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Abstract

We study the asymptotic outage performance of incremental redundancy automatic-repeat-

request (INR-ARQ) transmission over multiple-input multiple-output (MIMO) block-fading channels

with discrete input constellations. We first show that transmission with random codes using a

discrete signal constellation across all transmit antennas achieves the optimal outage diversity

given by the Singleton bound. We then analyze the optimal SNR-exponent and outage diversity

of INR-ARQ transmission over the MIMO block-fading channel. We show that a significant gain

in outage diversity is obtained by providing more than one bit feedback at each ARQ round.

Thus, the outage performance of INR-ARQ transmission can be remarkably improved with minimal

additional overhead. A practical feedback-and-power-adaptation rule is proposed for MIMO INR-

ARQ, demonstrating the benefits provided by multi-bit feedback. Although the rule is sub-optimal

in terms of outage performance, it achieves the optimal outage diversity.
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I. INTRODUCTION

In this paper, we take an information-theoretic approach to analyzing and designing multiple-

input multiple-output (MIMO) transmission strategies for incremental redundancy (INR) auto-

matic-repeat-request (ARQ) schemes over a block-fading channel. In particular, we propose

the use of multi-bit feedback for power adaptation and study the outage diversity of the

resulting protocol over the MIMO block-fading channel, which characterizes the slope of the

outage probability curve at high signal-to-noise ratio (SNR) in log-log scale.

A. Prior Art

The block-fading channel [1, 2] is a useful mathematical model for many practical wireless

communication scenarios. The channel consists of a finite number of consecutive or parallel

transmission blocks, where each block is affected by an independent fading coefficient. The

model approximates well the characteristics of delay-limited transmission over slowly varying

channels, such as Orthogonal Frequency Division Multiplexing (OFDM) transmission over

slowly-fading frequency-selective multipath channel, as well as narrowband transmission with

frequency-hopping as encountered in the Global System for Mobile Communications (GSM)

and the Enhanced Data rate for GSM evolution (EDGE) standards.

Due to the finite number of fading blocks, the information rate supported by the channel

depends on the instantaneous channel realization, and therefore is a random variable. When

the instantaneous mutual information is less than the transmission rate, transmission is in

outage [2]. In this case, it follows from the strong converse theorem (see, e.g., [3–5]) that

messages are decoded in error with probability one [6, 7]. Furthermore, it is shown in [4, 8]

that the use of sufficiently long random codes achieves an average error rate equal to the

outage probability. Therefore, the outage probability is a fundamental limit on the performance

of block-fading channels.

MIMO transmission has revolutionized modern wireless communications, and is now a

key technology used in most current standards, e.g. WiFi (IEEE 802.11) and WiMax (IEEE

802.16) [9, 10]. Moreover, due to the randomness of the communication rate supported by the

channel, it is essential to use adaptive techniques to enable high-rate reliable communication,

where the transmission rate and/or power is adjusted to the channel realization. The use of

adaptive techniques depends strongly on the availability of channel state information (CSI)

at the transmitter and the receiver. In most communication systems, CSI can be estimated at

the receiver, while CSI is usually not directly available at the transmitter. The use of ARQ
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transmission techniques is therefore a powerful approach for providing transmitter CSI, which

in turn can be used to significantly improve the performance over block-fading channels [11].

The optimal diversity-multiplexing tradeoff for a MIMO channel with optimal (Gaussian)

input constellation has been characterized in [12]. For systems with discrete input constella-

tions, the rank criterion for the optimal outage diversity was derived in [13] from a worst-case

analysis of the pair-wise error probability (PEP). References [14, 15] establish the Singleton

bound on the optimal SNR-exponent of quasi-static MIMO channels with discrete input

constellations. The Singleton bound is achievable by a wide range of input constellations via

a unified code construction method proposed in [15].

In an INR-ARQ scheme, transmission starts with a high-rate codeword, and additional

redundancy is requested via a feedback link when the codeword is not successfully decoded.

Transmission is in outage if the codeword is not decodable within the maximum delay

constraint allowed by the system. Traditional INR-ARQ systems implement one-bit feedback

from the receiver, indicating whether additional redundancy is required. However, due to the

accumulative nature of INR-ARQ schemes, performance improvements are possible when

additional information regarding the status of the current transmission is provided through

the feedback link. Several multi-bit feedback INR-ARQ schemes have been proposed in the

literature. In particular, reference [16] shows that the throughput performance of ARQ systems

can be improved by multi-bit feedback prior to each transmission round. The proposed system

is equivalent to a conventional ARQ system with quantized CSI at the transmitter (CSIT). For

systems with no CSIT, references [17, 18] propose transmission using convolutional codes,

while reference [19] proposes using a multi-layer broadcasting strategy for multi-bit feedback

ARQ. Both approaches show that multi-bit feedback can significantly improve the throughput

performance of ARQ transmission. There is, however, no unified approach for designing

multi-bit feedback INR-ARQ transmission schemes.

An important performance measure for INR-ARQ transmission in the MIMO block-fading

channel is the rate-diversity-delay tradeoff. This tradeoff has only been studied for INR-

ARQ systems with one-bit ACK/NACK feedback in [20–22]. In particular, reference [20]

characterizes the rate-diversity-delay tradeoffs of Gaussian input MIMO INR-ARQ systems

with both short-term and long-term average power constraints. For systems with discrete

input constellations, the optimal rate-diversity tradeoff for systems with short-term power

constraints was characterized in [21, 23]. For ARQ systems with discrete input constellation

and long-term power constraints, an optimal power allocation rule has been derived in
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[23], providing significant improvement on outage performance. However, the rate-diversity

tradeoff of the corresponding system was not studied.

B. Contributions

As a first contribution we consider fixed-rate transmission over the MIMO block-fading

channel. We show that the outage diversity is given by the Singleton bound, and that it

is achievable with random codes constructed over arbitrary discrete input constellations.

This rigorously proves that the Singleton bound is the optimal SNR-exponent of MIMO

transmission with discrete input constellations. The result will also prove instrumental in

designing and analyzing INR-ARQ transmission over the MIMO block-fading channel.

As our main contribution we study the rate-diversity tradeoff of the MIMO ARQ system

with multi-bit feedback under long-term power constraints. The analysis shows that multi-bit

feedback and optimal power adaptation provide significant outage diversity gains for ARQ

transmission over the block-fading channel. It is shown that a finite number of feedback

bits is sufficient to achieve the maximal outage diversity. The optimal rate-diversity tradeoff

for the one-bit feedback case is also presented, which characterizes the asymptotic gains

provided by the optimal power allocation rule proposed in [23]. As a further contribution a

practically feasible feedback-and-power-adaptive rule is proposed. Although the rule is sub-

optimal in terms of outage performance, it can achieve the optimal outage diversity, thus

clearly illustrating the benefits offered by multi-bit feedback.

C. Notation and Organization

The following notations are used in the paper. Boldface uppercase (A) and lowercase (a)

variables correspondingly denote matrices and vectors; while scalar variables are denoted

by lightface (a or A). Sets are denoted by calligraphic letters; while the sets of real and

complex numbers are correspondingly denoted with R and C. The mathematical expectation

of a random variable is denoted by E[·]. Non-conjugate transpose of matrices are denoted by

(·)′. The operation �·� (�·�) returns the maximum (minimum) integer smaller (larger) than

a real number. For convenience, the physical meanings of commonly used parameters are

summarized in Table I.

