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Abstract—Atmospheric effects can significantly degrade the
reliability of free-space optical communications. One sug effect
is scintillation, caused by atmospheric turbulence, refers to
random fluctuations in the irradiance and phase of the receied
laser beam. In this paper we investigate the use of multiple
lasers and multiple apertures to mitigate scintillation. Snce the
scintillation process is slow, we adopt a block fading charel
model and study the outage probability under the assumptios of
orthogonal pulse-position modulation and non-ideal photdetec-
tion. Assuming perfect receiver channel state information(CSl),
we derive the signal-to-noise ratio (SNR) exponents for theases
when the scintillation is lognormal, exponential and gamma
gamma distributed, which cover a wide range of atmospheric
turbulence conditions. Furthermore, when CSI is also avadble
at the transmitter, we illustrate very large gains in SNR are
possible (in some cases larger thari5 dB) by adapting the
transmitted power. Under a long-term power constraint, we
outline fundamental design criteria via a simple expressin that
relates the required number of lasers and apertures for a gign
code rate and number of codeword blocks to completely remove
system outages.

I. INTRODUCTION

REE-space optical (FSO) communication offers an at-
tractive alternative to the radio frequency (RF) chann

for the purpose of transmitting data at very high rates.
utilising a high carrier frequency in the optical range,itib
communication on the order of gigabits per second is passi

In addition, FSO links are difficult to intercept, immune tc%.
interference or jamming from external sources, and are ne
subject to frequency spectrum regulations. FSO communi(f
tions have received recent attention in applications such

satellite communications, fibre-backup, RF-wireless izl
and last-mile connectivity [1].

The main drawback of the FSO channel is the detrimen

effect the atmosphere has on a propagating laser beam.

atmosphere is composed of gas molecules, water vapour, Rol;

lutants, dust, and other chemical particulates that appea
by Earth’s gravitational field. Since the wavelength of

typical optical carrier is comparable to these molecule a

particle sizes, the carrier wave is subject to various pyagian

effects that are uncommon to RF systems. One such effec
scintillation, caused by atmospheric turbulence, and refers
random fluctuations in the irradiance of the received optic

laser beam (analogous to fading in RF systems) [2]-[4].
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Recent works on the mitigation of scintillation concergrat
on the use of multiple-lasers and multiple-apertures tatere
a multiple-input-multiple-output (MIMO) channel [5]-[14
Many of these works consider scintillation as an ergodic
fading process, and analyse the channel in terms of its &rgod
capacity. However, compared to typical data rates, skitith
is a slow time-varying process (with a coherence time on the
order of milliseconds), and it is therefore more appropriat
to analyse the outage probability of the channel. To some
extent, this has been done in the works of [6], [11], [13]H15
In [6], [14] the outage probability of the MIMO FSO channel
is analysed under the assumption of ideal photodetectien (i
a Poisson counting process) with no bandwidth constraints.
Wilson et al. [11] also assume perfect photodetection, but with
the further constraint of pulse-position modulation (PPMe
and Chan [13], study the outage probability under the as-
sumption of on-off keying (OOK) transmission and non-ideal
photodetection, i.e. the combined shot noise and thermsaéno
process is modelled as zero mean signal independent additiv
white Gaussian noise (AWGN). Farid and Hranilovic [15]
extend this analysis to include the effects of pointing exro
In this paper we study the outage probability of the MIMO
SO channel under the assumptions of PPM, non-ideal pho-
%detection, and equal gain combining (EGC) at the receiver

b#n particular, we model the channel as a quasi-static block

ading channel whereby communication takes place over a
|r}ite number of blocks and each block of transmitted sym-
é)_ls experiences an independent identically distribuied.]
ading realisation [16], [17]. We consider two types of CSI
kanowledge. First we assume perfect CSl is available only at
the receiver (CSIR case), and the transmitter knows only the

