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Abstract—Polar code constructions based on mutual informa-
tion or Bhattacharyya parameters of bit-channels are intended
for hard-output successive cancellation (SC) decoders, and thus
might not be well designed for use with other decoders, such
as soft-output belief propagation (BP) decoders or successive
cancellation list (SCL) decoders. In this paper, we use the evo-
lution of messages, i.e., log-likelihood ratios (LLRs), ofunfrozen
bits during iterative BP decoding of polar codes to identify
weak bit-channels, and then modify the conventional polar code
construction by swapping these bit-channels with strong frozen
bits-channels. The modified construction codes show improved
performance not only under BP decoding, but also under SCL
decoding. The code modification is shown to reduce the number
of low-weight codewords, with and without CRC concatenation.

I. I NTRODUCTION

Polar codes were proposed in [2] as a coding technique
that provably achieves the symmetric capacity of binary-input
discrete memoryless channels (B-DMCs) with low encoding
and decoding complexity. The analysis and construction of
polar codes is based on a successive cancellation (SC) decoder.
The effective channels seen by the SC decoder when making
decisions are called bit-channels. As the code length tendsto
infinity, the bit-channels become either noiseless or completely
noisy and the fraction of noiseless channels tends to the
symmetric capacity. The symmetric capacity is achieved by
transmitting information through the noiseless bit-channels.
However, the performance of moderate-length polar codes suf-
fers from the sub-optimality of SC decoding and imperfectly
polarized bit-channels.

Several decoders with better finite-length performance than
SC have been proposed. In [12], successive cancellation list
(SCL) decoding was proposed, yielding performance compa-
rable to maximum-likelihood (ML) decoding at high SNR.
Belief propagation (BP) decoding over the polar code factor
graph was also proposed, with parallel [1] and sequential [6]
message scheduling.

In addition to the aforementioned improved decoders, modi-
fied constructions of polar codes have been considered. In par-
ticular, [4] reports a near-exponential rate of decay of theerror
probability using a concatenation with outer Reed-Solomon
codes. A concatenated code employing an outer polar code and
inner block codes is proposed in [11]. In [10], an interpolated
construction that relates polar codes to Reed-Muller codes
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also with the Institució Catalana de Recerca i Estudis Avançats (ICREA),
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is proposed. In [7], BP decoding with a concatenation of
LDPC codes to protect intermediate bit-channels is proposed.
Interleaved concatenations with BCH and convolutional codes
are proposed in [14].

In this paper, a simple modification to the conventional
polar code construction method is proposed to improve code
performance under BP decoding. By tracking the evolution
of the LLR densities of unfrozen bits during iterative BP
decoding, we identify weak unfrozen bit-channels. These
are then replaced by strong frozen bit-channels for informa-
tion transmission. This LLR-based bit-swapping construction
yields performance improvements under BP decoding. Gains
are also observed under SCL decoding and CRC-aided SCL
decoding, due to a reduction in the number of low-weight
codewords.

II. PRELIMINARIES

We define[b]
def
= {1, . . . , b} for b ∈ Z. We usexb

1 to denote
a length-b vector(x1, . . . , xb) andA⊤ to denote the transpose
of matrix A. Row vectors are assumed.

Let W : X → Y denote a B-DMC, with input alphabet
X = {0, 1}, output alphabetY, and transition probability
W (y|x), x ∈ X , y ∈ Y. The channel mutual information with
equiprobable inputs, or symmetric capacity, is defined by

I(W ) =
∑

y∈Y

∑

x∈X

1

2
W (y|x) log W (y|x)

1
2W (y|0) + 1

2W (y|1) , (1)

and the corresponding Bhattacharyya parameter by

Z(W ) =
∑

y∈Y

√
W (y|0)W (y|1). (2)

LetN be the block length. Channel input and output sequences
are denoted byxN

1 andyN1 , respectively, with corresponding
vector channelWN

(
yN1 |xN

1

)
.