The remainder of the paper is organized as follows. Section II describes the MIMO block-

fading channel model. Section III proposes the multi-bit feedback INR-ARQ system based

on mutual information and information outage. Sections IV and V discuss system design and
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performance analysis. Finally, concluding remarks are given in Section VI and proofs are

collected in the Appendices.

II. SYSTEM MODEL

Consider INR-ARQ transmission over a MIMO block-fading channel with Nt transmit and

Nr receive antennas. Each ARQ round is transmitted over B additive white Gaussian noise

(AWGN) blocks of J channel uses each, where block b at ARQ round � is affected by a flat

fading channel gain matrix H �,b ∈ C
Nr×Nt . The baseband equivalent of the channel in the

�-th ARQ round is given by

Y � =

√
P�

Nt
H�X� +W �, (1)

where P� is the transmit power in round �, X � ∈ CBNt×J ,Y �,W � ∈ CBNr×J are correspond-

ingly the transmitted signal, the received signal, and the additive noise; while H � ∈ C
BNr×BNt

is a block diagonal channel gain matrix at round � with

H� = diag(H�,1, . . . ,H�,B).

In the INR-ARQ scheme, the receiver attempts to decode at round � based on the received

signals collected in rounds 1, . . . , �. The entire channel after � ARQ rounds is

Y 1,� = H1,�X1,� +W 1,�, (2)

where

Y 1,� = [Y ′
1, . . . ,Y

′
�]
′

X1,� = [X ′
1, . . . ,X

′
�]
′

H1,� = diag

(√
P1

Nt
H1, . . . ,

√
P�

Nt
H �

)

W 1,� = [W ′
1, . . . ,W

′
�]
′
.

We consider transmission where the entries of X � are uniformly drawn from an input

constellation X ⊂ C of size 2M , and assume that the constellation X has unit average

energy, i.e., entries x ∈ X of X � satisfy E [|x|2] = 1. We further assume that the entries of

H�,b and W � are independently drawn from a unit-variance Gaussian complex distribution

NC(0, 1), and that H �,b is available at the receiver. The average SNR at each receive antenna

is then P�.
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We consider ARQ transmission with a long-term power constraint, where the average power

is defined as the average energy normalized by J [23]. With long-term power constraint P ,

EH1,L

[
L∑

�=1

P�

]
≤ P, (3)

where P� is adapted to H1,�−1 through receiver feedback. Strictly speaking, the long-term

average power is

Pav =
EH1,L

[∑L
�=1 P�

]
L

, (4)

where L is the average number of transmission round per codeword, or equivalently the

expected inter-renewal time [6]. For simplicity, we will study the system with power constraint

given in (3). However, as will be shown, the analysis is also valid when the average power

in (4) is constrained.

III. PRELIMINARIES

A. Accumulated Mutual Information

Assuming that the realized channel matrix at round � is H �, the input-output mutual

information of the MIMO channel in round � is

I�

(√
P�

Nt
H�

)
=

1

B

B∑
b=1

IX

(√
P�

Nt
H�,b

)
, (5)

where IX
(√

P�

Nt
H�,b

)
is the input-output mutual information [5], measured in bits per

channel use (bpcu), of an AWGN MIMO channel with input constellation X and channel

matrix
√

P�

Nt
H �,b. More specifically,

IX (H) = Ex,w

[
log2

e−‖w‖2∑
x′∈XNt

1
2M

e−‖w−H(x−x′)‖2

]
, (6)

where x is uniformly drawn from X Nt and the entries of w ∈ CNr are i.i.d. NC(0, 1). The

average input-output mutual information after � ARQ rounds is given by 1
�

∑�
l=1 Il bpcu. Let

I1,� �
�∑

l=1

Il (7)

be the accumulated mutual information after � ARQ rounds. We now propose the multi-bit

feedback INR-ARQ transmission scheme based on the accumulated mutual information I1,� .
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B. Multi-Level Feedback

We consider an INR-ARQ system with a delay constraint of L ARQ rounds, where a

feedback index k ∈ {0, . . . , K − 1} is delivered after each transmission round through a

zero-delay error-free feedback channel. Power and rate adaptation are performed based on

receiver feedbacks. The overall system model is illustrated in Figure 1.

1) Transmitter: Consider a code book C of rate R
L

, R ∈ (0,MNt) bits per coded symbol,

that maps a message m ∈ {1, . . . , 2RBJ} to a codeword x(m) ∈ XNtBJL. At transmission

round �, NtBJ of the coded symbols are formatted into X �(m) ∈ XBNt×J and transmitted

via the channel in (1) with power P�(k�−1), where k�−1 = [k1, . . . , k�−1] is the vector of

feedback indices collected from rounds 1, . . . , �− 1. The realized code rate of a single ARQ

round is R bpcu, and the realized code rate after � ARQ rounds is R
�

bpcu. If feedback

k� = K − 1 (denoting positive acknowledgment (ACK)) is received after � transmission

rounds, the transmission is successful and transmission of the next message starts. Otherwise,

the transmitter continues with new transmission rounds until feedback index K−1 is received

or until L transmission rounds have elapsed.

2) Receiver: Upon receiving round �, the receiver attempts to decode the transmitted

message from the received signals collected from rounds 1 to �. The receiver employs

a decoder with error detection capabilities as described in [6]. The decoder outputs m̂ ∈
{1, . . . , 2RBJ} if there exists a unique message m̂ such that X 1,�(m̂) and Y 1,� are jointly

typical conditioned on H 1,� [5]; then an ACK is delivered to the transmitter via feedback

index k� = K − 1. Otherwise, a quantization of the accumulated mutual information I1,�

is delivered via feedback index k� satisfying I1,� ∈ [ I([k�−1, k�]), I([k�−1, k� + 1])
)
, with

predefined quantization thresholds I(k�),k� ∈ {0, . . . , K − 2}�, and I([k�−1, K − 1]) = ∞
for � = 1, . . . , L − 1. An example of the feedback thresholds for the first two rounds of

an ARQ system with K = 4 is illustrated in Figure 2. Feedback index 3 is used to denote

successful transmission. At the first ARQ round, the leftmost set of feedback thresholds

is used; while at the second ARQ round, one of the three sets of feedback thresholds on

the right is employed, depending on which feedback index was delivered in the first round.

