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Abstract—Atmospheric effects can significantly degrade the
reliability of free-space optical communications. One such effect
is scintillation, caused by atmospheric turbulence, refers to
random fluctuations in the irradiance and phase of the received
laser beam. In this paper we investigate the use of multiple
lasers and multiple apertures to mitigate scintillation. Since the
scintillation process is slow, we adopt a block fading channel
model and study the outage probability under the assumptions of
orthogonal pulse-position modulation and non-ideal photodetec-
tion. Assuming perfect receiver channel state information(CSI),
we derive the signal-to-noise ratio (SNR) exponents for thecases
when the scintillation is lognormal, exponential and gamma-
gamma distributed, which cover a wide range of atmospheric
turbulence conditions. Furthermore, when CSI is also available
at the transmitter, we illustrate very large gains in SNR are
possible (in some cases larger than15 dB) by adapting the
transmitted power. Under a long-term power constraint, we
outline fundamental design criteria via a simple expression that
relates the required number of lasers and apertures for a given
code rate and number of codeword blocks to completely remove
system outages.

I. I NTRODUCTION

FREE-space optical (FSO) communication offers an at-
tractive alternative to the radio frequency (RF) channel

for the purpose of transmitting data at very high rates. By
utilising a high carrier frequency in the optical range, digital
communication on the order of gigabits per second is possible.
In addition, FSO links are difficult to intercept, immune to
interference or jamming from external sources, and are not
subject to frequency spectrum regulations. FSO communica-
tions have received recent attention in applications such as
satellite communications, fibre-backup, RF-wireless back-haul
and last-mile connectivity [1].

The main drawback of the FSO channel is the detrimental
effect the atmosphere has on a propagating laser beam. The
atmosphere is composed of gas molecules, water vapour, pol-
lutants, dust, and other chemical particulates that are trapped
by Earth’s gravitational field. Since the wavelength of a
typical optical carrier is comparable to these molecule and
particle sizes, the carrier wave is subject to various propagation
effects that are uncommon to RF systems. One such effect is
scintillation, caused by atmospheric turbulence, and refers to
random fluctuations in the irradiance of the received optical
laser beam (analogous to fading in RF systems) [2]–[4].
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Recent works on the mitigation of scintillation concentrate
on the use of multiple-lasers and multiple-apertures to create
a multiple-input-multiple-output (MIMO) channel [5]–[14].
Many of these works consider scintillation as an ergodic
fading process, and analyse the channel in terms of its ergodic
capacity. However, compared to typical data rates, scintillation
is a slow time-varying process (with a coherence time on the
order of milliseconds), and it is therefore more appropriate
to analyse the outage probability of the channel. To some
extent, this has been done in the works of [6], [11], [13]–[15].
In [6], [14] the outage probability of the MIMO FSO channel
is analysed under the assumption of ideal photodetection (i.e.
a Poisson counting process) with no bandwidth constraints.
Wilson et al. [11] also assume perfect photodetection, but with
the further constraint of pulse-position modulation (PPM). Lee
and Chan [13], study the outage probability under the as-
sumption of on-off keying (OOK) transmission and non-ideal
photodetection, i.e. the combined shot noise and thermal noise
process is modelled as zero mean signal independent additive
white Gaussian noise (AWGN). Farid and Hranilovic [15]
extend this analysis to include the effects of pointing errors.

In this paper we study the outage probability of the MIMO
FSO channel under the assumptions of PPM, non-ideal pho-
todetection, and equal gain combining (EGC) at the receiver.
In particular, we model the channel as a quasi-static block
fading channel whereby communication takes place over a
finite number of blocks and each block of transmitted sym-
bols experiences an independent identically distributed (i.i.d.)
fading realisation [16], [17]. We consider two types of CSI
knowledge. First we assume perfect CSI is available only at
the receiver (CSIR case), and the transmitter knows only the
channel statistics. Then we consider the case when perfect
CSI is also known at the transmitter (CSIT case).1 Under this
framework we study a number of scintillation distributions:
lognormal, modelling weak turbulence; exponential, modelling
strong turbulence; and gamma-gamma [18], which models a
wide range of turbulence conditions. For the CSIR case, we
derive signal-to-noise ratio (SNR) exponents, which describe
the asymptotic slope of the outage probability as a function
of SNR when on a log-log scale. We show that the SNR
exponents are the product of: a channel related parameter,
dependent on the scintillation distribution; the number of
lasers times the number of apertures, reflecting the spatial
diversity; and the Singleton bound [19]–[21], reflecting the
block diversity. For the CSIT case, the transmitter finds the

1Given the slow time-varying scintillation process, CSI canbe estimated at
the receiver and fed back to the transmitter via a dedicated feedback link.
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Fig. 1. Block diagram of anM × N MIMO FSO system.

optimal power allocation that minimises the outage probability
[22]. Using results from [23], we derive the optimal power
allocation subject to short- and long-term power constraints.
We show that very large power savings are possible compared
to the CSIR case. Interestingly, under a long-term power
constraint, we show that delay-limited capacity [24] is zero for
exponential and (in some cases) gamma-gamma scintillation,
unless one codes over multiple blocks, and/or uses multiple
lasers and apertures.

