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Abstract—This paper studies an almost-lossless source-channel
coding scheme in which source messages are assigned to different
classes and encoded with a channel code that depends on the class
index. The code performance is analyzed by means of random-
coding error exponents and validated by simulation of a low-
complexity implementation using existing source and channel
codes. While each class code can be seen as a concatenation of
a source code and a channel code, the overall performance im-
proves on that of separate source-channel coding and approaches
that of joint source-channel coding when the number of classes
increases.

Index Terms—Source-channel coding, error exponent, unequal
error protection, UEP, LDPC.

I. INTRODUCTION

Reliable transmission of a source through a communica-
tion channel can be achieved by using separate source and
channel codes, as shown by Shannon’s source-channel coding
theorem [1]. This means that a concatenation of a (channel-
independent) source code followed by a (source-independent)
channel code achieves vanishing error probability as the block
length goes to infinity, as long as the source entropy is smaller
than the channel capacity [1]. However, in the non-asymptotic
regime joint source-channel codes can perform strictly better.
This improvement (i.e. reduction in error probability) has been
quantified in terms of error exponents [2], [3] and in terms of
source and channel dispersion [4], [5]. Joint design has an
error exponent at most twice of that of separate codes [6], and
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Barcelona 08010, Spain, and the Department of Engineering, University of
Cambridge, Cambridge CB2 1PZ, U.K. A. Tauste Campo is also with the
Hospital del Mar Medical Research Institute, Barcelona 08003, Spain.

G. Vazquez-Vilar was with the Department of Information and Communi-
cation Technologies, Universitat Pompeu Fabra, Barcelona 08018, Spain. He
is now with the Signal Theory and Communications Department, Universidad
Carlos III de Madrid, Leganés 28911, Spain, and with the Gregorio Marañón
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a dispersion gain that depends on the target error probability;
for vanishing values of the latter, the dispersion of joint design
is at best half of the dispersion of separate design [5]. This
potential gain justifies the interest in practical finite-length
joint source-channel codes.

Several practical joint source-channel coding schemes have
been considered in the past. One possible approach is to adapt
existing channel coding techniques to exploit the knowledge
on the source statistics at the decoder side. Examples include
a modification of the Viterbi decoding algorithm to use the
a priori probabilities of the source bits [7], punctured turbo-
codes with a modified iterative decoder [8], and source and
channel LDPC codes with a decoder exploiting the joint graph
structure of the codes and the source [9]. Other schemes
exploit the source statistics both at the encoder and decoder.
In [10], source bits are matched to a non-systematic LDPC
code via scrambling or splitting. In [11]–[13] the authors
propose a trellis-structure description of the Huffman code
and an appropriate channel code so that joint decoding is
possible. This technique has been extended to arithmetic [14]
and Lempel-Ziv source coding [15]. These source-channel
coding schemes share the underlying idea of approximating
the (optimum) maximum a posteriori (MAP) decoder by using
certain properties of the source statistics.

In this paper, we analyze an almost-lossless source-channel
coding scheme in which source messages are assigned to
disjoint classes and encoded by codes that depend on the
class index. Under MAP decoding, this scheme attains the
joint source-channel reliability function in the cases where it
is known to be tight [16]. We are interested in characterizing
the performance of this coding scheme under simpler, sub-
optimal decoding. First, we process the channel output in
parallel for each class using a bank of maximum likelihood
(ML) decoders. Then, the decoded message is selected from
the outputs of the ML decoders based on a MAP criterion.
While this construction fails to achieve the best performance of
joint source-channel coding, it presents a smaller complexity
for a fixed number of classes. This scheme is shown to improve
on the error exponent of separate coding, and, as the number
of classes increases, to approach the error exponent of joint
source-channel coding [3].

The proposed coding scheme can be interpreted as based
on unequal error protection (UEP). The most probable mes-
sages are encoded with low-rate channel codes, and hence
they receive an increased protection against channel errors.
Analogously, less probable messages are assigned to classes
that receive less protection against channel errors. UEP can
also be implemented via an alternative coding scheme in which
codewords are divided in two parts: a prefix that identifies
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Figure 1. Block diagram of the multi-class source-channel coding scheme. Class #0 is reserved for a declared error, and it is not decoded at the receiver.

which class the message belongs to, and a payload which
encodes the message within the class. When the number of
classes grows sub-exponentially with the block-length, the
prefix encodes an information source of effective zero rate.
Even in this case, for channels with no zero-error capacity, the
prefix length is required to grow linearly with the code length.
Therefore, this prefix scheme incurs a loss in exponent (see
discussion after Lemma 2 in [3]) and a loss in finite-length
performance [17, Sec. II.C].

Shkel, Tan and Stark also proposed an alternative UEP
coding scheme in [17]. In their scheme, codewords belonging
to different classes generally have different minimum distance,
hence UEP is guaranteed via code construction. In contrast,
in our scheme we do not require an UEP codebook. Codes
for different classes are selected and optimized independently.
Instead, UEP is achieved at the decoding stage by giving
priority to some classes over the others. As a result, the source-
channel code proposed here can be designed and implemented
with reduced complexity using existing source and channel
codes, as shown with several examples.

The structure of the paper is as follows. In Section II
the system model and our multi-class source channel coding
scheme are introduced. Section III presents a random-coding
analysis of this scheme. Section IV validates these results by
means of simulation of a reduced complexity implementation
based on LDPC codes, and Section V concludes the paper.

II. SYSTEM MODEL AND CODING SCHEME

We consider the transmission of a length-k discrete memo-
ryless source over a memoryless channel using length-n block
codes. We define t , k

n . The source output v = (v1, . . . , vk) ∈
Vk, where V is a discrete alphabet, is distributed according
to P k(v) =

∏k
i=1 P (vi), v = (v1, . . . , vk) ∈ Vk, where

P (v) is the source symbol distribution. Without loss of gen-
erality, we assume that P (v) > 0 for all v; if P (v) = 0
for some v, we define a new source without this symbol.
The channel input x = (x1, . . . , xn) ∈ Xn and output
y = (y1, . . . , yn) ∈ Yn, where X and Y respectively denote
the input and output alphabet, are related via a channel law
Wn(y|x) =

∏n
i=1W (yi|xi), where W (y|x) denotes the

channel transition probability. For the sake of clarity, in the
following, we consider discrete channels. The analysis carries
over to the case of continuous output alphabets, replacing the
corresponding sums by integrals.