Noting that I1,�+1 ≥ I1,�, the feedback thresholds in round � + 1 should be designed such

that I(k�) = I([k�, 0]) < . . . < I([k�, K − 2]). Thus, the set of quantization thresholds is

completely defined by I(kL−1) for practical purposes.
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3) Power constraint: The probability of having feedback vector k� at round �, denoted as

q(k�), is recursively expressed as

q(k0) = 1 (8)

q([k�−1, k]) = Pr {k� = k|k�−1} q(k�−1), (9)

Pr
{
k� = k

∣∣k�−1

}
= Pr

{
I1,�−1 + I� ∈

[
I([k�−1, k]), I([k�−1, k + 1])

)∣∣k�−1

}
,

where I� is given by (5) with P� = P�(k�−1). Noting that k�−1 = K − 1 denotes a successful

decoding at round �− 1, the power constraint in (3) can be written as

EH1,L

[
L∑

�=1

P�

]
= P1 +

L∑
�=2

∑
k�−1∈{0,...,K−2}�−1

q(k�−1)P�(k�−1) ≤ P ; (10)

while the average power in (4) is equivalent to

Pav =
P1 +

∑L
�=2

∑
k�−1∈{0,...,K−2}�−1 q(k�−1)P�(k�−1)

1 +
∑L

�=2

∑
k�−1∈{0,...,K−2}�−1 q (k�−1)

. (11)

C. Information Outage

After � ARQ rounds, the input-output mutual information is
I1,�
�

and the realized code rate

is RMNt

�
= R

�
(bpcu). Hence, transmission is in outage at round � if I1,� < R. The probability

of having an outage at round � is then given by

p(�) � Pr
{
I1,� < R

}
. (12)

With an optimal coding scheme, and in the limit of the number of channel uses J → ∞,

the codeword is correctly decoded whenever I1,� > R; otherwise, an error is detected [6].

Therefore, the outage probability p(�) is an achievable lower bound on the word error

probability at round �. For INR-ARQ transmission with delay constraint L, the overall outage

probability is p(L).

IV. ASYMPTOTIC ANALYSIS

Consider a power adaptation rule P� = P�(k�−1) satisfying the power constraint in (10).

We prove that for large P , the optimal outage probability at round � behaves like

p(�)
.
= P−d�(R), (13)
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where d�(R) is the outage diversity at round � and the exponential equality (
.
=) indicates

[12]

d�(R) = lim
P→∞

− log p(�)

logP
. (14)

It is trivial that the optimal power allocation rule satisfies (10) with equality, and conse-

quently, the average transmit power in (11) satisfies P
L
≤ Pav ≤ P. Therefore,

lim
Pav→∞

− log p(�)

logPav

= d�(R), (15)

and thus d�(R) is also the optimal outage diversity with respect to the average power Pav.

Subsequently, we determine the optimal rate-diversity-delay tradeoff d�(R) of ARQ systems

with K levels feedback and prove that the optimal outage diversity is achievable.

A. MIMO Block-Fading without ARQ

In order to characterize the outage diversity or achievable SNR-exponent for the MIMO

INR-ARQ channel, we first need to study the corresponding limits for fixed-rate transmission

over the MIMO block-fading channel. These results are key elements to proving our main

results for multi-bit ARQ.

Theorem 1: Consider fixed-rate transmission (L = 1) with rate R and power P over the

MIMO block-fading channel in (1) using constellation X of size 2M and the transmission

scheme described in Section III-B. Let I = I1

(√
P
Nt
H1

)
be the realized input-output mutual

information as defined in (5). For large P , we have that

Pr {I < R} .
= P−d(R), (16)

Pr {I ≤ R} .
= P−d(R), (17)

where d(R) is bounded by d(R) ≤ d(R) ≤ d(R), and

d(R) � Nr

(
1 +

⌊
B

(
Nt − R

M

)⌋)
(18)

d(R) � Nr

⌈
B

(
Nt − R

M

)⌉
. (19)

Furthermore, d(R) is the SNR-exponent achieved by using random codes with rate R, where

the code symbols are drawn uniformly from X .

Proof: See Appendix A1.

1A more general result of the theorem, which deals with power allocation for block-fading channels with mismatched

channel state information, was derived in [24] after the submission of this paper. The proof given here is simpler and forms

a basis for the result in [24].
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To the best of our knowledge, this is the first rigorous proof for the outage diversity of a

MIMO block-fading channel with a general discrete input constellation. The results of [13,

15] establish d(R) as an upper bound for the outage diversity for the quasi-static fading

channel. Code design techniques in [15] show that d(R) can be achieved by specifically

constructed input constellations. As a generalization, Theorem 1 shows that d(R) is the

outage diversity for MIMO block-fading channels with any input constellation of size 2M

(except when BR
M

is an integer). Furthermore, Theorem 1 shows that d(R) is achievable by

using random codes when BR
M

is non-integer, which is essential for analyzing the performance

of INR-ARQ systems.

B. Multi-bit MIMO ARQ

We now consider ARQ transmission over the block-fading channel in (1) using input

constellation X as described in Section III-B1. Using Theorem 1, the optimal rate-diversity-

delay tradeoff of the MIMO INR-ARQ scheme with multi-bit feedback is characterize as

follows.

Theorem 2: Consider INR-ARQ transmission over the MIMO block-fading channel in (1)

using constellation X of size 2M and the transmission scheme described in Section III-B,

where a codeword is considered successfully delivered at round � if I1,� ≥ R. Assume that

the number of feedback levels is K ≥ ⌈BR
M

⌉
+1. Subject to the power constraint in (10), the

optimal rate-diversity-delay tradeoff is given by

d�(R) = (1 +BNtNr)
�−1
(
d(R) + 1

)− 1 (20)

when BR
M

is not an integer, where d(R) is given in Theorem 1.

Proof: See Appendix B for a proof.

Theorem 2 only gives the optimal outage diversity when BR
M

is non-integer. When BR
M

is

an integer, the bounds for d(R) in Theorem 1 does not coincide, thus a definite value of

d�(R) is not known. It can be shown that the optimal outage diversity is bounded by

(1 +BNtNr)
�−1 (d(R) + 1)− 1 ≤ d�(R) ≤ (1 +BNtNr)

�−1
(
d(R) + 1

)− 1. (21)

An intuitive explanation for the outage diversity gains offered by multi-bit feedback is

given as follows. At round � + 1, the feedback vector k� provides the transmitter with the

past channel realizations. This allows raising the transmit power in round �+1 by a factor of
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1
q(k�)

without violating the long-term power constraint. In the limit of large power constraint,

the optimal transmit power in round �+ 1 satisfies

P�+1
.
= P

d(I(k�)−I(k�−1))
� , (22)

where d(R) is given by Theorem 1. Since only the exponent is significant in diversity analysis,

the maximum outage diversity can be achieved if there are sufficient thresholds to feedback

d (I) for I ≤ R (I > R implies successful transmission). For MIMO block-fading channels

with discrete input constellation, the rate-diversity tradeoff is a stair-case function; therefore

a finite number of feedback levels is sufficient to achieve the maximum outage diversity.

Meanwhile, for systems with BR
M

< 1, d(I) is a constant for I < R, especially systems with

Gaussian input constellations,. Therefore, no gains in outage diversity can be obtained by

multi-bit feedback. Conversely, in multiplexing-diversity tradeoff analysis [12], the outage

diversity is a continuous, decreasing function of the multiplexing gain, and thus an infinite

number of feedback levels is required to achieve the optimal outage diversity.

Remark 1: The proof of Theorem 2 also gives the following guidelines to designing the

feedback and power allocation rules.

