

(
PV , QV

)}
, (76)

where, for any A ⊆ W ,

ξA(D) , sup
w∈A

P [d(V,w) ≤ D] , V ∼ QV . (77)

Moreover, if D ≥ − 1
λ? log

(
γ/cµ

)
, the excess-distortion

probability is Ped(C, D) = 0.
Proof: See Appendix C.

In [8, Th. 3], the excess-distortion probability of any source
code C (not necessarily quasi-perfect) is expressed as the error
probability of an induced binary hypothesis test with certain
parameters,

Ped(C, D) = max
QV

{
αρC(D)

(
PV , QV

)}
, (78)

where

ρC(D) , P
[
min
w∈C

d(V,w) ≤ D
]
, V ∼ QV . (79)

Invoking

P
[
min
w∈C

d(V,w) ≤ D
]
≤ M sup

w∈C
P [d(V,w) ≤ D] (80)

≤ M sup
w∈W

P [d(V,w) ≤ D] , (81)

the identity (78) yields the lower bounds

Ped(C, D) ≥ max
QV

{
αMξC(D)

(
PV , QV

)}
(82)

≥ max
QV

{
αMξW(D)

(
PV , QV

)}
. (83)

Theorem 3 shows that, provided that a quasi-perfect code
exists with certain parameters, the lower bound (82) holds
with equality. The relaxation from the code to the whole
reconstruction alphabet in (83) coincides with [20, Th. 8]. For
certain sources, inequality (83) may hold with equality as the
next example shows.

Let us consider the lossy compression of n i.i.d. samples
of an equiprobable binary memoryless source (BMS) with
bit error rate distortion measure, i.e., PV (v) = 2−n and
d(v,w) = 1

n

∑n
i=1 11[vi 6= wi], with v,w ∈ {0, 1}n. The

test channel for this rate-distortion problem corresponds to a
BSC with a crossover probability depending on D. As in the
channel coding example from Fig. 1, we consider a codebook
with M = 4 codewords. Figure 3 depicts the minimum
excess-distortion probability Ped(C, D) as a function of n for
a maximum distortion D = 0.11 and D = 0.37. Since we
are “quantizing” a space of increasing dimension n with only
M = 4 codewords, the excess-distortion probability tends to
1 as n → ∞ for any D < 1

2 . In Fig. 3, we plot the lower
bound (83) evaluated for QV uniform [20, Th. 15], compared
to the exact excess-distortion probability evaluated for the best
code in a BSC and M = 4 codewords [16]. We also highlight
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Figure 3. Minimum excess-distortion probability for n i.i.d. samples of a
equiprobable BMS with bit error rate distortion measure and parameters M =
4, and D = 0.11 (in blue) and D = 0.37 (in black).

with markers the points where quasi-perfect codes exist for
the BSC, corresponding to n = 2, 3, 4, 5, 6, 8 (see Fig. 1).

In Fig. 3, we observe that the exact excess-distortion proba-
bility coincides with the lower bound (83) at the points where
quasi-perfect codes exist both for D = 0.11 and D = 0.37.
Nevertheless, in the lossy compression setting, the reverse
implication is not always true. Depending on the system pa-
rameters, the exact excess-distortion probability and the lower
bound can also coincide even when no quasi-perfect code
exists for the corresponding test channel. Indeed, for D = 0.37
the only points where the exact excess-distortion probability
and the lower bound coincide are those for which quasi-perfect
codes exist, while for D = 0.11 both expressions coincide for
all values of n, regardless of whether the code is quasi-perfect.
This occurs when the sets {v ∈ V | d(V,w) ≤ D}, w ∈ C, are
non-overlapping (this occurs in our example for D sufficiently
small). Then, the encoding regions which satisfy the maximum
distortion cap are “spheres” regardless of the specific structure
of the codebook C and the lower bound (83) yields the exact
excess-distortion probability.

VII. DISCUSSION

We have proposed a generalization of perfect and quasi-
perfect codes beyond the Hamming distance and their con-
ventional application to binary symmetric channels. The def-
inition of these codes follows from the packing and covering
properties of a set of generalized spheres whose shape is
tilted using an auxiliary probability measure on the output
alphabet. Since the shape of these spheres depends on the
channel considered, quasi-perfect codes can only be defined
with respect to a specific channel. For the BSC, quasi-perfect
codes are defined with respect to the Hamming distance and
our definition recovers the classical definition of quasi-perfect
(or sphere-packed) codes in the literature. The tilting of these
spheres with a cleverly chosen auxiliary measure shows that
MDS codes are quasi-perfect for erasure channels. The key
property satisfied by the generalized quasi-perfect codes is
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that they achieve the minimum error probability for a given
blocklength and rate.