A source-channel code is defined by an encoder and a
decoder. The encoder maps the message v to a length-n
codeword x(v). Based on the channel output y, the decoder
selects a message v̂(y). When clear from context, we avoid
writing the dependence of the decoder output on the channel
output explicitly. Throughout the paper, random variables will

be denoted by capital letters and the specific values they take
on are denoted by the corresponding lower case letters. The
error probability of a source-channel code is thus given by

εn = Pr
{
V 6= V̂

}
. (1)

We characterize this probability in terms of error exponents.
An exponent E(P,W, t) > 0 is to said to be achievable if there
exists a sequence of codes with n = 1, 2, . . ., and k = 1, 2, . . .,
whose error probabilities εn satisfy

εn ≤ e−nE(P,W,t)+o(n), (2)

where o(n) is a sequence such that limn→∞
o(n)
n = 0. The

supremum of all achievable exponents E(P,W, t) is usually
referred to as reliability function.

Our coding scheme splits the source-message set in subsets,
and use concatenated source and channel codes for each
subset. At the receiver, each channel code is decoded in
parallel, and the final output is selected based on the MAP
criterion. A block diagram of this scheme is shown in Fig. 1.

For each k, we define a partition Pk of the source-message
set Vk into Nk + 1 disjoint subsets Aki , i = 0, 1, . . . , Nk.
We shall refer to these subsets as classes. Sometimes, we
consider sequences of sources, channels and partitions where
Nk grows with k. The asymptotic number of classes as k →∞
is N , limk→∞Nk, hence N ∈ N∪ {∞}. More specifically,
we consider partitions in which source messages are assigned
to classes depending on their probability,

Aki =
{
v
∣∣ γki < P k(v) ≤ γki+1

}
, i = 0, . . . , Nk, (3)

with 0 = γk0 ≤ γk1 ≤ . . . ≤ γkNk+1 = 1. Since the sets Aki are
unions of type classes, Nk grows (at most) subexponentially
in k. We define the rate of each class as

Ri ,
1

n
log
∣∣Aki ∣∣, i = 0, . . . , Nk. (4)

All the messages in the class Ak0 are encoded with the same
codeword x(v) = x0 and are assumed to lead to a decoding
error. For each remaining class Aki , messages are encoded with
a channel code Ci of rate Ri. At the receiver, we use a two-
step decoder (see Fig. 1). For each class Aki , i = 1, . . . , Nk,
the i-th ML decoder selects a message v̂i in Aki as

v̂i = arg max
v∈Aki

Wn
(
y|x(v)

)
. (5)

Next, the decoder selects from the set {v̂i}Nki=1, the source
message with largest MAP decoding metric. That is, the final
output is v̂ = v̂ı̂, where the class index selected by the MAP
decoder corresponds to

ı̂ = arg max
i=1,...,Nk

q(v̂i,y), (6)

where q(v,y) , P k(v)Wn
(
y|x(v)

)
.
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III. ERROR EXPONENT ANALYSIS

To analyze the random-coding error exponent of the scheme
described in Section II, we define three different error events.
The first occurs when a source message belongs to the set Ak0
(source error); the second occurs when, for a source message
belonging to class Aki , the i-th ML decoder makes an error
(ML error); and the third occurs when the i-th ML decoder
output is correct but the MAP decoder makes an error (MAP
error). More precisely, these three error events are defined
respectively as

ES ,
{
v ∈ Ak0

}
, (7)

EML(i) ,
{
v ∈ Aki , v̂i 6= v

}
, (8)

EMAP(i) ,
{
v ∈ Aki , v̂i = v, ı̂ 6= i

}
. (9)

Using that these error events are disjoint, we write the error
probability as

εn = Pr

{
ES ∪

(
Nk⋃
i=1

EML(i)

)
∪

(
Nk⋃
i=1

EMAP(i)

)}
(10)

= Pr
{
V ∈ Ak0

}
+

Nk∑
i=1

Pr
{
V ∈ Aki , V̂ i 6= V

}
+

Nk∑
i=1

Pr
{
V ∈ Aki , V̂ i = V , Î 6= i

}
. (11)

To lower-bound the error exponent, we start by upper-
bounding every term in the third summand in (11) as

Pr
{
V ∈ Aki , V̂ i = V , Î 6= i

}
= Pr

{
Î 6= i

∣∣V ∈ Aki , V̂ i = V
}

Pr
{
V ∈ Aki , V̂ i = V

}
(12)

≤ Pr
{
Î 6= i

∣∣V ∈ Aki , V̂ i = V
}

Pr
{
V ∈ Aki

}
, (13)

where (12) follows from the chain rule, and (13) by upper-
bounding Pr

{
V ∈ Aki , V̂ i = V

}
by Pr

{
V ∈ Aki

}
. Using

the MAP decoding rule in (6), the first factor in the right-hand
side of (13) can be upper-bounded as

Pr
{
Î 6= i

∣∣V ∈ Aki , V̂ i = V
}

≤ Pr

{
q(V̂ i,Y ) ≤ max

j=1,...,Nk,j 6=i
q(V̂ j ,Y )∣∣∣ V ∈ Aki , V̂ i = V

}
(14)

≤ Pr

{
q(V ,Y ) ≤ max

v̄ 6=V ,v̄/∈Ak0
q(v̄,Y )

∣∣∣V ∈ Aki}, (15)

where (14) follows from (6) by assuming that ties are decoded
as errors, and (15) follows by applying the condition V̂ i = V
and by enlarging the set of source messages over which the
maximum is computed.

Substituting (13) and (15) in (11), via the chain rule, yields

εn ≤ Pr{V ∈ Ak0}+

Nk∑
i=1

Pr
{
V ∈ Aki , V̂ i 6= V

}
+ Pr

{
V /∈ Ak0 , q(V ,Y ) ≤ max

v̄ 6=V ,v̄/∈Ak0
q(v̄,Y )

}
. (16)

In the following, we find useful to define the channel coding
and source coding exponents. For ρ ≥ 0 and Q an arbitrary
distribution over X let the Gallager’s channel and source
functions be given by

E0(ρ,Q) , − log
∑
y

(∑
x

Q(x)W (y|x)
1

1+ρ

)1+ρ

, (17)

and

Es(ρ) , log

(∑
v

P (v)
1

1+ρ

)1+ρ

, (18)

respectively. For channel coding alone, the random-coding
exponent at rate R for an input distribution Q is achievable
and it is given by [2]

Er(R,Q) = max
ρ∈[0,1]

{
E0(ρ,Q)− ρR

}
. (19)

For source coding alone, the reliability function of a source P
at rate R, denoted by e(R), is given by [18]

e(R) = sup
ρ≥0

{
ρR− Es(ρ)

}
. (20)

We upper-bound (16) via a random-coding argument. For
every k, n, we assign a distribution Qi(x) to each class
Aki , i = 0, . . . , Nk, and randomly generate a codeword
x(v) according to Qni (x) ,

∏n
j=1Qi(xj) for each source

message v ∈ Aki and each i = 1, . . . , Nk. For the class
Ak0 , we select a symbol distribution Q0 that assigns mass 1
to a predetermined null symbol. Then, its Gallager function
satisfies that E0(ρ0, Q0) = 0 for any ρ0 ∈ [0, 1]. We also
define RN+1 , 0 such that e

(
RN+1

t

)
= 0. The next result

follows from (16) using the exponential bounds [18, Th. 5.2],
[2, Th. 5.6.1] and [16, Th. 1].