• The optimal outage diversity of INR-ARQ systems is achievable with
⌈
BR
M

⌉
+ 1 feed-

back levels, where the feedback thresholds of each round are fixed at Ît = Mt
B
, t =

0, . . . ,
⌊
BR
M

⌋
. Therefore, for systems with K ≥ ⌈BR

M

⌉
+1, the optimal outage diversity is

achievable if for � = 1, . . . , L, {Ît : R ≥ Ît ≥ I(k�−1)} ⊆ {I(k�),k� ∈ {1, . . . , K−1}�}.

• Furthermore, the outage probability in round � + 1 is dominated by the events with

I1,� ∈
[
0, M

B

) ∪ [Îτ , R), where τ =
⌊
BR
M

⌋
. Therefore, after placing

⌈
BR
M

⌉
+ 1 thresholds

at Ît, the remaining feedback thresholds (for systems with K >
⌈
BR
M

⌉
+ 1) should give

higher priority to quantizing the aforementioned region to improve outage performance.

• With the optimal feedback rule, the optimal outage diversity can be achieved with power

allocation satisfying q(k�−1)P�(k�−1) = αP for all k�−1, � = 1, . . . , L, where α is a

constant chosen to satisfy the power constraint (10).

We now prove that the rate-diversity-delay tradeoff d�(R) is achievable by using random

codes, as given by the following theorem.

Theorem 3: Consider INR-ARQ transmission over the MIMO block-fading channel in (1)

using constellation X of size 2M and the transmission scheme described in Section III-B with

power constraint P given in (10). Assume that the number of feedback levels is K ≥ ⌈BR
M

⌉
+1.

With random-coding schemes and J → ∞, for large P , the word error probability Pe(�) at
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round � satisfies Pe(�)
.
= P−d

(r)
� (R), where

d
(r)
� (R) = (1 +BNtNr)

�−1 (d(R) + 1)− 1 (23)

is the achievable SNR-exponent and d(�) is given in Theorem 1.

Proof: With a random coding scheme and J → ∞, the codeword is correctly decoded

with probability one at round � if I1,� > R [6, 25], in which case, the receiver feeds back

an ACK (in contrast to the outage case, where an ACK is fed back if I1,� ≥ R). The proof

then follows similar arguments as the proof of Theorem 2, noting from Theorem 1 that

Pr {I� ≤ I} .
= P

−d(I)
� .

Theorem 3 shows that the rate-diversity-delay tradeoff d�(R) stated in Theorem 2 is

achievable with random codes using the transmission scheme described in Section III-B

when BR
M

is not an integer; and then, the optimal rate-diversity-delay tradeoff is given by

(23). Furthermore, the optimal outage diversity and SNR-exponent of INR-ARQ transmission

with delay constraint L is similarly characterized by dL(R) and d
(r)
L (R) given in (20) and

(23), respectively.

C. One-bit MIMO ARQ

In an INR-ARQ system with one-bit ACK/NACK feedback (classical INR-ARQ), the

optimal rate-diversity-delay tradeoff is given by the following.

Theorem 4: Consider INR-ARQ transmission over the MIMO block-fading channel in (1)

using constellation X of size 2M and the transmission scheme described in Section III-B,

where a codeword is considered successfully delivered at round � if I1,� ≥ R. Assume that

the number of feedback levels is K = 2. Subject to the power constraint in (10), the optimal

rate-diversity-delay tradeoff is given by

d̂1(R) = d(R) (24)

d̂�(R) = BNtNr

(
�− 1 +

�−2∑
l=1

d̂l(R)

)
+ (1 + d̂�−1(R))d̂1(R), � ≥ 2. (25)

for all R such that d̂1(R) is continuous. Furthermore, the rate-diversity-delay tradeoff d̂�(R)

is achievable when BR
M

is not an integer.

Proof: The proof follows the same arguments as that of Theorems 2 and 3, with only

two feedback levels at 0 and R, respectively.

Theorem 4 characterizes the optimal outage diversity for INR-ARQ systems with K = 2 when
BR
M

is non-integer. When BR
M

is integer, the outage diversity at round � is upper bounded by
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d̂�(R) given in (25). A lower bound on the outage diversity is given by the recursive formula

in (25) with d̂1(R) = d(R).

D. Numerical Results

We numerically compare the optimal rate-diversity-delay tradeoff of INR-ARQ systems

with K ≥ ⌈
BR
M

⌉
+ 1, and with K = 2 as well as the optimal tradeoff of an INR-ARQ

system with constant transmit power. The optimal rate-diversity-delay tradeoff dL(R) and

d̂L(R) for INR-ARQ transmission with L = 1, 2, 3 over the MIMO block-fading channel

with Nt = Nr = B = 2 are illustrated in Figure 3(a).

For an INR-ARQ system with delay constraint L and constant transmit power (short-term

power constraint), the outage probability p(L) is the same as that obtained by transmission

with rate R
L

over a block-fading channel with BL fading blocks [21]. From Theorem 1, the

optimal outage diversity dL(R) is given by2

dL(R) = Nr

(
1 +

⌊
BL

(
Nt − R

LM

)⌋)
, (26)

and is achievable by random codes for all rates R such that dL(R) is continuous. The rate-

diversity-delay tradeoff of the INR-ARQ system with constant transmit power is plotted

in Figure 3(b). Figure 3 shows an order-of-magnitude improvement in outage diversity of

INR-ARQ when a long-term power constraint is allowed. Furthermore, significant gains in

outage diversity are provided by multi-bit feedback, especially at transmission rates R close to

NtM . Since high R is particularly relevant in ARQ systems, the result suggests that multi-bit

feedback will give significant gains in practical implementations.

V. POWER ADAPTATION AND FEEDBACK DESIGN

The design of optimal feedback and transmission rules for an ARQ system with multi-bit

feedback includes joint optimization of the overall set of quantization thresholds {I(kL−1),kL−1 ∈
{0, . . . , K − 2}L−1} and the corresponding power adaptive rule P�(k�−1). The optimal feed-

back and power adaptation rule is obtained by minimizing∑
kL−1

q(kL−1)p(L|kL−1) (27)

2The rate-diversity-delay tradeoff of [21] is larger than that given in (26) since it is obtained with rotations, which increase

the constellation size, complexity and peak-to-average power ratio.

March 7, 2011 DRAFT



14

subject to the power constraint in (10). To the best of our knowledge, the optimization problem

is not analytically tractable. We therefore propose to partition the design problem into two

steps.

Step 1: At round �, determine a set of feedback thresholds I([k�−1, k]) for every feedback

vector k�−1 ∈ {1, . . . , K − 2}�−1.

Step 2: Given the set of feedback thresholds in Step 1, determine the corresponding

transmit power rule, minimizing the outage probability.

The above procedure sub-optimally partitions the joint optimization problem into two se-

quential problems. Moreover, in the following, each individual problem is also sub-optimally

solved. Nevertheless, this design procedure leads to a practically implementable algorithm

that achieves the optimal diversity derived in the previous section.