The paper is organised as follows. In Section II, we
define the channel model and assumptions. In Section III
we review the lognormal, exponential and gamma-gamma
models. Section IV defines the outage probability and presents
results on the minimum-mean squared error (MMSE). Then
in Sections V and VI we present the main results of our
asymptotic outage probability analysis for the CSIR and CSIT
cases, respectively. Concluding remarks are then given in
Section VII. Proofs of the various results can be found in
the Appendices.

II. SYSTEM MODEL

We consider anM × N MIMO FSO system withM
transmit lasers anN aperture receiver as shown in Fig. 1.
Information data is first encoded by a binary code of rateRc.
The encoded stream is modulated according to aQ-ary PPM
scheme, resulting in rateR = Rc log2 Q (bits/channel use).
Repetition transmission is employed such that the same PPM
signal is transmitted in perfect synchronism by each of theM
lasers through an atmospheric turbulent channel and collected
by N receive apertures. We assume the distance between the
individual lasers and apertures is sufficient so that spatial
correlation is negligible. At each aperture, the received optical
signal is converted to an electrical signal via photodetection.
Non-ideal photodetection is assumed such that the combined
shot noise and thermal noise processes can be modelled as zero
mean, signal independent AWGN (an assumption commonly
used in the literature, see e.g. [3]–[5], [13], [15], [25]–[30]).

In FSO communications, channel variations are typically
much slower than the signalling period. As such, we model
the channel as a non-ergodic block-fading channel, for which a

given codeword of lengthBL undergoes only a finite number
B of scintillation realisations [16], [17]. The received signal
at aperturen, n = 1, . . . , N can be written as

yn
b [ℓ] =

(

M
∑

m=1

h̃m,n
b

)

√

p̃b xb[ℓ] + z̃n
b [ℓ], (1)

for b = 1, . . . , B, ℓ = 1, . . . , L, whereyn
b [ℓ], z̃n

b [ℓ] ∈ R
Q are

the received and noise signals at blockb, time instantℓ and
aperturen, xb[ℓ],∈ R

Q is the transmitted signal at blockb
and time instantℓ, and h̃m,n

b denotes the scintillation fading
coefficient between laserm and aperturen. Each transmitted
symbol is drawn from a PPM alphabet,xb[ℓ] ∈ X ppm ∆

=
{e1, . . . , eQ}, whereeq is the canonical basis vector, i.e., it
has all zeros except for a one in positionq, the time slot
where the pulse is transmitted. The noise samples ofz̃n

b [ℓ] are
independent realisations of a random variableZ ∼ N (0, 1),
andp̃b denotes the received electrical power of blockb at each
aperture in the absence of scintillation. The fading coefficients
h̃m,n

b are independent realisations of a random variableH̃ with
probability density function (pdf)fH̃(h).

At the receiver, we assume equal gain combining
(EGC) [31] is employed, such that the entire system is
equivalent to a single-input single-output (SISO) channel, i.e.

yb[ℓ] =
1√
N

N
∑

n=1

yn
b [ℓ] =

√
pbhbxb[ℓ] + zb[ℓ], (2)

wherezb[ℓ] = 1√
N

∑N
n=1 z̃n

b [ℓ] ∼ N (0, 1), andhb, a realisa-
tion of the random variableH , is defined as the normalised
combined fading coefficient, i.e.

hb =
c

MN

M
∑

m=1

N
∑

n=1

h̃m,n
b , (3)

wherec = 1/(E[H̃ ]
√

1 + σ2
I/(MN)) is a constant to ensure

E[H2] = 1 andσ2
I is thescintillation index (SI), defined as [4]

σ2
I ,

Var(H̃)

(E[H̃ ])2
. (4)
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Thus, the total instantaneous received electrical power atblock
b is pb = M2Np̃b/c2, and the total average received SNR is
snr , E[h2

bpb] = E[pb].2

When perfect CSI is known only at the receiver (CSIR
case), we assume the electrical power is distributed uniformly
over the blocks, i.e.,pb = p = snr for b = 1, . . . , B. When
perfect CSI is known at both the transmitter and receiver (CSIT
case), we will allocate electrical power in order to improve
performance. In particular, we will consider the followingtwo
electrical power constraints

Short-term:
1

B

B
∑

b=1

pb ≤ P (5)

Long-term: E

[

1

B

B
∑

b=1

pb

]

≤ P. (6)

Note that in practical systems, channel estimation errors,
latency, noise and fading on the feedback link would need to
be addressed. To simplify our analysis we neglect these issues.
By assuming a perfect feedback link, our analysis serves as a
performance benchmark for practical systems.