While the proofs of the results in this paper are presented
for discrete channels, they can be extended for channels
with continuous outputs with some care. In fact, Lemma 1,
Definitions 1 and 2, and Theorem 1 apply without change
for both discrete and continuous channels, provided that they
are absolutely continuous with respect to Lebesgue measure.
Nevertheless, the spheres induced by typical continuous chan-
nels seldom allow a perfect (or quasi-perfect) packing of the
output space. Some atypical examples of continuous channels
in which the induced spheres pack the output space are the
aditive white Gaussian noise (AWGN) channel with M = 2
codewords with equal power, the binary-input AWGN when all
the input sequences are used, i.e., for M = 2n, or the additive
white Laplace noise channel under certain input constraints
(as the induced spheres are norm-1 balls, and thus they can
pack the space for specific lattice codes).

The framework presented in this work has been built upon
the key assumption that a certain natural channel symmetry
holds. Nevertheless, the underlying idea can be applied to
general channels PY |X and arbitrary auxiliary distributions
Q. In this case, quasi-perfect codes are defined as those
“codes attaining the meta-converse bound with equality.” This
definition is reminiscent to that of the MDS codes, which are
defined as “codes attaining the Singleton bound with equality.”
Admittedly, while this alternative more general definition of
quasi-perfect codes is mathematically precise, it does not shed
much light into the structure of these codes.

APPENDIX A
PROOF OF LEMMA 1

For any function A(z) and any test 0 ≤ T (z) ≤ 1, the
following simple inequality holds∑

z∈Z
A(z)11

[
A(z) > 0

]
≥
∑
z∈Z

A(z)T (z). (84)

Particularized with A(z) = P0(z)− γP1(z), γ ≥ 0, and T =
TNP in (5), the inequality (84) yields∑

z

(
P0(z)− γP1(z)

)
11
[
P0(z)− γP1(z) > 0

]
≥
∑

z

(
P0(z)− γP1(z)

)
TNP(z). (85)

Rearranging terms in (85), we obtain

−
∑

z
P0(z)TNP(z) ≥ −

∑
z
P0(z)11

[
P0(z)

P1(z)
> γ

]
+ γ

∑
z
P1(z)

(
11
[
P0(z)

P1(z)
> γ

]
− TNP(z)

)
. (86)

Adding 1 to both sides of (86) and noting that αβ
(
P0, P1

)
=

1−
∑
z P0(z)TNP(z) for β =

∑
z P1(z)TNP(z), yields

αβ
(
P0, P1

)
≥
∑

z
P0(z)11

[
P0(z)

P1(z)
≤ γ

]
+ γ

∑
z
P1(z)11

[
P0(z)

P1(z)
> γ

]
− γβ, (87)

which coincides with the right-hand side of (6) for fixed γ.

We now show that (87) holds with equality when γ coin-
cides with the threshold appearing in the Neyman-Pearson test
(5). To see this, note that second indicator function in (5) is
active only when P0(z) − γP1(z) = 0, and equal to 0 other-
wise. Then, multiplying both sides of (5) by P0(z)− γP1(z),
summing over z, yields (85) with equality. Since (85) holds
with equality for γ equal to the threshold appearing in the
Neyman-Pearson test, so it does (87). Then, by optimizing
(87) over thresholds γ ≥ 0, we obtain the equality in (6) and
the result follows.

APPENDIX B
PROOF OF THEOREM 2

We apply Lemma 1 to the hypothesis test in (71) to obtain
an alternative expression for the Neyman-Paerson performance
of the test. This expression is then shown to coincide with
the following characterization of the joint source-channel error
probability of a quasi-perfect code.

For a source-channel code, we define the following count-
able set, which is analogous to LQ in (15),

L(v)
Q ,

{
ν̃ ∈ R

∣∣∣∃x ∈ X ,∃y ∈ Y, PY |X(y|x)

Q(y) = ν̃
PV (v)

}
.

(88)
Lemma 4: For a source PV and a symmetric channel PY |X ,

the error probability of any source-channel code C satisfies,
for any γ̃ ≥ 0 and any Q ∈ Q,

Pe(C) ≥ γ̃

(∑
v

Qi

(
γ̃

PV (v)

)
− 1

)
+
∑
v

∑
τ̃∈L(v)

Q ∩[0,γ̃]

τ̃Qo

(
τ̃

PV (v)

)
. (89)

Furthermore, the lower bound (89) holds with equality if and
only if the source-channel code C is generalized quasi-perfect
with (not necessarily unique) parameters γ̃ and Q satisfying
the conditions in Definition 3.