A. Selecting the Set of Feedback Thresholds

From the observations in Remark 1, we propose the following choice of feedback thresh-

olds. Consider the feedback levels at round � for a given feedback vector k�−1. Let τ �
⌊
BR
M

⌋
,

Ît = Mt
B

and t′ �
⌊
BI(k�−1)

M

⌋
. The feedback thresholds in round �, given k�−1 is then

determined as follows.

1) Place a threshold at I([k�−1, 0]) = I(k�−1), and at I([k�−1, K − 1]) = R;

2) Place τ − t′ thresholds at Ît, t = t′ + 1, . . . , τ ;

3) Place the remaining K − 2− τ + t′ thresholds sequentially within(
Îτ , R

)
,
(
I(k�−1), Ît′+1

)
,
(
Îτ−1, Îτ

)
,
(
Ît′+1, Ît′+2

)
, . . .

until no more thresholds are left to place, and such that the thresholds uniformly

partition each region.

The procedure for choosing the thresholds I(k�), given the feedback vector k�−1, is illustrated

in Figure 4. More particularly, the feedback thresholds for INR-ARQ transmission over the

block-fading channel with Nt = Nr = 1, B = 2, K = 4, L = 2, and R = 3.5 using 16-QAM

constellations are illustrated in Figure 2, where I(k�−1) = I([k�−1, 0]), and the values of

I(k2) are reported in Table II.

B. Power Adaptation

The sub-optimal power adaptation rule is obtained from the following simplifications.
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• We consider a power constraint more stringent than the constraint in (10),∑
k�∈{0,...,K−1}�

q(k�)P�+1(k�) ≤ P

L
, (28)

for k� ∈ {0, . . . , K − 1}�, � = 0, . . . , L− 1, where q(k0) = 1 by definition.

• When feedback k�−1 is received, we have that I1,�−1 ≥ I(k�−1). Then, the feedback

probability is approximated from (9) by replacing I1,�−1 with I(k�−1); and the outage

probability can be upper bounded as

p̂(�|k�−1) � Pr
{
I� + I(k�−1) < R

}
, (29)

where I� is given by (5) with P� = P�(k�−1).

• To further simplify the problem, we consider minimizing p̂(�), � = 1, . . . , L sequentially.

Based on the simplifications, the corresponding power adaptation rule P�(k�−1) is obtained

by solving ⎧⎪⎨
⎪⎩
Minimize

∑
k�−1

q(k�−1)p̂(�|k�−1)

Subject to
∑

k�−1
q(k�−1)P�(k�−1) ≤ P

L
.

(30)

The optimization problem is separable, and thus can be solved via a branch-and-bound

simplex algorithm using piece-wise linear approximation [26]. For single-input multiple-

output (SIMO) channels, the probabilities q(k�−1) and p̂(�|k�−1) in (30) can be approximated

numerically by shifting the outage probability bounds in [27] according to the gap between

the bound and the corresponding simulation curve at high SNR. For MIMO channels, solving

(30) requires tabulating the probabilities q(k�−1) and p̂(�|k�−1), which can be obtained from

Monte-Carlo simulations.

C. Numerical Results

First consider SISO (Nt = Nr = 1) INR-ARQ transmission with L = 2 at rate R = 3.5

over the block-fading channel in (1) with B = 2 using 16-QAM input constellations. The

outage performance of systems with K = 2, 3, 8, 16 is illustrated in Figure 5. We observe

that the outage diversity achieved by constant transmit power and by power adaptation for

K = 2 is 3 and 4 as given in (26) and (25), respectively. For K ≥ 3, the outage diversity is

5 as predicted from (20). This leads to significant improvement in outage performance for

power adaptive ARQ transmission with multi-bit feedback at high P . Particularly, 2 dB gain

in power is observed at outage probability 10−6 for K ≥ 8. Note that at low P , the outage
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performance of systems with K = 2 is outperformed by system with constant transmit power

due to the simplifying assumption (28).

The outage performance of MIMO INR-ARQ transmission over the block-fading channel

in (1) with Nt = 2, Nr = 1, B = 1, R = 7.5 using 16-QAM input constellations is illustrated

in Figures 6 and 7, where Figure 6 shows the simulation results, and Figure 7 presents the

upper bound obtained from (30). The simulation results in Figure 6 have yet to show the

correct outage diversity (dL(R) = 5 for K ≥ 3 and dL(R) = 4 for K = 2). However, they

follow the bounds from (30), which approach the optimal outage diversity at higher SNR as

shown in Figure 7. Figure 6 shows that systems with power allocation significantly outperform

that with constant transmit power. Moreover, allowing additional feedback levels (K ≥ 3)

provides further gains in outage diversity and thus significant gains in outage performance

at high SNR.

In both cases, the simulation results suggest that increasing K beyond 8 does not substan-

tially improve the outage performance; and thus, even for K = 3, the sub-optimal choice

of feedback thresholds in Section V-A performs within 1dB of systems with large K and

optimal thresholds.

VI. CONCLUSIONS

We have studied the outage performance of MIMO block-fading channels with and without

employing the INR-ARQ strategy. An information-theoretic multi-bit feedback INR-ARQ

scheme is proposed based on the accumulative mutual information, which potentially im-

proves the performance of INR-ARQ transmission with minimal extra overhead requirement

compared to classical INR-ARQ. The study on power adaptation has revealed large gains

in outage diversity provided by multi-bit feedback in INR-ARQ systems with a long-term

power constraint. More generally, the multi-bit feedback INR-ARQ based on accumulated

mutual information may prove useful in obtaining the fundamental limit of multi-bit feedback

INR-ARQ systems. Furthermore, since the proposed scheme is a generalization to that in [17]

and [19], it promises further gain from the throughput performance obtained in [17, 19].

APPENDIX A

PROOF OF THEOREM 1

We first assume a genie-aided receiver that perfectly eliminates the interference between

the transmit antennas. This results in Nt parallel SIMO block-fading channels, each with Nr
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receive antennas. Let Iga be the realized input-output mutual information of the genie-aided

channel, then Iga ≥ I . Furthermore, from the analysis in [25, 27, 28], we have that

Pr {Iga < R} .
= P−d(R). (31)

Therefore,

Pr {I < R} ≥̇P−d(R). (32)

The proof is thus completed by proving that

Pr {I ≤ R} .
= P−d(R). (33)

Following the arguments in [25, 27, 28], we have that

Pr {Iga ≤ R} .
= P−d(R) (34)

and therefore,

Pr {I ≤ R} ≥̇P−d(R). (35)

We now prove that Pr {I ≤ R} ≤̇P−d(R). Considering transmission over the block-fading

channel in (1) with random codes of rate R, where the JBNt coded symbols in x are drawn

uniformly random from the constellation X . Let P (r)
e be the word error probability achieved

by random coding. We have from the random-coding achievability and the strong converse

theorem [3–5] that for a channel realization H ,

P (r)
e (H) =

⎧⎪⎨
⎪⎩
1 if I < R

0 if I > R
(36)

when J → ∞. Therefore, the word error probability of random codes satisfies

P (r)
e = Pr {I ≤ R} . (37)

We now prove that P (r)
e ≤̇P

−d(I)
� . Consider encoding and transmitting a message m as a ran-

dom codeword X . Assuming that the channel realization is H , the pairwise error probability

between X and X ′ is bounded by [29]