Theorem 1: There exists a sequence of codes, partitions and
decoders as defined in Section II that achieves the exponent

min
i=0,...,N

{
Er(Ri, Qi) + te

(
Ri+1

t

)}
, (21)

where N = limk→∞Nk. Furthermore, for the set of rates
{Ri} maximizing (21) there exists a one-to-one relationship
between each Ri and the corresponding threshold γi (see
Lemma 2 in Appendix I).

Proof: See Appendix I.
Under certain assumptions the lower bound in Theorem 1

coincides with an upper bound to the error exponent derived
in [19, Th. 2] for the family of codes described in Section II.
This is the case for a given class of channels (such as the
binary symmetric channel, binary erasure channel or phase-
shift-keying modulated additive white Gaussian noise channel
(AWGN)), when the intermediate rates optimizing (21) are
above the critical rate of the channel and the codes C1, . . . , CNk
are linear. While this converse result only applies to a class
of codes and channels, it shows that in these cases there is no
loss in exponent by considering the bound in Theorem 1.

Further analysis involves optimization over rates Ri (i.e.,
thresholds γi) and distributions Qi, i = 1, . . . , N . The bound
in Theorem 1 can be relaxed to obtain an alternative expres-
sion. We define E0(ρ) , maxQE0(ρ,Q).
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Theorem 2: There exists a sequence of codes, partitions and
decoders defined in Section II with N ≥ 2 that achieves the
exponent

max
R′≥R≥0

min

{
max
ρ≥0

{
ρR′ − tEs(ρ)

}
,

max
ρ̄∈[0,1]

{
E0(ρ̄)− tEs(ρ̄)− ρ̄R

′ −R
N − 1

}
,

max
¯̄ρ∈[0,1]

{
E0(¯̄ρ)− ¯̄ρR

}}
, (22)

Moreover, the rate of the i-th class in the partition is

Ri = R+ (i− 1)
R′ −R
N − 1

, i = 1, . . . , N, (23)

where R and R′ are the values optimizing (22).
Proof: See Appendix II.

The bound in Theorem 2 is simple to evaluate since it only
involves the well known functions Es(·) and E0(·), and the
optimization is performed over a fixed number of parameters
(ρ, ρ̄, ¯̄ρ, R and R′), independent of N . Furthermore, as we
verify next with an example, it is sometimes indistinguishable
from the bound in Theorem 1.

For N = 1, we have that Er(R0, Q0) = 0 and e(R2) = 0.
Optimizing (21) over intermediate rate R = R1 and distri-
bution Q1, Theorem 1 recovers the separate source-channel
exponent [3],

max
R≥0

min

{
Er(R), te

(
R

t

)}
, (24)

where Er(R) , maxQEr(R,Q).
Let Nk grow (subexponentially) with k in such a way that

limk→∞Nk = ∞. For this discussion only, we allow R
and R′ to depend on k as Rk and R′k, respectively. Let us
choose the sequences Rk and R′k such that limk→∞Rk = 0,
limk→∞R′k =∞ and limk→∞

R′
k−Rk
Nk−1 = 0, i.e., R′k = o(Nk).

In this case, the first and last terms within the minimization
in (22) become irrelevant and the bound in Theorem 2 re-
covers Gallager’s source-channel error exponent [2, p. 534,
Prob. 5.16],

max
ρ∈[0,1]

{
E0(ρ)− tEs(ρ)

}
. (25)

In several cases of interest, the exponent (25) coincides
with the joint source-channel reliability function. However, for
specific source and channel pairs the following exponent gives
a tighter bound to the reliability function [3], [6],

min
R≥0

{
Er(R) + te

(
R

t

)}
= max
ρ∈[0,1]

{
Ē0(ρ)− tEs(ρ)

}
, (26)

where Ē0(ρ) denotes the concave hull of E0(ρ), defined
pointwise as the supremum over convex combinations of any
two values of the function E0(ρ) [20, p. 36]. While the
bound in Theorem 2 does not attain (26), this error exponent
can be recovered from Theorem 1 by identifying the classes
with the source-type classes Pi, i = 1, . . . , Nk. In this case,
Ri = tH(Pi) and Ri+1 = tH(Pi+1) become infinitely
close to each other and they uniformly cover the interval

0 1 2 3 4 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Eb/N0 (dB)

E
rr
o
r
ex
p
o
n
en
t

 

 

Joint
Th. 2, N = 12
Th. 2, N = 5
Th. 1, N = 3
Th. 2, N = 3
Th. 1, N = 2
Th. 2, N = 2
Separate

Figure 2. Error exponent bounds. BMS with P (1) = 0.1 transmitted over a
binary input AWGN channel for t = 1.

[
0, t log(|V|)

]
for i = 1, 2, . . .. As a result, (21) recovers the

left-hand side of (26). This shows that the gap between the
bounds in Theorems 1 and 2 can be strictly positive.