Throughout the paper, we will devote special attention to
the case ofB = 1, i.e., the channel does not vary within a
codeword. This scenario is relevant for FSO, since, due to the
large data-rates, one is able to transmit millions of bits over
the same channel realisation. We will see that most results
admit very simple forms, and some cases, even closed form.
This analysis allows for a system characterisation where the
expressions highlight the roles of the key design parameters.

III. SCINTILLATION DISTRIBUTIONS

The distribution of the irradiance fluctuations is dependent
on the strength of the optical turbulence. Under weak tur-
bulence conditions, the fluctuations are generally considered
to be lognormal distributed, and for very strong turbulence,
exponential distributed [2], [32]. For moderate turbulence, the
distribution of the fluctuations is not well understood, and
a number of distributions have been proposed, such as the
lognormal-Rice distribution [4], [18], [33]–[35] (also known
as the Beckmann distribution [36]) and K-distribution [33].
In [18], Al-Habash et al. proposed a gamma-gamma dis-
tribution as a general model for all levels of atmospheric
turbulence. Moreover, recent work in [35] has shown that the
gamma-gamma model is in close agreement with experimen-
tal measurements under moderate-to-strong turbulence condi-
tions. In this paper we focus on lognormal, exponential, and
gamma-gamma distributed scintillation, which are described
as follows.

For lognormal distributed scintillation,

fLN
H̃

(h) =
1

hσ
√

2π
exp

(

−(log h − µ)2/(2σ2)
)

, (7)

2For optical channels with ideal photodetection, the normalisationE[H] =
1 is commonly used to keep optical power constant. We assume non-ideal
photodetection and work entirely in the electrical domain.Hence, we chose the
normalisationE[H2] = 1, used commonly in RF fading channels. However,
since we consider only the asymptotic behaviour of the outage probability,
the specific normalisation is irrelevant and does not affectour results.

whereµ and σ are related to the SI viaµ = − log(1 + σ2
I )

andσ2 = log(1 + σ2
I ), where we have assumedE[H̃2] = 1.

For exponential distributed scintillation

fExp

H̃
(h) = λ exp(−λh) (8)

which corresponds to the super-saturated turbulence, where
σ2

I = 1.
The gamma-gamma distribution arises from the product of

two independent Gamma distributed random variables and has
the pdf [18],

fGG
H̃

(h) =
2(αβ)

α+β

2

Γ(α)Γ(β)
h

α+β

2 −1 Kα−β(2
√

αβh), (9)

where Kν(x) denotes the modified Bessel function of the
second kind [37, Ch. 10]. The parametersα andβ are related
with the scintillation index viaσ2

I = α−1 + β−1 + (αβ)−1.

IV. I NFORMATION THEORETICPRELIMINARIES

The channel described by (2) under the quasi-static assump-
tion is not information stable [38] and therefore, the channel
capacity in the strict Shannon sense is zero. It can be shown
that the codeword error probability of any coding scheme is
lower bounded by the information outage probability [16],
[17],

Pout(snr, R) = Pr(I(p, h) < R), (10)

where R is the transmission rate andI(p, h) is the instan-
taneous input-output mutual information for a given power
allocation p , (p1, . . . , pB), and vector channel realisation
h , (h1, . . . , hB). The instantaneous mutual information can
be expressed as [39]

I(p, h) =
1

B

B
∑

b=1

Iawgn(pbh
2
b), (11)

whereIawgn(ρ) is the input-output mutual information of an
AWGN channel with SNRρ. For PPM [25]

Iawgn(ρ) =

log2 Q − E

[

log2

(

1 +

Q
∑

q=2

e−ρ+
√

ρ(Zq−Z1)

)]

, (12)

whereZq ∼ N (0, 1) for q = 1, . . . , Q.
For the CSIT case we will use the recently discovered

relationship between mutual information and the MMSE [40].
This relationship states that3

d

dρ
Iawgn(ρ) =

mmse(ρ)

log(2)
(13)

wheremmse(ρ) is the MMSE in estimating the input from the
output of a Gaussian channel as a function of the SNRρ. For
PPM, we have the following result

3The log(2) term arises because we have definedIawgn(ρ) in bits/channel
usage.
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Theorem 4.1: The MMSE for PPM on the AWGN channel
with SNR ρ is

mmse(ρ) = 1 − E







e2
√

ρ(
√

ρ+Z1) + (Q − 1)e2
√

ρZ2

(

eρ+
√

ρZ1 +
∑Q

k=2 e
√

ρZk

)2






, (14)

whereZi ∼ N (0, 1) for i = 1, . . . , Q.
Proof: See Appendix I.

Note that both (12) and (14) can be evaluated using standard
Monte-Carlo methods.

V. OUTAGE PROBABILITY ANALYSIS WITH CSIR

For the CSIR case, we employ uniform power allocation,
i.e. p1 = . . . = pB = snr. For codewords transmitted over
B blocks, obtaining a closed form analytic expression for
the outage probability is intractable. Even forB = 1, in
some cases, for example the lognormal and gamma-gamma
distributions, determining the exact distribution ofH can be a
difficult task. Instead, as we shall see, obtaining the asymptotic
behaviour of the outage probability is substantially simpler.
Towards this end, and following the footsteps of [21], [41],
we derive theSNR exponent.