PPEP (X → X ′|H) ≤ exp

(
−1

4
g2(X,X ′,H)

)
, (38)

where, by letting P̂ = P�

Nt
,

g2(X ,X ′,H) =
B∑
b=1

J∑
j=1

Nr∑
r=1

∣∣∣∣∣
Nt∑
t=1

√
P̂ hb,t,r(Xb,t,j −X ′

b,t,j)

∣∣∣∣∣
2

. (39)
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Here, hb,t,r is the channel gain from transmit antenna t to receive antenna r in block b, and

Xb,t,j is the coded symbol transmitted by antenna t at time instant j of block b. Let us write

hb,t,r = |hb,t,r|eiθb,t,r , where i =
√−1. Further define a matrix of normalized fading gains

α ∈ R
B×Nt×Nr where αb,t,r � − log(|hb,t,r|2)

log(P̂ )
, then

g2(X,X ′,H) =

B∑
b=1

J∑
j=1

Nr∑
r=1

∣∣∣∣∣
Nt∑
t=1

P̂
1−αb,t,r

2 eiθb,t,r(Xb,t,j −X ′
b,t,j)

∣∣∣∣∣
2

. (40)

By averaging (38) over the random coding ensemble, the pairwise error probability of random

codes is

P
(r)
PEP(X → X ′|H) ≤

B∏
b=1

⎧⎨
⎩ 1

22MNt

∑
x∈XNt

∑
x′∈XNt

exp

⎛
⎝−1

4

Nr∑
r=1

∣∣∣∣∣
Nt∑
t=1

P̂
1−αb,t,r

2 eiθb,t,r(xt − x′
t)

∣∣∣∣∣
2
⎞
⎠
⎫⎬
⎭

J

(41)

≤ exp

(
BMJ log(2)

(
−2Nt +

1

BM
T (P̂ ,α)

))
, (42)

where xt is the tth entry of vector x and

T (P̂ ,α) �
B∑
b=1

log2

⎛
⎝ ∑

x∈XNt

∑
x′∈XNt

exp

⎛
⎝−1

4

Nr∑
r=1

∣∣∣∣∣
Nt∑
t=1

P̂
1−αb,t,r

2 eiθb,t,r(xt − x′
t)

∣∣∣∣∣
2
⎞
⎠
⎞
⎠ . (43)

By summing over the 2BRJ − 1 possible error events, the union bound on the word error

probability is given by

P (r)
e (H) ≤ min

{
1, exp

(
BMJ log(2)

(
−2Nt +

R

M
+

1

BM
T (P̂ ,α)

))}
. (44)

For any ε > 0, denote S(ε)
b �

⋃Nr

r=1 S(ε)
b,r , and κb � |S(ε)

b |, where

S(ε)
b,r � {t : αb,t,r ≤ 1− ε, t = 1, . . . , Nt}. (45)

Then, for any given r ∈ {1, . . . , Nr}, and letting αb,r = max{αb,t,r, t ∈ S(ε)
b,r}, we can write

lim
P̂→∞

Nt∑
t=1

P̂
1−αb,t,r

2 eiθb,t,r(xt − x′
t) ≥ lim

P̂→∞

∑
t∈S(ε)

b,r

xt �=x′
t

P̂
1−αb,t,r

2 eiθb,t,r(xt − x′
t) (46)

≥ lim
P̂→∞

P̂
1−αb,r

2

∑
t∈S(ε)

b,r

xt �=x′
t

eiθb,t,r(xt − x′
t). (47)

Since the θb,t,r’s are uniformly drawn from [−π, π], we have that

lim
P̂→∞

Nt∑
t=1

P̂
1−αb,t,r

2 eiθb,t,r(xt − x′
t) = ∞ (48)
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with probability 1 if there exists t ∈ S (ε)
b,r such that xt �= x′

t. Noting that κb = |S(ε)
b |, it follows

from (43) that

lim
P̂→∞

T (P̂ ,α) =

B∑
b=1

lim
P̂→∞

log2

⎛
⎜⎜⎜⎝
∑

x∈XNt

∑
x′∈XNt

x′
t=xt,∀t∈S(ε)

b

exp

⎛
⎝−1

4

Nr∑
r=1

∣∣∣∣∣
Nt∑
t=1

P̂
1−αb,t,r

2 eiθb,t,r(xt − x′
t)

∣∣∣∣∣
2
⎞
⎠
⎞
⎟⎟⎟⎠

≤
B∑
b=1

log2
(
2MNt2M(Nt−κb)

)

=

B∑
b=1

M(2Nt − κb). (49)

Thus, the error probability in (44) is asymptotically upper-bounded by

lim
P̂→∞

P (r)
e (H) ≤ min

{
1, exp

(
−BMJ log(2)

(
1

B

B∑
b=1

κb − R

M

))}
. (50)

Let B(ε) �
{
α ∈ RB×Nt×Nr :

∑B
b=1 κb ≤ BR

M

}
be the outage set. By averaging over the fading

matrix and letting J → ∞, the error probability is bounded by

P (r)
e ≤

∫
α∈B(ε)

fα(α)dα, (51)

where fα(α) is the joint pdf of the random vector α. Following the analysis in [28], and

letting J → ∞, the SNR-exponent for the case of using random codes is lower bounded by

inf
α∈B(ε)∩RBNr×BNt

+

{
B∑
b=1

Nt∑
t=1

Nr∑
r=1

αb,t,r

}
= Nr

(
BNt −

⌊
BR

M

⌋)
(1− ε) (52)

= Nr

⌈
B

(
Nt − R

M

)⌉
(1− ε). (53)

Thus, by letting ε ↓ 0, the outage diversity d(R) is achievable using random codes. Therefore

we have from (37) that

Pr {I ≤ R} ≤̇P̂−d(R) .
= P−d(R). (54)

Thus, (33) is obtained from (35).

APPENDIX B

PROOF OF THEOREM 2

A sketch of the proof is given as follows. We first lower-bound the outage diversity by

considering a sub-optimal ARQ system with K =
⌈
BR
M

⌉
+ 1 feedback levels, where the

quantization thresholds are placed at I([k�−1, k�]) =
k�M
B

, k� = 0, . . . ,
⌊
BR
M

⌋
. Using Theorem
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1, we prove by induction that the outage diversity of the sub-optimal ARQ system at round

� is d�(R).

Conversely, consider an optimal INR-ARQ system with K ≥ ⌈BR
M

⌉
+ 1 feedback levels.

The outage performance of the system can be improved by adding
⌊
BR
M

⌋
+1 extra quantization

thresholds (and corresponding feedback indices) at tM
B
, t = 0, . . . ,

⌊
BR
M

⌋
. Using Theorem 1,

we prove by induction that the outage diversity at round � of the improved systems (with

K+
⌊
BR
M

⌋
+1 feedback levels) is also given by d�(R). Therefore, d�(R) is the optimal outage

diversity at round � for an ARQ system with K ≥ ⌈BR
M

⌉
+ 1 feedback levels.