A. Example

A binary memoryless source (BMS) with parameter p ,
P (1) ≤ 1/2 is to be transmitted over a binary-input AWGN
channel with signal-to-noise ratio (SNR) Es/N0. For com-
parison purposes, we normalize Es/N0 with respect to the
number of transmitted information bits if the source were
compressed to entropy, i.e. tH(V ). Let h2(p) = −p log2 p −
(1− p) log2(1− p) denote the binary entropy function in bits.
We define a signal-to-noise ratio per source bit Eb/N0 as

Eb

N0
,

n

kh2(p)

Es

N0
. (27)

Figure 2 shows the achievable error exponents for different
coding schemes as a function of Eb/N0 in decibels. The error
exponents in the figure correspond to separate source-channel
coding (24), joint source-channel coding (25), and the multi-
class scheme with N = 2, 3, 5, 12. The bound in Theorem
1 has been optimized over the parameters ρi, i = 0, . . . , N ,
and thresholds γi, i = 1, . . . , N . The bound in Theorem 2
has been optimized over the parameters ρ, ρ̄, ¯̄ρ, R and R′.
In both cases the channel input distribution has been chosen
to be equiprobable. From the figure we can see that the
bound in Theorem 1 and the relaxed version in Theorem 2
coincide for N = 2, 3. For N = 2, the multi-class scheme
shows a 0.4-0.7 dB improvement over separate source coding,
with just a small increase in complexity. Moreover, from
the curves for N = 2, 3, 5, 12 we can see that the multi-
class construction approaches the joint source-channel error
exponent as the number of classes increases, confirming the
results of Theorems 1 and 2 (since (25) and (26) coincide for
this example).
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IV. PRACTICAL CODE DESIGN

Based on the proposed scheme, we now design a practical
joint source-channel code for the transmission of a BMS
with P (1) ≤ 1/2 over a binary-input AWGN channel. In
particular, we consider a two-class code composed of a fixed-
to-variable lossless source code followed by two linear codes
with different rates. The lossless source code corresponds
to the class selector in Fig. 1. The ML decoders in Fig. 1
can be replaced by using standard quasi-ML decoders. This
fixed-to-variable-to-fixed source-channel code allows a simple
implementation using existing source and channel codes:

First, the length-k binary source sequence is encoded using
a fixed-to-variable coding scheme that assigns shorter code-
words to the most probable messages, i.e., messages with
smallest Hamming weight. Two examples are enumerative [21]
and arithmetic coding [22]. For a source message v, the length
of the source codeword L(v) determines which code will be
used to encode each source message. Since the source code
is assumed lossless, this is equivalent to assigning source
messages to classes based on their probability.

As channel codes we consider two linear (n, ki)-codes Ci,
i = 1, 2. If L(v) ≤ k1 the channel code C1 is used for
transmission, otherwise, if L(v) ≤ k2 the second code, C2,
is used. If L(v) > k2 an arbitrary codeword is used and
a source coding error is reported. In this coding scheme,
ki−L(v) leftover bits may appear due to a mismatch between
the source and channel code, i = 1, 2. These bits can be used
to include additional redundancy checks (see [23] for details),
however, we set them to zero for the sake of simplicity. Due to
these leftover bits, we do not use all the codewords belonging
to each of the channel codes, in contrast to the analysis in
Section III. However, in general, ki ≈ log2

∣∣Aki ∣∣, i = 1, 2, and
the performance loss is small.

At the decoder, two ML (or quasi-ML) parallel decoding
attempts are performed, one of each channel code. Both
decoder outputs are then checked to verify whether they are
valid source sequences. If only one of the two outputs is a
valid source message, the corresponding data are used. If both
decoders fail, a predetermined message, for example the all-
zero data sequence, is used. Finally, if both source decoders
report success, the message with larger a posteriori likelihood
is selected.

A. Code Optimization

The specific pair of (n, ki)-codes depends on the signal-to-
noise ratio Eb/N0. Obviously, the choice of the code rates and
of the codes themselves is critical for the system performance.
If the block length n is small, we can obtain a set of good
channel codes with different coding rates using techniques
from, e.g. [24]–[26]. Then, for each Eb/N0 the best pair of
codes from this set can be selected by simulating the system
performance. While this optimization procedure is feasible for
short block lengths, it becomes computationally intractable as
the block length or rate granularity grow large.

In these cases, we may resort to the error exponents deriven
in Section III to estimate the optimal coding rate pair. To this
end we compute the optimal rates R1 and R2 from either

Theorem 1 or Theorem 2, and select two codes of rates R1

and R2. Since the exponential behavior dominates for large
block lengths, these rates become asymptotically optimal as
the block length grows large. As we will see in the simulations
section, Theorems 1 and 2 give a good approximation of the
optimal coding rates for moderate block lengths (n ≈ 1000).

B. Lower bound on the error probability

We derive a lower bound on the error probability of a two-
class linear coding scheme for a BMS. This lower bound will
serve as a benchmark to the performance of practical codes.

Disregarding the last summand in (11) we lower bound the
error probability of a given code as

εn ≥Pr
{
V ∈ Ak0

}
+
∑
i=1,2

Pr
{
V ∈ Aki , V̂ i 6= V

}
(28)

= Pr
{
V ∈ Ak0

}
+
∑
i=1,2

Pr
{
V ∈ Aki

}
Pr
{
V̂ i 6= V

∣∣V ∈ Aki }. (29)

A lower bound on the error probability of a channel code
of rate R is given by Shannon’s sphere-packing bound [27].

Let codewords be distributed over the surface of an n-
dimensional hypersphere with squared radius E = nEs and
centered at the origin of coordinates. Let θ be the half-angle of
a cone with vertex at the origin and with axis going through
one arbitrary codeword. We let Q(θ) denote the probability
that such codeword be moved outside the cone by effect of
the Gaussian noise. We choose θn,R such that the solid angle
subtended by a cone of half-angle θn,R is equal to Ωn/2

nR,
where Ωn is the surface of the n-dimensional hypersphere.
Then, Q(θn,Ri) is a lower bound on the error probability of
the i-th (length-n) linear codes under ML decoding (when ties
are resolved randomly), i.e.,

Pr
{
V̂ i 6= V

∣∣V ∈ Aki } ≥ Q(θn,Ri), i = 1, 2. (30)

This bound is accurate for low SNRs and relatively short
codes [28]. In order to compute (30) we shall use the approxi-
mation from [29], known to be accurate for error probabilities
below 0.1.

For a BMS with p = P (1) ≤ 1/2, it is possible to obtain
a closed-form expression for the source terms Pr

{
V ∈ Aki

}
,

i = 0, 1, 2. Consider a class Aki composed by the sequences
with Hamming weights w ∈ [w1, w2], where w1 and w2 are
two arbitrary integers. Then, it follows that

Pr
{
V ∈ Aki

}
= Bk,p(w1, w2), (31)

where we defined

Bk,p(w1, w2) ,
w2∑

w=w1

(
k

w

)
pw(1− p)k−w. (32)

The best coding strategy is to encode the sequences of Ham-
ming weight w ∈ {0, . . . , w1} with the first (lower-rate) chan-
nel code and the sequences of weight w ∈ {w1 + 1, . . . , w2}
with the second (higher-rate) code. All other sequences are
transmitted by some fixed codeword which leads to decoding
error. Therefore, using (30) and (31) in (29), we obtain the
following result.
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Figure 3. Enumerative + TB coding, n = 100, k = 80. Frame error rate for
separate and two-class source-channel coding.