A. Channel polarization

Consider the matrixG2 = [ 1 0
1 1 ], and letGN = G

⊗n
2 be the

n-th Kronecker power ofG2, wheren = log2 N . Input bits
are denoted byuN

1 ∈ {0, 1}N . We defineWN

(
yN1 |uN

1

)
=

WN
(
yN1 |uN

1 GN

)
as the induced vector channel from the

input bits. FromWN
(
yN1 |uN

1

)
, an SC decoder implicitly

defines, fori ∈ [N ], the bit-channel

W
(i)
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(
yN1 , ui−1

1 |ui

)
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∑

uN
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1

2N−i
WN

(
yN1 |uN

1

)
. (3)

The channel polarization theorem [2] states thatI
(
W

(i)
N

)

converges to either0 or 1 asN tends to infinity and the fraction
of noiseless channel tends toI(W ).

RateR = K/N polar codes are constructed by selecting
the N − K indexes with the lowestI

(
W

(i)
N

)
or the highest

Z
(
W

(i)
N

)
, for i ∈ [N ]. These are called thefrozen set,

F , and the corresponding input bits are set to zero. The
complementaryunfrozen set of K indexes,Fc, correspond
to information bits.



It is impractical to precisely calculateI
(
W

(i)
N

)
or Z

(
W

(i)
N

)

since the output alphabet size ofW (i)
N grows exponentially

with N . However, a quantization can be used to closely
approximateW (i)

N [13].

B. Successive cancellation decoding

In SC decoding, the information bits are estimated as

ûi = arg max
ui∈{0,1}

W
(i)
N

(
yN1 , ui−1

1 |ui

)
, i ∈ Fc.

The time complexity of the SC decoder isO(N logN). A
significant performance improvement is achieved by succes-
sive cancellation list (SCL) decoding [12], which conductsa
breadth-first search of the polar code decoding tree [12] over
L candidate paths with complexityO(LN logN).

C. Belief propagation (BP) decoding

BP is a message-passing algorithm that has been extensively
studied for decoding graph-based codes. BP decoding of polar
codes has been considered in [1], [5], [8] and it was shown
that the decoding complexity isO(IaveN logN), whereIave is
the average number of iterations.

Scheduling, i.e., choosing the order in which nodes compute
their output messages, plays a key role in the performance
and complexity of BP decoders [8]. The two main decoding
schedules for polar decoders are called “flooding” [7] and soft-
cancellation (SCAN) decoding [6]. SCAN has lower complex-
ity than flooding; it uses a schedule similar to SC decoding,
but yields better performance.

III. LLR- BASED CONSTRUCTIONS FORBP DECODING

Recall that the bit-channels are defined as the virtual chan-
nels between the input sequence to the polar encoder and the
channel output sequence seen by a genie-aided SC decoder. If
we use another decoder, e.g., a BP decoder or SCL decoder,
the virtual channels seen by the decoder differ from the bit-
channels. For such a decoder, the conventional polar code
construction might not be the best approach. In this section,
we propose a modified polar code construction for use with
BP and SCL decoding in the finite block length regime.

A. Evolution of LLRs during BP decoding

As in [7], we denote the soft-output LLRs at bitui on
the jth iteration of BP decoding byLout(i, j), i ∈ [N ]. The
performance of BP decoding is determined by the distributions
of Lout(i, j), for i ∈ Fc and j ∈ [Imax], where Imax is
the maximum number of iterations. We approximated these
distributions by observing the LLR values during 5000 trans-
missions of the all-zero codeword, and recorded the evolution
of the mean LLR values during BP decoding as a function
of the iteration number. The sum-product algorithm was used
for variable node (VN) and check node (CN) updates. The
input LLR to the CN updating function was limited by a
threshold of value38 to avoid overflow of the hyperbolic
tangent function [3].

Fig. 1 shows mean LLR plots after iterationsj = 1, 3, 5, 8 of
BP SCAN decoding for a conventional polar code with length
N = 1024 and rateR = 0.5 optimized atEb

N0
= 2.25 dB .

Note that each plot shows mean LLRs for the 512 unfrozen
bits, displayed in increasing relative index order. TheLout(i, j)
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Fig. 1: Mean LLR values (µ(LLR)) under BP SCAN decoding of
unfrozen bits of polar code withN = 1024, R =

1

2
, on AWGN

channel, with Eb

N0
= 2.25 dB. Code optimized atEb

N0
= 2.25 dB

according to [13].

distributions, and their mean values, were observed to stabilize
after j = 8 iterations. The bottom subfigure of Fig. 1,
corresponding toj = 8, shows that, at certain bit indexes,
there is a substantial drop in the mean LLR value, followed
by a period of small oscillations as the index increases.