Proof: The proof follows analogous steps to that of
Lemma 3, and it is omitted here. Indeed, for |V| = M and
PV (v) = 1

M , letting γ̃ = γ
M , τ̃ = τ

M , then (89) recovers the
right-hand side of (22), which is tight for quasi-perfect codes
satisfying Definition 2 with parameters γ and Q.

Applying Lemma 1 with P0 ← PV PX|V PY |X and P1 ←
P̄V PX|VQ, via the change of variable γ ↔ γ̃ = γ

|V| , yields

α 1
|V|

(
PV ×PX|V ×PY |X , P̄V ×PX|V ×Q

)
= max

γ̃≥0

{∑
v,x

PV (v)PX|V (x|v)
∑

y/∈Si,x

(
γ̃

PV (v)
,Q

)PY |X(y|x)

+ γ̃
∑
v,x

PX|V (x|v)
∑

y∈Si,x

(
γ̃

PV (v)
,Q

)Q(y)− γ̃

}
(90)

= max
γ̃≥0

{∑
v,x

PV (v)PX|V (x|v)
∑

τ̃∈L(v)
Q ∩[0,γ̃]

τ̃

PV (v)
Qo

(
τ̃

PV (v)

)

+ γ̃
∑
v,x

PX|V (x|v)Qi

(
γ̃

PV (v)

)
− γ̃

}
, (91)
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where in the last step we used that the complementary set of
Si,x
(

γ̃
PV (v) , Q

)
corresponds to

⋃
τ̃∈L(v)

Q ∩[0,γ̃]
So,x

(
τ̃

PV (v) , Q
)
,

that PY |X(y|x)

Q(y) = τ̃
PV (v) for all y ∈ So,x

(
τ̃

PV (v) , Q
)
. Finally,

using that
∑
x PX|V (x|v) = 1, we obtain

α 1
|V|

(
PV ×PX|V ×PY |X , P̄V ×PX|V ×Q

)
= max

γ̃≥0

∑
v

∑
τ̃∈L(v)

Q ∩[0,γ̃]

τ̃Qo

(
τ̃

PV (v)

)

+ γ̃
∑
v

Qi

(
γ̃

PV (v)

)
− γ̃

 , (92)

which coincides with (89) when γ̃ coincides with its opti-
mizing value in (92). Since (92) is a lower bound to Pe(C),
the theorem thus follows by optimizing (92) over auxiliary
distributions Q ∈ Q.

APPENDIX C
PROOF OF THEOREM 3

Let C be generalized quasi-perfect with respect to the
test channel P ?V |W defined in (75), with parameters γ and

Q̃(v) = 1
cµ

PV (v)
µ(v) . The set Sw(τ, Q̃) associated to the test

channel P ?W |V is given by

Sw(τ, Q̃) =

{
v ∈ V

∣∣∣ d(v, w) ≤ − 1

λ?
log

(
τ
µ(v)Q̃(v)

PV (v)

)}
,

(93)

which upon particularization to Q̃(v) = 1
cµ

PV (v)
µ(v) yields

Sw(τ, Q̃) =

{
v ∈ V

∣∣∣ d(v, w) ≤ − 1

λ?
log

τ

cµ

}
. (94)

We divide the proof in two different cases depending on the
value of the maximum distortion D.

a) D ≥ − 1
λ? log

(
γ/cµ

)
: In this case γ ≥ cµe−λ

?D, and

Sw(γ, Q̃) ⊆ Sw
(
cµe
−λ?D, Q̃

)
=
{
v ∈ V

∣∣ d(v, w) ≤ D
}
.

(95)

According to Definition 2, the codeword-centered sets{
Sw(γ, Q̃)

}
w∈C cover the space. Then, using (95) it follows

that every element of V has a codeword no farther than D,
i.e., ⋃

w∈C

{
v ∈ V

∣∣ d(v, w) ≤ D
}

= V. (96)

According to (96), we have that P
[
minw∈C d(V,w) ≤ D

]
= 1

regardless of the distribution of V . As a result, the excess-
distortion probability is

Ped(C, D) = 1− P
[
min
w∈C

d(v, w) ≤ D
]

= 0. (97)

Similarly, for ξC(D) and ρC(D) defined in (77) and (79),
using (81) it follows that MξC(D) ≥ ρC(D) = 1. Since
α1

(
PV , QV

)
= 0, using (97), we conclude that (76) holds

with equality.

b) D < − 1
λ? log

(
γ/cµ

)
: In this region, γ < cµe

−λ?D,
and it thus follows that

Si,w(γ, Q̃) ⊇ Sw
(
cµe
−λ?D, Q̃

)
=
{
v ∈ V

∣∣ d(v, w) ≤ D
}
.