Table I
ENUMERATIVE + TB CODING, n = 100, k = 80. OPTIMAL RATE PAIRS

(R1, R2) FOR A TWO-CLASS CODING SCHEME.

Eb/N0 Simulation Asymptotic analysis
2 dB (0.5, 0.75) (0.447, 0.475)
3 dB (0.6, 0.75) (0.481, 0.522)
4 dB (0.6, 0.75) (0.516, 0.569)

Theorem 3: Consider a length-k BMS with p = P (1) ≤ 1/2
to be transmitted over a binary-input AWGN channel using a
length-n block code. The error probability of any two-class
scheme using linear channel codes and ML decoding (with
randomly resolved ties), is lower bounded as

εn ≥ min
w1=0,...,k,

w2=w1+1,...,k

{
Bk,p(0, w1)Q

(
θn,R(0,w1)

)
+Bk,p(w1 + 1, w2)Q

(
θn,R(w1+1,w2)

)
+Bk,p(w2 + 1, k)

}
, (33)

where the rate R(w1, w2) is given by

R(w1, w2) =
1

n

⌈
log2

w2∑
w=w1

(
k

w

)⌉
. (34)

C. Simulation Results

In this subsection we show simulation results for different
implementations of a two-class scheme in short and moderate
block length scenarios. The source probability is fixed to
P (1) = 0.1.

1) Short block length scenario (k = 80, n ≈ 100): Figure 3
shows the simulated frame error rate (FER) performance of an
implementation using tail-biting codes and ML decoding. As
source code we use an enumerative coding scheme and as
channel codes we have chosen a family of tail-biting (TB)
codes of rates R = 1/2, 3/5 and 3/4. The code of rate
R = 1/2 was taken from [30], and the codes of rates 3/5
and 3/4 where chosen by doing a short search for high-
rate convolutional codes using techniques from [24], [25].

1 1.5 2 2.5 3 3.5 4
10
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−5

10
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10
−2

10
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10
0

Eb/N0 (dB)

F
E
R

 

 

R = (1/2, 3/5)
R = (1/2, 3/4)
R = (13/24, 14/24)
R = (14/24, 15/24)
R = (14/24, 16/24)
Separate
Two-class
Lower bound

Figure 4. Enumerative + LDPC coding, n = 1008, k = 1000. Frame error
rate for separate and two-class source-channel coding.

Table II
ENUMERATIVE + LDPC CODING, n = 1008, k = 1000. OPTIMAL RATE

PAIRS (R1, R2) FOR A TWO-CLASS CODING SCHEME.

Eb/N0 Simulation Asymptotic analysis
1 dB (0.5, 0.6) (0.499, 0.511)
2 dB (0.5, 0.6) (0.536, 0.561)
3 dB (0.542, 0.583) (0.575, 0.612)
4 dB (0.583, 0.667) (0.614, 0.664)

Among the most efficient ML decoding algorithms we have
selected BEAST [31] which allows ML decoding for codes of
length 100 with acceptable complexity. The curves “Separate”
and “Two-class” show the best performance obtained within
the corresponding family of codes. The two-class scheme
outperforms separate coding by about 1 dB, in agreement with
the values predicted by the random coding analysis. Also,
from the figure we see that the lower bound (33) can be
used to predict not only the gain value but also the best error
probability.

Table I shows the best code rate pairs obtained for different
values of Eb/N0 in this scenario. The table compares the
values obtained by simulating pairs of TB codes R = 1/2, 3/5
and 3/4 with the asymptotic results obtained from (23) in
Theorem 2. We can see that there is a discrepancy between
simulation and asymptotic analysis, due to the short block
length considered or possibly to the coarse granularity of the
coding rates.

2) Moderate block length scenario (k = 1000, n ≈ 1000):
Figure 4 shows the FER for an implementation using LDPC
codes and iterative decoding. We use enumerative source cod-
ing and a family of quasi-cyclic (QC) LDPC codes as channel
codes. In particular we consider a set of codes with 24-column
base matrix and coding rates R = 12/24, 13/24, . . . , 16/24.
For constructing these parity-check matrices we used the
optimization algorithm from [26]. The only exception is the
code of rate R = 18/24 which is borrowed from [32, code A].
The decoding algorithm is stopped after 50 iterations of belief
propagation decoding and we require at least 50 block error
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events for each simulated point.
Each separate source-channel code presents an error floor

due to the effect of the source coding error events which do
not depend on the channel SNR. This phenomenon results
in a staggered behavior both of separate and the two-class
codes curves in Fig. 4. For clarity, no individual separate
source-channel curves have been plotted, but only the best
performance within the family (“Separate”). We can see that
the two-class scheme (“Two-class”), optimized for each SNR
point, outperforms separate coding by 0.4-0.7 dB. In this case
the gap to the lower bound (33) is larger with respect to that
in Fig. 3 because of the suboptimal decoding algorithm, with
performance far from ML decoding.

Table II shows the best code rate pairs in this scenario. We
observe a better agreement between asymptotic results and
simulation results. This is due to the larger block length, that
makes the asymptotic approximations more accurate. This fact
justifies the use of the asymptotic analysis from Section III to
guide the design of good finite-length codes.

V. CONCLUDING REMARKS

In this paper we have presented a source-channel coding
scheme in which the source messages are divided into classes
based on their probability and a channel code and ML de-
coding is used for each of the classes. We have shown that
the overall scheme outperforms separate source-channel cod-
ing and approaches the performance of joint source-channel
coding as the number of classes increases.

The multi-class scheme can be implemented using existing
source and channel codes with reduced complexity. Simulation
results for a binary memoryless source transmitted over a
binary input additive Gaussian channel show that using two
classes offers a 0.5-1.0 dB gain compared to separate source-
channel coding. This is consistent with the theoretically pre-
dicted values. Moreover, analytical results have been shown to
offer a practical guideline to the design of finite-length source-
channel codes in the memoryless setting. While the analysis is
restricted to memoryless sources and channels, the multi-class
scheme could be easily implemented for sources and channels
with memory by using appropriate source and channel codes.

APPENDIX I
PROOF OF THEOREM 1

In order to prove Theorem 1 we start by introducing a
number of properties of the partition of the source message
set. The main proof is then included in Section I-B of this
appendix.