Theorem 5.1: The outage SNR exponents for a MIMO FSO
communications system modelled by (2) are given as follows:

dLN
(log snr)2 =

MN

8 log(1 + σ2
I )

(1 + ⌊B (1 − Rc)⌋) (15)

dExp
(log snr) =

MN

2
(1 + ⌊B (1 − Rc)⌋) , (16)

dGG
(log snr) =

MN

2
min(α, β) (1 + ⌊B (1 − Rc)⌋) , (17)

for lognormal, exponential, and gamma-gamma cases respec-
tively, whereRc = R/ log2(Q) is the rate of the binary code
and

d(log snr)k

∆
= − lim

snr→∞

log Pout(snr, R)

(log snr)k
k = 1, 2. (18)

Proof: See Appendix II.
Proposition 5.1: The outage SNR exponents given in The-

orem 5.1, are achievable by random coding over PPM con-
stellations wheneverB (1 − Rc) is not an integer.

Proof: The proof follows from the proof of Theorem 5.1
and the proof of [21, Th. 1].

The above proposition implies that the outage exponents
given in Theorem 5.1 are the optimal SNR exponents over
the channel, i.e. the outage probability is a lower bound to
the error probability of any coding scheme, its corresponding
exponents (given in Theorem 5.1) are an upper bound to the
exponent of coding schemes. From Proposition 5.1, we can
achieve the outage exponents with a particular coding scheme
(random coding, in this case), and therefore, the exponentsin
Theorem 5.1 are optimal.

From (15)-(17) we immediately see the benefits of spatial
and block diversity on the system. In particular, each exponent
is proportional to: the number of lasers times the number of
apertures, reflecting the spatial diversity; a channel related
parameter that is dependent on the scintillation distribution;

and the Singleton bound, which is the optimal rate-diversity
tradeoff for Rayleigh-faded block fading channels [19]–[21].

Comparing the channel related parameters in (15)-(17) the
effects of the scintillation distribution on the outage probability
are directly visible. For the lognormal case, the channel related
parameter is8 log(1 + σ2

I ) and hence is directly linked to the
SI. Moreover, for smallσ2

I < 1, 8 log(1 + σ2
I ) ≈ 8σ2

I and the
SNR exponent is inversely proportional to the SI. For the expo-
nential case, the channel related parameter is a constant1/2 as
expected, since the SI is constant. For the gamma-gamma case
the channel related parameter ismin(α, β)/2, which highlights
an interesting connection between the outage probability and
recent results in the theory of optical scintillation. For gamma-
gamma distributed scintillation, the fading coefficient results
from the product of two independent random variables, i.e.
H̃ = XY , whereX and Y model fluctuations due to large
scale and small scale cells. Large scale cells cause refractive
effects that mainly distort the wave front of the propagating
beam, and tend to steer the beam in a slightly different
direction (i.e. beam wander). Small scale cells cause scattering
by diffraction and therefore distort the amplitude of the wave
through beam spreading and irradiance fluctuations [4, p. 160].
The parametersα, β are related to the large and small scale
fluctuation variances viaα = σ−2

X andβ = σ−2
Y . For a plane

wave (neglecting inner/outer scale effects)σ2
Y > σ2

X , and
as the strength of the optical turbulence increases, the small
scale fluctuations dominate andσ2

Y → 1 [4, p. 336]. This
implies that the SNR exponent is exclusively dependent on
the small scale fluctuations. Moreover, under strong turbulence
conditions,σ2

Y → 1, the gamma-gamma distribution reduces
to a K-distribution [4, p. 368], and the system has the same
SNR exponent as the exponential case typically used to model
scintillation in very strong turbulence conditions.

In comparing the lognormal exponent with the other cases,
we observe a striking difference. For the lognormal case (15)
implies the outage probability is dominated by a(log(snr))2

term, whereas for exponential and gamma-gamma scintillation
it is dominated by alog(snr) term. Thus the outage probability
decays much more rapidly with SNR for the lognormal case
than it does for the exponential or gamma-gamma cases.
Furthermore, for the lognormal case, the slope of the outage
probability curve, when plotted on alog-log scale, will not
converge to a constant value. In fact, a constant slope curve
will only be observed when plotting the outage probability on
a log-(log)2 scale. As we shall see in the next section, this
asymptotic behaviour means that when perfect CSI is also
known at the transmitter, the optimal power control scheme
(subject to long-term power constraints) is able to completely
remove system outages, even for a single laser and aperture
system with single block transmission.