B. LLR-based bit-swapping construction

In the simulations above, since the all-zero codeword
was transmitted, correct decoding is likely to occur when
Lout(i, 8) > 0. Thus, if the variances of LLR distributions
Lout(i, 8) are fixed fori ∈ Fc, one might expect that a large
drop in the mean LLR plot, followed by small oscillations,
would correspond to a more probable unfrozen bit error that
also propagates to subsequent bits.

With this interpretation, the patterns observed in Fig. 1
motivate a modified polar code construction in which a set of
unfrozen bit-channels associated with the most severe mean
LLR drops are replaced by an equal number of the most
reliable frozen bit-channels. This procedure was implemented
by swapping 12 bit-channels, the optimal number of swaps
having been determined empirically.
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Fig. 2: Mean LLR values (µ(LLR)) under BP SCAN decoding of
unfrozen bits of same polar code as in Fig. 1 after LLR-based bit-
swapping of 12 bit-channels, on AWGN channel,Eb

N0
= 2.25 dB.



Fig. 2 shows the mean LLR plots after iterationsj =
1, 3, 5, 8 for the code obtained. The qualitative difference
between these plots and those in Fig. 1 is evident, with fewer
occurrences of large drops followed by small oscillations.

We refer to this method of code modification via bit-
swapping as LLR-based code construction. In the next section,
we show that it can improve the polar code performance under
BP and SCL decoding.
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Fig. 3: Mean LLRs (µ(LLR)) under BP flooding decoding of
unfrozen bits of polar code in Fig. 1.

Examination of the evolution of mean LLR values of
unfrozen bits under BP decoding with a flooding schedule
reveals behavior similar to that found under SCAN decoding.
Fig. 3 shows the evolution of mean LLRs using traces captured
after j = 1, 3, 5, 8, 12, 16 decoder iterations. Comparison to
Fig. 1 leads to two observations. First, the indexes where the
major drops occur at iterationj = 8 and beyond are the same
in both. This suggests that LLR-based bit-swapping will have
a similar effect on LLR evolution with a flooding decoder,
as was found to be the case. Second, the mean LLR plots
for SCAN decoding appear to stabilize after fewer iterations
than for flooding decoding, as can be seen by comparing
the plots for iterationsj = 5 and j = 8 in both figures.
This suggests that SCAN decoding should converge faster that
flooding decoding, requiring fewer iterations to decode. This
is consistent with the measurements of the average number
of iterations to reach convergence of SCAN and flooding
decoders reported in [7]. The faster convergence of SCAN
decoding translates to reduced time complexity to decode,
and a lower error rate when the maximum allowed number
of iterations is fixed [6].
C. Numerical results

We simulated the performance of the conventional polar
code and the modified code obtained by LLR-based bit-
swapping, as described above, under BP SCAN-decoding
on the AWGN channel. Decoding was terminated whenever
the polar code parity-check equations were satisfied by the
estimated codeword. The maximum allowable number of

iterations was set toImax = 200. At high SNR values (e.g., 3
dB), we found that the average number of iterations required
to decode was slightly greater than 1, which is consistent
with results in [7]. Fig. 4 shows the frame error rate (FER)
performance of the two codes in the [1.75, 3.25] dB SNR
range. As can be seen, the LLR-based construction provides
a gain of approximately 0.2 dB throughout almost the entire
range.
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Fig. 4: FER of conventional and LLR-based polar codes under BP
SCAN decoding on the AWGN channel.

IV. LLR- BASED CONSTRUCTION WITHSCL DECODING

In the previous section, we showed that the LLR-based bit-
swapping construction outperforms the conventional construc-
tion under iterative soft-output BP decoding. In this section,
we demonstrate that the LLR-based construction technique can
improve the performance of polar codes under hard-output
SCL decoding, as well.

Eb

N0
(dB)

1.75 2 2.25 2.5 2.75 3 3.25 3.5

F
E

R

10-6

10-5

10-4

10-3

10-2

10-1

LLR-based Construction  L = 16
Union Bound for LLR-based Construction
Conventional Construction  L = 16
Union Bound for Conventional Construction

Fig. 5: Union bound approximation (5) and FER for SCL.