A. Lower bound on the optimal outage diversity

To get a lower bound to the outage diversity, consider an ARQ system with K =
⌈
BR
M

⌉
+1

feedback levels, where the following (sub-optimal) set of feedback thresholds is employed,

I(k�) =

⎧⎪⎨
⎪⎩
Îk� , 0 ≤ k� < K − 1

R, k� = K − 1,
(55)

with Ît =
tM
B

. In this case, feedback index k� = t is delivered at round � if I1,� ∈
[
Ît, Ît+1

)
,

regardless of the realized feedback indices of the previous rounds. At round �, the transmit

power is sub-optimally adapted to the feedback index k�−1 as P� = P�(k�−1), where

P�(k�−1) =

⎧⎪⎪⎨
⎪⎪⎩

P

KLPr

{
I1,�−1∈

[
Îk�−1

,Îk�−1+1

)} , k�−1 < K − 1

0, otherwise.

(56)

The power adaptation rule in (56) satisfies the power constraint in (10). We now derive the

outage diversity achieved by the aforementioned system.

For I ∈
(
Ît, Ît+1

)
, we have from Theorem 1 that

Pr {I1 < I} .
= Pr

{
I1 ∈

[
Ît, Ît+1

)} .
= P−δ1(t), (57)

where δ1(t) � d(Ît+1) = Nr(BNt − t).

For t = 0, . . . , BNt − 1 and a given I ∈
(
Ît, Ît+1

)
, we now prove by induction that for

� = 1, . . . , L,

Pr
{
I1,� < I

} .
= Pr

{
I1,� ∈

[
Ît, Ît+1

)} .
= P−δ�(t), (58)

where δ�(t) = d�

(
Ît+1

)
is given in (20).
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Equation (57) shows that (58) is correct at round 1. Assume now that (58) is correct at

round �. From (56) we have that

P�+1(t) =
P

KLPr
{
I1,� ∈

[
Ît, Ît+1

)} .
= P 1+δ�(t). (59)

Therefore, for I ∈
(
Ît, Ît+1

)
,

Pr
{
I1,�+1 < I

}
=

t∑
j=0

Pr
{
I1,� ∈

[
Îj , Îj + I − Ît

)}
Pr
{
I�+1 < I − I1,�

∣∣∣I1,� ∈ [Îj, Îj + I − Ît
)}

+

t∑
j=0

Pr
{
I1,� ∈

[
Îj + I − Ît, Îj+1

)}
Pr
{
I�+1 < I − I1,�

∣∣∣I1,� ∈ [Îj + I − Ît, Îj+1

)}
.

(60)

Given I1,� ∈ [Îj , Îj + I − Ît
)

and I ∈
(
Ît, Ît+1

)
, we have that I − I1,� ∈

(
Ît−j, Ît−j+1

)
.

Therefore, by applying Theorem 1, and noting the transmit power in (59), we have that

Pr
{
I�+1 < I − I1,�

∣∣∣I1,� ∈ [Îj, Îj + I − Ît
)} .

= P−(1+δ�(j))Nr(BNt−t+j). (61)

Since (58) is assumed at round �, the first summation dominates in (60). Thus from (61), we

have that

Pr
{
I1,�+1 < I

} .
=

t∑
j=0

P−δ�(j)−[1+δ�(j)]Nr(BNt−t+j). (62)

The asymptotic exponent in (62) is given by

min
j=0,...,t

δ�(j) + [1 + δ�(j)]Nr(BNt − t+ j) (63)

= min
j=0,...,t

−1 + (1 +BNrNt)
�−1 [1 +Nr(BNt − j)] [1 +Nr(BNt − t + j)] (64)

= −1 + (1 +BNtNr)
� [1 +Nr(BNt − t)] (65)

= δ�+1(t), (66)

where (64) follows from assumption δ�(j) = d�(Îj+1) in (58), and (65) follows since the

minimum in (64) is achieved with either j = 0 or j = t. Therefore, from (62),

Pr
{
I1,�+1 < I

} .
= P−δ�+1(t), (67)

where δ�+1(t) = d�+1(Ît+1) in (20). Thus, (58) is correct for � = 1, . . . , L by induction.

Consequently, for any R ∈
(
Îτ , Îτ+1

)
, we have that

Pr
{
I1,� < R

} .
= P−δ�(τ) = P−d�(Îτ+1), (68)
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and thus, the diversity in (20) is achieved by the ARQ system with τ+2 =
⌈
BR
M

⌉
+1 feedback

levels.

Noting when Pr
{
I1,�+1 < R

} .
= P−δ�(τ), the outage probability at round � is dominated

by the events with j = 0 and j = τ in (62), which correspond to the events with I1,� ∈[
0, Î1
) ∪ [Îτ , R). The observation is useful for designing the feedback thresholds for the

system, as summarized in Remark 1.

B. Upper bound on the optimal outage diversity

Conversely, we derive an upper bound to the outage diversity achieved by a system with

optimal feedback threshold I(k�) with K levels per transmission round. We first assume that

R ∈
(
Îτ , Îτ+1

)
for some τ ∈ {0, . . . , BNt − 1}. Consider improving the performance of the

system by employing a feedback threshold set I † (k�) with K = K + τ + 1 feedback levels

per ARQ round by adding τ + 1 levels to the optimal feedback threshold set {I(k�)}. The

extra τ + 1 levels are located at Ît = tM
B
, t = 0, . . . , τ .

Let Ak�−1
(k) �

[
I† ([k�−1, k]) , I

† ([k�−1, k + 1])
)
, � = 1, . . . , L, k = 0, . . . , K − 2, and

further let Ak�−1
(k) �

(
I† ([k�−1, k]) , I

† ([k�−1, k + 1])
)
. Then, given that the feedback vector

at round �−1 is k�−1, the receiver delivers feedback index K−1 if I1,� ≥ I†
(
[k�−1, K − 1]

)
=

R; otherwise, it delivers index k�, where k� is chosen such that I1,� ∈ Ak�−1
(k�).

From the power constraint (10), the optimal power allocation rule is upper-bounded by

P �(k�−1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P, � = 1

P

Pr{I1,�−1∈Ak�−2
(k�−1)} , k�−1 < K − 1

0, otherwise.

(69)

Meanwhile, the power adaptation rule

P �(k�−1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P
L
, � = 1

P

KLPr{I1,�−1∈Ak�−2
(k�−1)} , k�−1 < K − 1

0, otherwise.

(70)

satisfies the power constraint in (10). Therefore, the optimal power allocation rule asymptot-

ically satisfies P�(k�−1)
.
= P �(k�−1) given in (69).

For t = 0, . . . , τ , let Sk�−1
(t) =

{
k ∈ {1, . . . , K − 2} : Ak�−1

(k) ⊆ [Ît, Ît+1

)}
. Since Ît,

for t = 1, . . . , τ , belongs to the set of thresholds {I † ([k�−1, k�]) , k� = 0, . . . , K − 1},
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Ak�−1
(k) ⊆

(
Ît, Ît + 1

)
for some t ∈ {1, . . . , τ}. Applying Theorem 1, for any I ∈

(
Ît, Ît+1

)
and k ∈ Sk0(t), we have that

Pr {I1 < I} .
= P−Nr(BNt−t) .