In deriving (15) (see Appendix II-A) we do not rely on
the lognormal approximation4, which has been used on a
number occasions in the analysis of FSO MIMO channels,
e.g. [5], [13], [30]. Under this approximation,H is lognormal
distributed (7) with parametersµ = − log(1+σ2

I/(MN)) and

4This refers to approximating the distribution of the sum of lognormal
distributed random variables as lognormal [42]–[45].
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TABLE I
M INIMUM SIGNAL -TO-NOISE RATIOsnr

awgn
R (IN DECIBELS) FOR

RELIABLE COMMUNICATION FOR TARGET RATER = Rc log2 Q.

Q Rc = 1
4

Rc = 1
2

Rc = 3
4

2 −0.7992 3.1821 6.4109
4 0.2169 4.0598 7.0773
8 1.1579 4.8382 7.7222
16 1.9881 5.5401 8.3107

σ2 = −µ, and we obtain the approximated exponent

d(log snr)2 ≈ 1

8 log(1 +
σ2

I

MN )
(1 + ⌊B (1 − Rc)⌋) . (19)

Comparing (15) and (19) we see that although the lognormal
approximation also exhibits a(log(snr))2 term, it has a differ-
ent slope than the true SNR exponent. The difference is due
to the approximated and true pdfs having different behaviours
in the limit ash → 0. However, for very smallσ2

I < 1, using
log(1 + x) ≈ x (for x < 1) in (15) and (19) we see that they
are approximately equal.

For the special case of single block transmission,B = 1, it
is straightforward to express the outage probability in terms of
the cumulative distribution function (cdf) of the scintillation
random variable, i.e.

Pout(snr, R) = FH

(
√

snr
awgn
R

snr

)

(20)

where FH(h) denotes the cdf ofH , and snr
awgn
R

∆
=

Iawgn,−1(R) denotes the SNR value at which the mutual
information is equal toR. Table I reports these values for
Q = 2, 4, 8, 16 and R = Rc log2 Q, with Rc = 1

4 , 1
2 , 3

4 .
Therefore, forB = 1, we can compute the outage probability
analytically when the distribution ofH is available, i.e., in
the exponential case forM, N ≥ 1 or in the lognormal and
gamma-gamma cases forM, N = 1. In the case of exponential
scintillation we have that

Pout(snr, R) = Γ̄

(

MN,

(

MN(1 + MN)
snr

awgn
R

snr

)
1
2

)

,

(21)
where Γ̄(a, x) , 1

Γ(a)

∫ x

0
ta−1 exp(−t) dt denotes the regu-

larised (lower) incomplete gamma function [37, p.260]. For
the lognormal and gamma-gamma scintillation withMN > 1,
we must resort to numerical methods. This involved applying
the fast Fourier transform (FFT) tofH̃ to numerically compute
its characteristic function, taking it to theMN th power, and
then applying the inverse FFT to obtainfH . This method
yields very accurate numerical computations of the outage
probability in only a few seconds.

Outage probability curves for theB = 1 case are shown
on the left in Fig. 2. For the lognormal case, we see that the
curves do not have constant slope for large SNR, while, for
the exponential and gamma-gamma cases, a constant slope is
clearly visible. We also see the benefits of MIMO, particularly
in the exponential and gamma-gamma cases, where the SNR
exponent has increased from1/2 and1 to 2 and4 respectively.

VI. OUTAGE PROBABILITY ANALYSIS WITH CSIT

In this section we consider the case where the transmitter
and receiver both have perfect CSI knowledge. In this case,
the transmitter determines the optimal power allocation that
minimises the outage probability for a fixed rate, subject
to a power constraint [22]. The results of this section are
based on the application of results from [23] to PPM and the
scintillation distributions of interest. Using these results we
uncover new insight as to how key design parameters influence
the performance of the system. Moreover, we show that large
power savings are possible compared to the CSIR case.

For the short-term power constraint given by (5), the optimal
power allocation is given by mercury-waterfilling at each
channel realisation [23], [46],

pb =
1

h2
b

mmse
−1

(

min

{

Q − 1

Q
,

η

h2
b

})

, (22)

for b = 1, . . . , B where mmse
−1(u) is the inverse-MMSE

function andη is chosen to satisfy the power constraint.5

From [23, Prop. 1] it is apparent that the SNR exponent for
the CSIT case under short-term power constraints is the same
as the CSIR case.

For the long-term power constraint given by (6) the optimal
power allocation is [23]

p =

{

℘,
∑B

b=1 ℘b ≤ s

0, otherwise,
(23)

where

℘b =
1

h2
b

mmse
−1

(

min

{

Q − 1

Q
,

1

ηh2
b

})

, b = 1, . . . , B

(24)
and s is a threshold such thats = ∞ if
lims→∞ ER(s)

[

1
B

∑B
b=1 ℘b

]

≤ P , and

R(s) ,

{

h ∈ R
B
+ :

1

B

B
∑

b=1

℘b ≤ s

}

, (25)

otherwise,s is chosen such thatP = ER(s)

[

1
B

∑B
b=1 ℘b

]

.
In (24), η is now chosen to satisfy the rate constraint

1

B

B
∑

b=1

Iawgn

(

mmse
−1

(

min

{

Q − 1

Q
,

1

ηh2
b

}))