channel statistics. Then we consider the case when perfect

thgl is also known at the transmitter (CSIT caké&)nder this
/

efr’\nework we study a number of scintillation distributions
ognormal, modelling weak turbulence; exponential, mtiig|
gtrong turbulence; and gamma-gamma [18], which models a
\é\ﬂ'de range of turbulence conditions. For the CSIR case, we
erive signal-to-noise ratio (SNR) exponents, which dbscr
Ehg asymptotic slope of the outage probability as a function
(I;SNR when on a log-log scale. We show that the SNR
exponents are the product of: a channel related parameter,
aependent on the scintillation distribution; the number of
lasers times the number of apertures, reflecting the spatial
diversity; and the Singleton bound [19]-[21], reflecting th

block diversity. For the CSIT case, the transmitter finds the

1Given the slow time-varying scintillation process, CSI ¢anestimated at
the receiver and fed back to the transmitter via a dedicatedtfack link.
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Fig. 1. Block diagram of anV/ x N MIMO FSO system.

optimal power allocation that minimises the outage prolitgbi given codeword of lengttB L undergoes only a finite number
[22]. Using results from [23], we derive the optimal poweB of scintillation realisations [16], [17]. The received s&

allocation subject to short- and long-term power constsainat aperturen, n = 1,..., N can be written as

We show that very large power savings are possible compared "

to the CSIR case. Interestingly, under a long-term power nrg ~ Smon — “n

constraint, we show that delay-limited capacity [24] isaztar Yl = z_:l Ty Vosll] + 210, (1)

exponential and (in some cases) gamma-gamma scintiljation
unless one codes over multiple blocks, and/or uses multigte b = 1,...,B,¢ = 1,..., L, wherey?[(],z}[¢] € R? are
lasers and apertures. the received and noise signals at bldgkime instant¢ and
The paper is organised as follows. In Section I, waperturen, x;[¢], € R? is the transmitted signal at blodk
define the channel model and assumptions. In Section #hd time instan¥, and ﬁg”’" denotes the scintillation fading
we review the lognormal, exponential and gamma-gamroaefficient between lasen and aperture:. Each transmitted
models. Section IV defines the outage probability and pteseBymbol is drawn from a PPM alphabet,[(] € xrrm a
results on the minimum-mean squared error (MMSE). Thew, ... e}, wheree, is the canonical basis vector, i.e., it
in Sections V and VI we present the main results of oWas all zeros except for a one in positign the time slot
asymptotic outage probability analysis for the CSIR andTCSlwhere the pulse is transmitted. The noise samplez'¢f are
cases, respectively. Concluding remarks are then givenjfglependent realisations of a random variadle- A/ (0, 1),
Section VII. Proofs of the various results can be found igandp, denotes the received electrical power of bléck each
the Appendices. aperture in the absence of scintillation. The fading coieffits
;™ are independent realisations of a random varidbleith
Il. SYSTEM MODEL probability density function (pdfy (k).

We consider anM x N MIMO FSO system with M At the receiver, we assume equal gain combining
transmit lasers anV aperture receiver as shown in Fig. 1(EGC) [31] is employed, such that the entire system is
Information data is first encoded by a binary code of te €quivalent to a single-input single-output (SISO) channel
The encoded stream is modulated according t@-ary PPM LN
scheme, resulting in rat® = R.log, @ (bits/channel use). _ nip —

Repetition transmission is employed2 such that the same PPM v/l = VN ;yb = Vislumel] + 2, @
signal is transmitted in perfect synchronism by each ofithe

lasers through an atmospheric turbulent channel and tedlecwhere z,[¢] = ﬁ Zivzl zp[0] ~ N(0,1), andhy, a realisa-

by N receive apertures. We assume the distance betweenttbe of the random variabléd, is defined as the normalised
individual lasers and apertures is sufficient so that spat@mbined fading coefficient, i.e.
correlation is negligible. At each aperture, the receivptical N
signal is converted to an electrical signal via photodétact b ¢ Z Z jman
Non-ideal photodetection is assumed such that the combined "7 MN b
shot noise and thermal noise processes can be modelledas zer

mean, signal independent AWGN (an assumption commonherec = 1/(E[H]+/1 + 07/(MN)) is a constant to ensure
used in the literature, see e.g. [3]-[5], [13], [15], [2536]). E[H?] = 1 ands? is thescintillation index (S), defined as [4]