= P−δ1(t) (71)

Pr {I1 ∈ Ak0(k)} .
= Pr

{
I < I† ([k + 1])

} .
= P−δ1(t), (72)

where δ1(t) = d1(Ît+1) given in (20).

For the induction proof, assume that when I ∈
(
Ît, Ît+1

)
and k ∈ Sk�−1

(t), we have

Pr
{
I1,� < I

} .
= Pr

{
I1,� ∈ Ak�−1

(k)
} .
= P−δ�(t), (73)

where δ�(t) = d�(Ît+1) given in (20). The assumption is correct for � = 1. We prove that

(73) is also valid at round �+ 1. In fact, considering I ∈
(
Ît, Ît+1

)
, we have

Pr
{
I1,�+1 < I

}
=

t∑
j=0

Pr
{
I1,� ∈

[
Îj , Îj + I − Ît

)}
Pr
{
I�+1 < I − I1,�

∣∣∣I1,� ∈ [Îj, Îj + I − Ît
)}

+

t∑
j=0

Pr
{
I1,� ∈

[
Îj + I − Ît, Îj+1

)}
Pr
{
I�+1 < I − I1,�

∣∣∣I1,� ∈ [Îj + I − Ît, Îj+1

)}
.

From assumption (73) and power allocation rule (69), when I1,� ∈ Ak�−1
(k�), the transmit

power in round � + 1 is P�+1
.
= P

Pr{I1,�∈Ak�−1
(k�)}

.
= P 1+δ�(j) for all k� ∈ Sk�

(j). Therefore,

when I1,� ∈
[
Îj, Îj+1

)
, P�+1

.
= P 1+δ�(j). Thus, with similar arguments that are used to derive

(61), we have that

Pr
{
I1,�+1 < I

} .
=

t∑
j=0

P−(δ�(j)+(1+δ�(j))Nr(BNt−t+j)) (74)

as given in (62). Therefore, following the steps used to derive (67), we have that

Pr
{
I1,�+1 < I

} .
= P−δ�+1(t) (75)

for I ∈
(
Ît, Ît+1

)
. It follows that

Pr
{
I1,�+1 ∈ Ak�

(k)
} .
= Pr

{
I1,�+1 < I† ([k�, k])

} .
= P−δ�+1(t) (76)

for all k ∈ Sk�
(t). The results in (75) and (76) prove that assumption (73) is valid at round

�+ 1, and thus by mathematical induction, (73) is valid for � = 1, . . . , L.

Since R ∈
(
Îτ , Îτ+1

)
,

Pr
{
I1,� < R

} .
= P−δ�(τ) .

= P−d�(Îτ+1), (77)

which proves that the outage diversity of the system with K−level feedback is the same as

that given in (20).
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[24] T. Kim, K. Nguyen, and Guillén i Fàbregas, “Coded modulation with mismatched CSIT over MIMO block-fading

channels,” IEEE Trans. Inf. Theory, vol. 56, no. 11, pp. 5631–5640, Dec 2010.

[25] R. Knopp and P. A. Humblet, “On coding for block fading channels,” IEEE Trans. Inf. Theory, vol. 46, no. 1, pp.

189–205, Jan. 2000.

[26] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear programming: Theory and algorithms, 3rd ed. J. Wiley

& Sons, 2006.

[27] K. D. Nguyen, A. Guillén i Fàbregas, and L. K. Rasmussen, “A tight lower bound to the outage probability of

block-fading channels,” IEEE Trans. Inf. Theory, vol. 53, no. 11, pp. 4314–4322, Nov. 2007.
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TABLE I

SUMMARY OF NOTATIONS

B No. of blocks per round L Maximum No. rounds

Nt No. transmit antennas Nr No. receive antennas

R Rate (bits per channel uses) J No. channel uses per block

P Power constraint P� Transmit power

X input constellation M Constellation size

K No. feedback levels k,k Feedback index, vector

I Mutual information Î, I Quantization thresholds of I

X,x, x Transmit signal Y ,y, y Receive signal

H Channel gain matrix W AWGN noise

Pe, p Error, outage probability d Outage diversity, SNR exponent

TABLE II

FEEDBACK THRESHOLDS FOR Nt = Nr = 1, B = 2, L = 2, R = 3.5.

k2 = 0 k2 = 1 k2 = 2

k1 = 0 0 2 2.75

k1 = 1 2 2.5 3.0

k1 = 2 2.75 3.0 3.25

Decoder

Encoder

C
hannel

Adaptive ARQ

Y �

m

k�

k� = [k1, . . . , k�]

Y 1,�

x(m)

m̂

√
P�(k�−1)

Nt
X �(m)

Fig. 1. The INR-ARQ system with multi-bit feedback.
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I([1])

I([2])

R

I([0 2])

I([0 1])

R

� = 1

I([0]) = 0
I([0 0])

k1 = 0

I([1 2])

I([1 1])

I([1 0])

R

k1 = 1

I([2 1])
I([2 2])

I([2 0])

R

k1 = 2

� = 2

Fig. 2. An example of feedback thresholds.

March 7, 2011 DRAFT



28

0 1 2 3 4 5 6 7 8
10

0

10
1

10
2

L = 1

L = 2

L = 3

R

d
L
(R

)

(a) Long-term power constraint tradeoff.
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R

d
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(b) Constant transmit power tradeoff.

Fig. 3. Optimal rate-diversity-delay tradeoff of ARQ transmission with long-term power constraint (a) and constant power

(b). 16-QAM is used over a MIMO block-fading channel with Nt = Nr = 2, B = 2, L = 1, 2, 3. Thick and thin lines

in (a) represent the optimal tradeoffs dL(R) achieved by multi-bit feedback (K ≥ �BR/M� + 1) and d̂L(R) achieved

by one-bit feedback (K = 2), respectively. Crosses and circles correspond to the rate points where the SNR-exponent of

random codes does not achieve the optimal diversity.March 7, 2011 DRAFT
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I([k�−1, 0]) R0

Ît′ ÎτÎt′+1

0 I([k�−1, 0]) = I(k�−1) I([k�−1, K − 1]) = R

Step 1: Place thresholds at I(k�−1) and R

2 14 5 3 6

RI([k�−1, 0]) Ît′+1 Îτ0

Ît′

Step 3: Place extra thresholds following the numbered sequence

Step 2: Place thresholds to guarantee optimal outage diversity

Fig. 4. An example of feedback threshold design (K = 12).
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Fig. 5. Outage performance of ARQ transmission schemes for a 16-QAM input block-fading channel with L = 2, Nt =

Nr = 1, B = 2, R = 3.5.
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Fig. 6. Outage performance of ARQ transmission using the 16-QAM input constellation over the block-fading channel

with L = 2, Nt = 2, Nr = 1, B = 1, R = 7.5. Systems with constant transmit power, and systems employing power

adaptation with K = 2, 3, 8, 16 are considered.
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Fig. 7. Upper bound on outage performance of ARQ transmission using 16-QAM input constellations over the block-fading

channel with L = 2, Nt = 2, Nr = 1, B = 1, R = 7.5 and K = 3, 8, 16.
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