Fig. 5 compares the FER performance of the lengthN =
1024, rate R = 0.5 polar codes constructed using the con-
ventional method and the LLR-based bit-swapping approach
on the AWGN channel under SCL decoding with list size
L = 16. Note that the improvement over BP SCAN decoding
is approximately 0.12 dB for the conventional construction
and 0.38 dB for the LLR-based design. Under SCL decoding,
the LLR-based code provides a nearly 0.5 dB gain over the
conventional code in almost the entire [1.75, 3.5] dB SNR
range.

It has been observed that SCL decoder performance can
approach that of ML decoding for sufficiently large list size.
For a polar code of lengthN = 2048 and rateR = 0.5,
constructed using the methods of [13] and optimized for an



SNR value of 2 dB, a list sizeL = 16 was found to yield
near-ML performance in the [1.5, 3] dB SNR range [12].
Due to complexity constraints, it is not possible to simulate
ML decoding directly for the codes we have constructed, so
instead we compare our results to an approximate bound on
ML decoder performance.

For a linear block code transmitted over the AWGN channel,
the union bound on FER with ML decoding is given by

PML
e 6

∑

d

AdQ(
√
2dSNR), (4)

whereAd is the number of codewords with Hamming weight
d, and Q(x) = 1√

2π

∫ +∞
x

exp(−u2

2 )du. In the high SNR
regime, the upper bound is dominated by the term corre-
sponding to the minimum non-zero codeword weight, i.e., the
minimum distance of the codedmin, and we have the familiar
approximation:

PML
e ≈ Admin

Q(
√
2dminSNR). (5)

There is no closed-form expression for the weight enumer-
atorsAd of polar codes. However, a method based upon adap-
tive SCL decoding, proposed in [9], can be used to identify
low-weight codewords in polar codes. Evidence suggests that
it finds all of the minimum weight codewords for sufficiently
large list size. Applying the technique to the conventional
and LLR-based polar codes, we found that both codes have
minimum distancedmin = 16, with corresponding weight
enumeratorsA16 = 34997 andA16 = 4896, respectively. The
approximate union bound in (5) was evaluated for both codes
using these values ofA16, and the results are shown in Fig. 5.
There is a very good match between the SCL decoder simula-
tion results and the approximate ML bound. This suggests that
most of the SCL decoding errors are caused by misdecoding to
the nearest codewords in Hamming distance. The comparison
also provides an explanation for the improved performance of
the LLR-based code: the bit-swapping construction reduced
the number of minimum-weight codewords substantially, by a
factor of more than 7.
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Fig. 6: Union bound approximation (5) and FER for CRC-aided
SCL.

In [12], it was shown that the concatenation of a polar
code with a simple CRC could significantly improve the
performance under SCL decoding at the price of a small rate
loss. We concatenated the conventional and LLR-based polar
codes with an 8-bit CRC, and evaluated their FER performance
on the AWGN channel using SCL decoding with list size
L = 16 in the [1.75, 2.75] dB SNR range. The results
are shown in Fig. 6. The LLR-based code provides better

performance for SNRs greater than 2 dB. Using the same
technique as above, we also determined the minimum distance
of both CRC-aided codes to be 16, with corresponding weight
enumeratorsA16 = 2237 andA16 = 56, respectively. Once
again, the LLR-based code has signficantly fewer minimum-
weight codewords. The approximate ML decoding bounds
given by (5) are also plotted in Fig. 6. The agreement between
the bounds and simulation results is not as good as in Fig. 5,
possibly because the operating SNR is too low. However,
the results suggest that the improved performance of the
LLR-based polar code is again attributable to the significant
reduction in the number of minimum-weight codewords.

V. CONCLUSIONS

In this paper, we proposed a modification of the conven-
tional polar code construction for use with BP and SCL de-
coders. The evolution of unfrozen bit LLR distributions during
iterative BP decoding was used to identify the most vulnerable
unfrozen bit-channels. These were replaced with the same
number of most reliable frozen bit-channels. This LLR-based
bit swapping construction improves code performance under
BP decoding, as well as under SCL decoding, with and without
CRC concatenation. The gains can be attributed to a significant
reduction in the number of low-weight codewords.
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