A. Properties of the partition
{
Aki
}

in (3)

Let us define the function

Es,i(ρ) , lim
k→∞

1

k
log

∑
v∈Aki

P k(v)
1

1+ρ

1+ρ

, (35)

which takes over the role of Gallager’s source function Es(·)
when dealing with multiple classes (see, e.g., [16]). In prin-
ciple, the functions Es,i(·) are difficult to evaluate, since

Figure 5. Example of the characterization in Lemma 1 of the Es,i(·) functions
with three classes (N = 2).

they involve summing over an exponential number of terms
(one for each sequence) and the computation of a limit. The
following result provides a simple characterization of Es,i(·)
for a sequence of partitions of the form (3). We denote the
derivative of Es(ρ) evaluated at ρ as

E′s(ρ) ,
∂Es(ρ̄)

∂ρ̄

∣∣∣∣
ρ̄=ρ

(36)

and we define the tilted distribution

Pσ(v) ,
P (v)σ∑
v̄ P (v̄)σ

. (37)

Lemma 1: Consider a sequence of memoryless sources P k

and partitions
{
Aki
}

in (3), k = 1, 2, . . .. Then, for any ρ ∈ R,
γi ≤ maxv P (v) and γi+1 > minv P (v),

Es,i(ρ) =


Es(ρ

?
i ) + (ρ− ρ?i )E′s(ρ?i ), 1

1+ρ <
1

1+ρ?i
,

Es(ρ), 1
1+ρ?i

≤ 1
1+ρ ≤

1
1+ρ?i+1

,

Es(ρ
?
i+1) + (ρ− ρ?i+1)E′s(ρ

?
i+1), 1

1+ρ >
1

1+ρ?i+1
,

(38)

where ρ?i , i = 0, . . . , N + 1, are given by the solution to
the implicit equation

∑
v P 1

1+ρ?
i

(v) logP (v) = log γi as long

as minv P (v) ≤ γi ≤ maxv P (v). When γi < minv P (v),
ρ?i = −1− and for γi > maxv P (v), ρ?i = −1+.

For γi > maxv P (v) or γi+1 ≤ minv P (v), the i-th class
is empty and Es,i(ρ) = −∞.

Proof: See Appendix I-C.
In principle, the values of ρ?i appearing in Lemma 1 can

be negative. If we restrict ourselves to the range ρ ≥ 0, the
thresholds yielding negative values of ρ?i are uninteresting to
us, since they correspond to classes that never dominate the
exponent. Therefore, for the present work, we may restrict
the value of the thresholds γi to satisfy

∑
v

1
|V| logP (v) ≤

log γi ≤
∑
v P (v) logP (v), i = 1, . . . , N . In this case,

the three regions in ρ appearing in (38) can be equivalently
written as

{
ρ > ρ?i

}
,
{
ρ?i+1 ≤ ρ ≤ ρ?i

}
, and

{
ρ < ρ?i+1

}
,

respectively, with ρ?0 =∞ and ρ?N+1 = 0.
An example of the characterization in Lemma 1 for ρ ≥ 0

is shown in Fig. 5 for a three-class partition. We observe that
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Es,i(ρ) is equal to Es(ρ) for the interval ρ?i+1 ≤ ρ ≤ ρ?i , and
corresponds to a straight line tangent to Es(ρ) out of those
intervals. Since the thresholds γ0 and γN+1 are fixed to 0 and
1, respectively, then ρ?0 =∞ and ρ?N+1 = 0. For the remaining
thresholds, we can obtain any finite value of ρ?i ∈ [0,∞)
by appropriately choosing the threshold γi, i = 1, . . . , N ,
between exp

(∑
v

1
|V| logP (v)

)
and exp

(∑
v P (v) logP (v)

)
.

Lemma 2: For a sequence of memoryless sources P k

and partitions
{
Aki
}

in (3), k = 1, 2, . . ., each threshold
minv P (v) ≤ γi ≤ maxv P (v) in (3) univocally determines
the corresponding coding rate Ri in (4) for each i = 1, . . . , N ,
with N = limk→∞Nk. In particular,

Ri = tE′s(ρ
?
i ) (39)

where ρ?i is given by the solution to the implicit equation∑
v Pρ?i (v) logP (v) = log γi.

Proof: See Appendix I-D.
Lemmas 1 and 2 imply that, asymptotically, it is equivalent

to optimize the partition over either the set of thresholds
{γi} or over the rates {Ri}. Furthermore, they provide an
alternative representation of the asymptotic probability of the
set Aki , as shown by the next result.

Lemma 3: Consider a sequence of memoryless sources P k

and partitions
{
Aki
}

in (3), k = 1, 2, . . .. When log γi+1 ≤∑
v P (v) logP (v), i = 1, . . . , N , it holds that

lim
k→∞

1

k
log

(∑
v∈Aki

P k(v)

)
= −e

(
Ri+1

t

)
. (40)

Proof: From (35) we have that

lim
k→∞

1

k
log

(∑
v∈Aki

P k(v)

)
= Es,i(0) (41)
= Es(ρ

?
i+1)− ρ?i+1E

′
s(ρ

?
i+1) (42)

= max
ρ≥0

{
Es(ρ)− ρRi+1

t

}
, (43)

where (42) follows from (38) given the assumptions in the
lemma implying ρ?i+1 ≥ 0, and in (43) we used Lemma 2 and
the fact that ρ?i+1 is the point where Es(ρ) has slope Ri+1

t , i.e.,
it maximizes the quantity in brackets. The result thus follows
from (43) by using the definition (20) of the error exponent
of a discrete memoryless source compressed to rate Ri+1

t .
Then, the asymptotic coding rate of the i-th class is uniquely

determined by the lower threshold γi defining this class,
as shown in Lemma 2. Similarly, combining Lemma 2 and
Lemma 3, we obtain that the exponent of the probability of
the i-th class is determined by the upper threshold γi+1.

B. Proof of Theorem 1

We now proceed with the proof of Theorem 1. Under
the assumption that the number of classes Nk behaves sub-
exponentially in k, the error exponent is given by the minimum

of the individual exponents of each of the summands in (16),
namely

− lim
n→∞

1

n
log εn

= min

{
− lim
n→∞

1

n
log Pr{V ∈ Ak0},

min
i=1,...,N

− lim
n→∞

1

n
log Pr

{
V ∈ Aki , V̂ i 6= V

}
,

− lim
n→∞

1

n
log Pr

{
V /∈ Ak0 , q(V ,Y ) ≤ max

v̄ 6=V ,v̄/∈Ak0
q(v̄,Y )

}}
.