= R (26)

From [23], the long-term SNR exponent is given by

dlt
(log snr) =







dst
(log snr)

1−dst
(log snr)

dst
(log snr) < 1

∞ dst
(log snr) > 1

, (27)

wheredst
(log snr) is the short-term SNR exponent, i.e., the SNR

exponents (15)-(17). Note thatdlt
(log snr) = ∞ implies the

outage probability curve is vertical, i.e. the power allocation
scheme (23) is able to maintain constant instantaneous mutual
information (11). Thus for a given SNR, we define the

5Note that in [23], [46], the minimum in (22) is between1 and η
h2

b

. For

QPPM,mmse(0) = Q−1
Q

(see (14)). Hence we must replace1 with Q−1
Q

.
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Fig. 2. Outage probability curves for the CSIR (left) and CSIT (right) cases withσ2
I = 1, B = 1, Q = 2, Rc = 1/2, snr

awgn
1/2

= 3.18 dB: lognormal
(solid); exponential (dashed); and, gamma-gamma distributed scintillation (dot-dashed),α = 2, β = 3.

maximum rate at which constant mutual information can be
maintained as thedelay-limited capacity [24].

From (27) and (15)-(17), we therefore have the following
corollary.

Corollary 6.1: The delay-limited capacity of the channel
described by (2) with CSIT subject to long-term power con-
straint (6) is zero whenever

MN ≤
{

2 (1 + ⌊B (1 − Rc)⌋)−1 exponential
2

min(α,β) (1 + ⌊B (1 − Rc)⌋)−1 gamma-gamma
.

(28)
For lognormal scintillation, delay-limited capacity is always
nonzero.
Corollary 6.1 outlines fundamental design criteria for nonzero
delay-limited capacity in FSO communications. Single block
transmission (B = 1) is of particular importance given
the slow time-varying nature of scintillation. From (28), to
obtain nonzero delay-limited capacity withB = 1, one
requiresMN > 2 and MN > 2/ min(α, β) for exponential
and gamma-gamma cases respectively. Note that typically,
α, β ≥ 1. Thus a 3 × 1, 1 × 3 or 2 × 2 MIMO system
is sufficient, even under worst case turbulence conditions
(exponential scintillation).

In addition, for the special caseB = 1, the solution (24)
can be determined explicitly since

η =
(

h2
mmse(Iawgn,−1(R))

)−1
=
(

h2
mmse(snr

awgn
R )

)−1
.

(29)
Therefore,

℘opt =
snr

awgn
R

h2
. (30)

Intuitively, (30) implies that for single block transmission,
whenever snr

awgn
R /h2 ≤ s, one simply transmits at the

minimum power necessary so that the received instantaneous
SNR is equal to the SNR threshold (snr

awgn
R ) of the code.

Otherwise, transmission is turned off. Thus an outage occurs

wheneverh <

√

snr
awgn
R

s and hence

Pout(snr, R) = FH

(

√

snr
awgn
R

γ−1(snr)

)

(31)

whereγ−1(snr) is the solution to the equationγ(s) = snr,
i.e.,

γ(s) , snr
awgn
R

∫ ∞

ν

fH(h)

h2
dh, (32)

where ν ,

√

snr
awgn
R

s . Moreover, the snr at which
Pout(R, snr) → 0 is preciselylims→∞ γ(s). In other words,
the minimum long-term average SNR required to maintain a
constant mutual information ofR bits per channel use, denoted
by snr, is

snr
awgn
R = snr

awgn
R

∫ ∞

0

fH(h)

h2
dh = snr

awgn
R E[H−2] (33)

Hence, recalling thatsnr
awgn
R = Iawgn,−1(R), the delay-

limited capacity (under the constraint of PPM) is6

Cd(snr) = Iawgn

(

snr

E[H−2]

)

. (34)

Thus, when the expectationE[H−2] exists, a plot of the delay-
limited capacity versussnr (in dB) will have the same shape as
the mutual information of the non-fading PPM AWGN chan-
nel, only shifted to the right by a factor of−10 log10 E[H−2]
dB.

In the cases where the distribution ofH is known in
closed form, (32) can be solved explicitly, hence yielding
the exact expressions for outage probability (31) and delay-
limited capacity (34). For lognormal distributed scintillation

6Note that a similar expression was derived in [24].
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with B = M = N = 1, we have that

γln(s) =
1

2
snr

awgn
R (1 + σ2

I )4

erfc

(

3 log(1 + σ2
I ) + 1

2 log snr
awgn
R − 1

2 log s
√

2 log(1 + σ2
I )

)

,

(35)

and

CLN
d (snr) = Iawgn

(

snr

(1 + σ2
I )4

)

, (36)

where we have explicitly solved the integrals in (32) and (34)
respectively.