(98)

In this case,
⋃
w∈C

{
v ∈ V | d(v, w) ≤ D

}
does not cover

the space completely. Nevertheless, since the code C is quasi-
perfect with radius γ, the spheres Si,w(γ,Q), w ∈ C, are dis-
joint. Using (98) we conclude that the sets

{
v ∈ V

∣∣ d(v, w) ≤
D
}

, w ∈ C, do not overlap. Therefore,

Ped(C, D) = 1− P
[
min
w∈C

d(V,w) ≤ D
]

(99)

= 1− P
[
v ∈

⋃
w∈C

{
v ∈ V

∣∣ d(v, w) ≤ D
}]

(100)

= 1−
∑
w∈C

P
[
d(V,w) ≤ D

]
, (101)

where V ∼ PV .
We now show that the right-hand sides of (76) and (101)

coincide. Applying Lemma 1 to the hypothesis test in (76),
yields

αβ
(
PV , QV

)
= max

γ′≥0

{
P
[
PV (V )

QV (V )
≤ γ′

]
+ γ′P

[
PV (V̄ )

QV (V̄ )
> γ′

]
− γ′β

}
,

(102)

where V ∼ PV and V̄ ∼ QV . Let

QCV (v) ,
1

g
PV (v)

(
1

M

∑
w∈C

e−λd(v,w)

)−1

(103)

where g is a normalizing factor and λ ≥ 0 is to be defined
later. Using QV = QCV and choosing γ′ = g

M e−λD, we obtain
the following lower bound to (102),

αβ
(
PV , Q

C
V

)
≥ P

[∑
w∈C

e−λd(V,w) ≤ e−λD
]

+
g

M
e−λD

(
P

[∑
w∈C

e−λd(V̄ ,w) > e−λD

]
− β

)
, (104)

where V ∼ PV and V̄ ∼ QCV .
For λ ≥ 0 sufficiently large,∑

w∈C
e−λd(v,w) > e−λD ⇔ min

w∈C
d(v, w) ≤ D. (105)

Therefore, for such λ, (104) becomes

αβ
(
PV , Q

C
V

)
≥ P

[
min
w∈C

d(V,w) > D
]

+
g

M
e−λD

(
P
[
min
w∈C

d(V̄ , w) ≤ D
]
− β

)
. (106)

The symmetry conditions required by the theorem imply that
the measure of the set

{
v ∈ V | d(v, w) ≤ δ

}
does not

depend on w ∈ W for any δ ≥ 0. Then, since the sets
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{
v ∈ V | d(v, w) ≤ δ

}
are non-overlapping, for sufficiently

large λ, we obtain

P
[
min
w∈C

d(V̄ , w) ≤ D
]

=
∑
w∈C

P
[
d(V̄ , w) ≤ D

]
(107)

= M sup
w∈C

P
[
d(V̄ , w) ≤ D

]
, (108)

where in (108) we used that, for sufficiently large λ, QCV (v)
only depends on the distance to the closest w ∈ C. Then, since
the measure of the set

{
v ∈ V | d(v, w) = δ

}
does not depend

on w ∈ W for any δ ≥ 0, neither does P
[
d(V̄ , w) = δ

]
nor

P
[
d(V̄ , w) ≤ D

]
depend on w ∈ C.

Therefore, for β = ξC(D), (106) becomes

αMξC(D)

(
PV , QV

)
≥ 1−

∑
w∈C

P
[
d(V,w) ≤ D

]
. (109)

Since the left-hand side of (109) is a lower bound to Ped(C, D),
and since the right-hand side of (109) coincides with (101),
we conclude that (76) holds with equality.

Remark: Note that P
[
d(V̄ , w) ≤ D

]
, V̄ ∼ QCV , becomes

independent of w ∈ C as λ → ∞. However, for this choice
of V̄ , the measure P

[
d(V̄ , w) ≤ D

]
still depends on w /∈

C. Therefore, the proof technique presented here cannot be
directly applied when the β parameter in (76) is relaxed from
MξC(D) to MξW(D), as discussed in (82)-(83).
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