(44)

We next analyze each of the terms in the minimum separately.
As we discussed after Lemma 1, we consider partitions

with thresholds γi satisfying
∑
v

1
|V| logP (v) ≤ log γi ≤∑

v P (v) logP (v), i = 1, . . . , N . Then, Lemma 3 yields the
exponent of the first term in the minimum in (44), that is

− lim
n→∞

1

n
log Pr{V ∈ Ak0} = te

(
R1

t

)
. (45)

We now upper bound the second term in (44). First, we use
the chain rule to express the probability, for i = 1, . . . , N , as

Pr
{
V ∈ Aki , V̂ i 6= V

}
= Pr

{
V̂ i 6= V |V ∈ Aki

}
Pr
{
V ∈ Aki

}
. (46)

The first factor corresponds to the error probability of a
channel coding problem with Mi messages transmitted over
a channel Wn. We can lower-bound its exponent in terms
of the random-coding exponent for input distribution Qi.
For each each class Aki , i = 1, . . . , N , there exists a code
Ci whose error probability over the memoryless channel W
satisfies [2, Th. 5.6.1]

− lim
n→∞

1

n
Pr
{
V̂ i 6= V |V ∈ Aki

}
≥ max
ρi∈[0,1]

{
E0(ρi,W,Qi)− ρiRi

}
, (47)

= Er(Ri, Qi). (48)

As in (45), the exponent of the second factor in (46) is

− lim
n→∞

1

n
log Pr{V ∈ Aki } = te

(
Ri+1

t

)
. (49)

Combining (48) and (49) we thus obtain

− lim
n→∞

1

n
log Pr

{
V ∈ Aki , V̂ i 6= V

}
≥ Er(Ri, Qi) + te

(
Ri+1

t

)
, i = 1, . . . , N. (50)

Finally, we identify the last term in (16) as the error expo-
nent of a specific joint source-channel coding problem, where
the source message probabilities do not add up to 1. In the
random-coding argument, codewords are generated according
to a class-dependent input distribution Qi, i = 1, . . . , N . We
can thus use [16, Th. 1] to bound the exponent

− lim
n→∞

1

n
log Pr

{
q(V ,Y ) ≤ max

v̄ 6=V ,v̄/∈Ak0
q(v̄,Y ), V /∈ Ak0

}
≥ min
i=1,...,N

{
E0

(
ρ̄i,W,Qi

)
− tEs,i(ρ̄i)

}
, (51)
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for any ρ̄i ∈ [0, 1]. Here we used that the proof of [16, Th. 1]
is valid also for defective source message probabilities.

From Lemma 1, we infer that the source function Es,i(ρ) is
non-decreasing, convex and with a non-decreasing derivative.
Moreover, Lemma 2 shows that the derivative approaches the
limiting value Ri

t as ρ → ∞. Therefore, the source function
Es,i(ρ) satisfies the following simple upper bound for non-
negative ρ

Es,i(ρ) ≤ Es,i(0) + ρ
Ri
t

(52)

= −e
(
Ri+1

t

)
+ ρ

Ri
t
, (53)

where we used (42). Substituting (53) in the right-hand
side (51) we obtain

E0

(
ρ̄i,W,Qi

)
− tEs,i(ρ̄i)

≥ E0

(
ρ̄i,W,Qi

)
− ρ̄iRi + te

(
Ri+1

t

)
. (54)

Since this inequality holds for arbitrary ρ̄i ∈ [0, 1] and
input distribution Qi, we conclude that for each value of
i = 1, . . . , N , the corresponding exponent in (51) is lower-
bounded by the exponent in (50). Hence, this term can be
omitted in the minimum in (44).

Finally, we observe that Q0 satisfies Er(R,Q0) = 0 for any
rate R. Then, from (44), using the intermediate results (45),
with te

(
R1

t

)
replaced by te

(
R1

t

)
+ Er(R1, Q0), and (50) we

get the desired

− lim
n→∞

1

n
log εn ≥ min

i=0,...,N

{
Er(Ri, Qi) + te

(
Ri+1

t

)}
.

(55)

Lemma 2 shows that for tE′s(0) ≤ Ri ≤ limρ→∞ tE′s(ρ)
the correspondence between γi and Ri is one-to-one. Since the
set {Ri} that maximizes the right-hand side of (55) is always
in this range, we conclude that it is asymptotically equivalent
to optimize the partition over thresholds {γi} or rates {Ri}.

C. Proof of Lemma 1

For σ ∈ R and k = 1, 2, . . ., let us define the random
variable Zσ,k , logP k(V ) with underlying distribution

P kσ (v) ,
P k(v)σ∑
v̄ P

k(v̄)σ
. (56)

This distribution is the multi-letter version of (37). The asymp-
totic normalized log-moment generating function of Zσ,k is
given by

κσ(τ) , lim
k→∞

1

k
log E

[
eτZσ,k

]
(57)

= log

(∑
v P (v)σ+τ∑
v̄ P (v̄)σ

)
. (58)

It follows that

Λi(σ) , lim
k→∞

1

k
log

(∑
v∈Aki

P k(v)σ

)
(59)

= lim
k→∞

1

k
log

(∑
v̄

P k(v̄)σ

)

+ lim
k→∞

1

k
log

(∑
v∈Aki

P kσ (v)

)
(60)

= log
(∑

v
P (v)σ

)
+ lim
k→∞

1

k
log
(

Pr
{

log γki < Zσ,k ≤ log γki+1

})
.

(61)

Applying the Gartner-Ellis theorem [33, Th. II.6.1] to the
term Pr

{
log γki < Zσ,k ≤ log γki+1

}
, and given the smooth-

ness properties of κσ(τ) in (58), we obtain

Λi(σ) = sup
log γi≤r≤log γi+1

inf
τ

Φ(r, τ), (62)

where

Φ(r, τ) , log
(∑

v
P (v)σ

)
−
(
rτ − κσ(τ)

)
(63)

= −rτ + log
(∑

v
P (v)σ+τ

)
. (64)

The function Φ(r, τ) is differentiable in C2 and that its
Hessian is given by

∇2
Φ(r, τ) =

[
0 −1

−1 ∂2Φ(r,τ)
(∂τ)2

]
. (65)

Hence, its determinant is
∣∣∇2

Φ(r, τ)
∣∣ = −1 < 0 and the

solution of (62) is a saddle point provided that the constraints
are non-active. By taking the derivative of Φ(r, τ) with respect
to τ and equating it to zero we obtain that for the optimal point
it holds that

r =
∑

v
Pσ+τ (v) logP (v). (66)

By taking the derivative of Φ(r, τ) with respect to r and
equating it to zero it follows that for the optimal point

τ = 0, (67)

provided that the constraints in (62) are non-active.
We translate the constraints on r to the domain of σ. Let

σ?i be given by the solution to the implicit equation∑
v
Pσ?i (v) logP (v) = log γi, (68)

as long as minv P (v) ≥ γi ≥ maxv P (v). In case that γi <
minv P (v) then σ?i = −∞; if γi > maxv P (v), then σ?i =∞.
Using (66) and (67), the constraints in (62), log γi ≤ r ≤
log γi+1, can be equivalently written as σ?i ≤ σ ≤ σ?i+1, i =
0, . . . , N .