For the exponential case withB = 1, we obtain,

γexp(s) =snr
awgn
R

MN(1 + MN)

(MN − 1)(MN − 2)

Γ̄

(

MN − 2,

√

MN(1 + MN)
snr

awgn
R

s

)

, (37)

and

CExp
d (snr) =

{

Iawgn
(

(MN−1)(MN−2)
MN(1+MN) snr

)

MN > 2

0 otherwise.
(38)

For the gamma-gamma case withB = M = N = 1, γGG(s)
can be expressed in terms of hypergeometric functions, which
are omitted for space reasons. The delay-limited capacity,
however, reduces to a simpler expression7

CGG
d (snr) =

{

Iawgn
(

(α−2)(α−1)(β−2)(β−1)
(αβ)(α+1)(β+1) snr

)

α, β > 2

0 otherwise.
(39)

Fig. 2 (right) compares the outage probability for theB = 1
CSIT case (with long-term power constraints) for each of
the scintillation distributions. ForMN = 1 we see that the
outage curve is vertical only for the lognormal case, since
Cd = 0 for the exponential and gamma-gamma cases. In these
cases one must code over multiple blocks forCd > 0, i.e.
from Corollary 6.1,B ≥ 6 and B ≥ 4 for the exponential
and gamma-gamma cases respectively (withRc = 1/2).
Comparing the CSIR and CSIT cases in Fig. 2 we can see that
very large power savings are possible when CSI is known at
the transmitter. These savings are further illustrated in Table II,
which compares the SNR required to achievePout < 10−5

(denoted bysnr
∗) for the CSIR case, and the long-term average

SNR required forPout → 0 in the CSIT case (denoted bysnr,
which is given by (33)). Note that in the CSIT case, the values
of snr given in the parentheses’ is the minimum SNR required
to achievePout < 10−5, sinceCd = 0 for these cases (i.e.
snr = ∞). From Table II we see that the power saving is at
least around 15 dB, and in some cases as high as 50 dB. We
also see the combined benefits of MIMO and power control,
e.g. atMN = 4, the system is only 3.7 dB (lognormal) to 5.2
dB (exponential) from the capacity of nonfading PPM channel
(snr

awgn
1/2 = 3.18 dB).

7Note that since we assume the normalisationE[H2] = 1, then
R

∞

0
fH(h)

h2 dh = 1
c2

R

∞

0

fGG
H̃

(u)

u2 du, wherec = 1/
q

1 + σ2
I andfGG

H̃
(h)

is defined as in (9) such thatE[H̃] = 1.

TABLE II
COMPARISON OFCSIRAND CSIT CASES WITHB = 1, R = 1/2, Q = 2
σ2

I = 1, α = 2, β = 3. BOTH snr
∗ AND snr ARE MEASURED IN DECIBELS.

lognormal exponential gamma-gamma
MN snr

∗
snr snr

∗
snr snr

∗
snr

1 40.1 15.2 106.2 (56.2) 65.6 (24.5)
2 29.2 9.9 57.9 (17.8) 40.7 12.2
3 24.4 7.9 42.0 11.0 31.7 9.0
4 21.5 6.9 34.1 8.4 26.9 7.5

VII. C ONCLUSION

In this paper we have analysed the outage probability of the
MIMO Gaussian FSO channel under the assumption of PPM
and non-ideal photodetection, for lognormal, exponentialand
gamma-gamma distributed scintillation. When CSI is known
only at the receiver, we have shown that the SNR exponent
is proportional to the number lasers and apertures, times
a channel related parameter (dependent on the scintillation
distribution), times the Singleton bound, even in the cases
where a closed form expression of the equivalent SISO channel
distribution is not available in closed-form. When the scintil-
lation is lognormal distributed, we have shown that the outage
probability is dominated by a(log(snr))2 term, whereas for
the exponential and gamma-gamma cases it is dominated by
a log(snr) term. When CSI is also known at the transmitter,
we applied the power control techniques of [23] to show that
very significant power savings are possible. We showed that
for single block transmission, with optimal power allocation
(subject to long-term power constraints),MN = 3 is sufficient
to completely remove system outages, even in the worst-case
scintillation (exponential).

APPENDIX I
PROOF OFTHEOREM 4.1

Suppose PPM symbols are transmitted over an AWGN
channel, the non-fading equivalent of (2). The received noisy
symbols are given byy =

√
ρx + z, wherex ∈ X ppm (we

have dropped the time indexℓ for brevity of notation).
Using Bayes’ rule [47], the MMSE estimate is

x̂ = E [x|y] =

Q
∑

q=1

eq exp(
√

ρyq)
∑Q

k=1 exp(
√

ρyk)
. (40)

From (40) theith element ofx̂ is

x̂i =
exp(

√
ρyi)

∑Q
k=1 exp(

√
ρyk)

. (41)

Using the orthogonality principle [48]mmse(ρ) =
E
[

‖x− x̂‖2
]