1) When σ?i ≤ σ ≤ σ?i+1 the constraints are non-active and
the saddlepoint occurs at

r =
∑

v
Pσ(v) logP (v), τ = 0. (69)
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Substituting these values in (62) we obtain

Λi(σ) = log
(∑

v
P (v)σ

)
. (70)

2) For σ < σ?i , the optimal r is given by

r = log γi =
∑

v
Pσ?i (v) logP (v), (71)

and using (66), we obtain τ = σ?i −σ. Substituting these
values in (62) yields

Λi(σ) = (σ − σ?i )
∑

v
Pσ?i (v) logP (v)

+ log
(∑

v
P (v)σ

?
i

)
. (72)

3) Proceeding in an analogous way to the previous case,
for σ > σ?i+1, we obtain

Λi(σ) =
(
σ − σ?i+1

)∑
v
Pσ?i+1

(v) logP (v)

+ log
(∑

v
P (v)σ

?
i+1

)
. (73)

Substituting (70), (72) and (73), i = 0, . . . , N , in the cor-
responding range of the parameter σ, rearranging terms, we
obtain

1

σ
Λi(σ) =


G(σ, σ?i ), σ < σ?i ,
1
σ log

(∑
v P (v)σ

)
, σ?i ≤ σ ≤ σ?i+1,

G(σ, σ?i+1), σ > σ?i+1,

(74)

where

G(σ, s) , 1
s log

(∑
v
P (v)s

)
−
(

1
σ −

1
s

)∑
v
Ps(v) logPs(v). (75)

The expression 1
σΛi(σ) in (74) corresponds precisely with

Es,i(ρ) when σ = 1
1+ρ . Then, the result follows from the

definition of Es(ρ) in (18), using that

E′s(ρ) = −
∑
v

P 1
1+ρ

(v) logP 1
1+ρ

(v). (76)

D. Proof of Lemma 2

Using the characterization in Lemma 1 it follows that

lim
ρ→∞

1

ρ
Es,i(ρ) = lim

ρ→∞

1

ρ
(Es(ρ

?
i ) + (ρ− ρ?i )E′s(ρ?i )) (77)

= E′s(ρ
?
i ), (78)

as long as ρ?i <∞.

Also, using the definition (35) we have that

lim
ρ→∞

1

ρ
Es,i(ρ)

= lim
ρ→∞

lim
k→∞

1

ρk
log

∑
v∈Aki

P k(v)
1

1+ρ

1+ρ

(79)

= lim
k→∞

lim
ρ→∞

1

ρk
log

∑
v∈Aki

P k(v)
1

1+ρ

1+ρ

(80)

= lim
k→∞

1

k
lim
ρ→∞

1 + ρ

ρ
log

∑
v∈Aki

P k(v)
1

1+ρ

 (81)

= lim
k→∞

1

k
log
∣∣Aki ∣∣ (82)

=
Ri
t
, (83)

where in (80) we applied the Moore-Osgood theorem [34, p.
619] since the expression

1

ρk
log

∑
v∈Aki

P k(v)
1

1+ρ

1+ρ

(84)

presents uniform convergence for each k as ρ → ∞, and
pointwise convergence as k → ∞, as we show next. Then,
using (77)-(78) and (79)-(83), we obtain (39). The result thus
follows from the definition of ρ?i in Lemma 1.

We show the convergence properties of (84). We write

1

k
log

∑
v∈Aki

P k(v)
1

1+ρ

1+ρ

− 1

k
log
∣∣Aki ∣∣

≤ 1

k

log

∑
v∈Aki

1
1

1+ρ


1+ρ
ρ

− log
∣∣Aki ∣∣

 (85)

=
1

k

(
log
∣∣Aki ∣∣ 1+ρρ − log

∣∣Aki ∣∣) (86)

=
1

kρ
log
∣∣Aki ∣∣ (87)

=
Ri
tρ
. (88)

Similarly,

1

k
log
∣∣Aki ∣∣− 1

k
log

∑
v∈Aki

P k(v)
1

1+ρ

1+ρ

≤ 1

k

log
∣∣Aki ∣∣− log

∑
v∈Aki

(
min
v
P (v)

) k
1+ρ


1+ρ
ρ

 (89)

=
1

k

(
log
∣∣Aki ∣∣− log

∣∣Aki ∣∣ 1+ρρ − log
(

min
v
P (v)

) k
ρ

)
(90)

= − 1

kρ
log
∣∣Aki ∣∣− 1

ρ
log min

v
P (v) (91)

=
1

ρ

(
− log min

v
P (v)− Ri

t

)
. (92)
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Since (88) and (92) do not depend on k, (84) presents
uniform convergence with respect to k as ρ → ∞. Pointwise
convergence of (84) as k →∞ follows from (38).

APPENDIX II
PROOF OF THEOREM 2

We start by writing (21) in dual form, that is, as explicit
maximizations over parameters ρi and ρ̄i,

− lim
n→∞

1

n
log εn ≥ min

i=0,...,N

{
max
ρ̄i∈[0,1]

{
E0(ρ̄i, Qi)− ρ̄iRi

}
+ max
ρi∈[0,∞)

{
ρiRi+1 − tEs(ρi)

}}
. (93)

For i = 0 we have Er(R,Q0) = 0 and for i = N we have
e
(RN+1

t

)
= 0. In the range i = 1, . . . , N −1 we may fix ρi =

ρ̄i without violating the inequality in (93). Then, optimizing
over Qi, i = 1, . . . , N , we obtain

− lim
n→∞

1

n
log εn

≥ max
R1≥...≥RN≥0

min

{
max

ρ0∈[0,∞)

{
ρ0R1 − tEs(ρ0)

}
,

min
i=1,...,N−1

max
ρ̄i∈[0,1]

{
E0(ρ̄i)− tEs(ρ̄i)− ρ̄i(Ri −Ri+1)

}
,

max
ρ̄N∈[0,1]

{
E0(ρ̄N )− ρ̄NRN

}}
. (94)

Noting that the inner minimization in (94) is maximized with
respect to {Ri} when Ri−Ri+1 is constant, i = 1, . . . , N−1,
the result follows.
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Italy, and Universidad Nacional Autónoma de México (UNAM), Mexico
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