= E[‖x‖2] − E[‖x̂‖2]. Since ‖eq‖2 = 1 for
all q = 1, . . . , Q, then E[‖x‖2] = 1. Due to the symmetry
of QPPM we need only consider the case whenx = e1 was
transmitted. Hence,

mmse(ρ) = 1 −
(

E[x̂2
1] + (Q − 1)E[x̂2

2]
)

. (42)

Now y1 =
√

ρ + z1 and yi = zi for i = 2, . . . , Q, where
zq is a realisation of a random variableZq ∼ N (0, 1) for
q = 1, . . . , Q. Hence, substituting these values in (41) and
taking the expectation (42) yields the result given the theorem.
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APPENDIX II
PROOF OFTHEOREM 5.1

We begin by defining a normalised (with respect to SNR)

fading coefficient,ζm,n
b = − 2 log h̃m,n

b

log snr
, which has a pdf

fζm,n

b
(ζ) =

log snr

2
e−

1
2 ζ log snr fH̃

(

e−
1
2 ζ log snr

)

. (43)

The instantaneous SNR for blockb is given by

ρb = snrh2
b =

(

c

MN

M
∑

m=1

N
∑

n=1

snr

1
2 (1−ζm,n

b )

)2

(44)

for b = 1, . . . , B. Therefore,

lim
snr→∞

Iawgn(ρb) =

{

0 if all ζm,n
b > 1

log2 Q at least oneζm,n
b < 1

= log2 Q (1 − 11{ζb ≻ 1})

where ζb
∆
= (ζ1,1

b , . . . , ζM,N
b ), 11{·} denotes the indicator

function, 1
∆
= (1, . . . , 1) is a 1 × MN vector of 1’s, and

the notationa ≻ b for vectorsa, b ∈ R
k means thatai > bi

for i = 1, . . . , k.
From the definition of outage probability (10), we have

Pout(snr, R) = Pr(Ih(snr) < R) =

∫

A
f(ζ)dζ (45)

whereζ
∆
= (ζ1, . . . , ζB) is a 1×BMN vector of normalised

fading coefficients,f(ζ) denotes their joint pdf, and

A =

{

ζ ∈ R
BMN :

B
∑

b=1

11{ζb ≻ 1} > B (1 − Rc)

}

(46)

is the asymptotic outage set. We now compute the asymptotic
behaviour of the outage probability, i.e.

− lim
snr→∞

log Pout(snr, R) = − lim
snr→∞

log

∫

A
f(ζ)dζ. (47)

A. Lognormal case

From (7) and (43) we obtain the joint pdf,

f(ζ)
.
= exp

(

− (log snr)2

8σ2

B
∑

b=1

M
∑

m=1

N
∑

n=1

(ζm,n
b )2

)

, (48)

where we have ignored terms of order less than(log snr)2 in
the exponent and constant terms independent ofζ in front
of the exponential. Combining (47), (48), and using Varad-
han’s lemma [49],

− lim
snr→∞

log Pout(snr, R)

=
(log snr)2

8σ2
inf
A

{

B
∑

b=1

M
∑

m=1

N
∑

n=1

(ζm,n
b )2

}

The above infimum occurs when anyκ of the ζb vectors are
such thatζb ≻ 1 and the otherB − κ vectors are zero, where

κ is the smallest integer satisfying (46). Hence, it follows that
κ = 1 + ⌊B (1 − Rc)⌋ and thus,

− lim
snr→∞

log Pout(snr, R)

=
(log snr)2

8σ2
MN (1 + ⌊B (1 − Rc)⌋) . (49)

Dividing both sides of (49) by(log snr)2 the SNR expo-
nent (15) is obtained.

B. Exponential case

From (8) and (43) we obtain the joint pdf,

f(ζ)
.
= exp

(

− log snr

MN

2

B
∑

b=1

M
∑

m=1

N
∑

n=1

ζm,n
b

)

, (50)

where we have ignored exponential terms in the exponent and
constant terms independent ofζ in front of the exponential.

Following the same steps as the lognormal case i.e. the
defining the same asymptotic outage set and application of
Varadhan’s lemma [49], the SNR exponent (16) is obtained.

C. Gamma-gamma case

Let us first assumeα > β. From (9) and (43) we obtain the
joint pdf,

fζm,n

b
(ζ)

.
= exp

(

−β

2
ζ log snr

)

, ζ > 0 (51)

for largesnr, where we have used the approximationKν(x) ≈
1
2Γ(ν)(1

2x)−ν for small x andν > 0 [37, p. 375]. The extra
condition, ζ > 0, is required to ensure the argument of the
Bessel function approaches zero assnr → ∞ to satisfy the
requirements of the aforementioned approximation. For the
caseβ > α we need only swapα and β in (51). Hence we
have the joint pdf

f(ζ)
.
= exp

(

−min(α, β) log snr

2

B
∑

b=1

M
∑

m=1

N
∑

n=1

ζm,n
b

)

, ζ ≻ 0.

(52)
Now, following the same steps as in the lognormal and
exponential cases, with the additional constraintζb ≻ 0, the
SNR exponent (17) is obtained
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