In FSO communications, channel variations are typically _
much slower than the signalling period. As such, we model o2 L Var(H) 4)
the channel as a non-ergodic block-fading channel, for vhic r= (]E[f[])2 '

®3)

m=1n=1




Thus, the total instantaneous received electrical poweloak where . ando are related to the Sl vig = —log(1 + o?)
bis p, = M2Npy/c?, and the total average received SNR iando? = log(1 + o), where we have assumé@&|H?] = 1.

snr £ E[hZpy] = E[py).2 For exponential distributed scintillation
When perfect CSIl is known only at the receiver (CSIR -
case), we assume the electrical power is distributed umifor f5 (k) = Xexp(—Ah) (8)

over the blocks, i.e.p, = p =snr for b = 1,..., B. When hich q h 4 turbul h
perfect CSl is known at both the transmitter and receivet TCS";"'“" €Orresponds to the super-saturated turbulence, evher

case), we will allocate electrical power in order to improv8l 1. o _
performance. In particular, we will consider the followingp 1€ 9amma-gamma distribution arises from the product of
electrical power constraints two independent Gamma distributed random variables and has

the pdf [18],

B
1 o
Short-term: 5 E pp < P %) e 2(af) 2"
b=1

i <h>=Wh%"—lK(¥_ﬁ<2 aph),  (9)

B
1
Long-term: E lﬁ Zpb <P (6) where K, (x) denotes the modified Bessel function of the
b=1 second kind [37, Ch. 10]. The parametersnd 3 are related

Note that in practical systems, channel estimation erroidth the scintillation index viar} = a~! + 87" + (a3)~".
latency, noise and fading on the feedback link would need to

be addres_sed. To simplify our anal_yS|s we neglec_t thesegssu IV. | NFORMATION THEORETIC PRELIMINARIES
By assuming a perfect feedback link, our analysis serves as a
performance benchmark for practical systems. The channel described by (2) under the quasi-static assump-

Throughout the paper, we will devote special attention tion is not information stable [38] and therefore, the clelnn
the case ofB = 1, i.e., the channel does not vary within acapacity in the strict Shannon sense is zero. It can be shown
codeword. This scenario is relevant for FSO, since, duedo tthat the codeword error probability of any coding scheme is
large data-rates, one is able to transmit millions of biterovlower bounded by the information outage probability [16],
the same channel realisation. We will see that most resuit¥],
admit very simple forms, and some cases, even closed form. Pyui(snr, R) = Pr(I(p,h) < R), (10)

This analysis allows for a system characterisation wheee th
expressions highlight the roles of the key design paramsetewhere R is the transmission rate anf{p, h) is the instan-
taneous input-output mutual information for a given power
1. SCINTILLATION DISTRIBUTIONS allocationp = (py,...,pp), and vector channel realisation

h £ (hy,...,hp). The instantaneous mutual information can
The distribution of the irradiance fluctuations is deper’ndeBe e>(<p1r’esséd E;?S [39]

on the strength of the optical turbulence. Under weak tur-

bulence conditions, the fluctuations are generally comsitle 1 E
to be lognormal distributed, and for very strong turbulence I(p,h) = B Zfawgn(pbhﬁ), (11)
exponential distributed [2], [32]. For moderate turbulenthe b=1

distribution of t.he_flu<.:tuations is not well understood, ang/herelawg“(p) is the input-output mutual information of an
a number of distributions have been proposed, such as KW/ -
. o GN channel with SNRo. For PPM [25]

lognormal-Rice distribution [4], [18], [33]-[35] (also kwn
as the Beckmann distribution [36]) and K-distribution [33] I2Ven (p) =
In [18], Al-Habashet al. proposed a gamma-gamma dis- 0
tribution as a general model for _aII levels of atmospheric log, @ — E |log, 1+Ze—p+\/ﬁ(zq—zl) . (12)
turbulence. Moreover, recent work in [35] has shown that the
gamma-gamma model is in close agreement with experimen-
tal measurements under moderate-to-strong turbulenagi-cowhere Z, ~ N'(0,1) forg=1,...,Q.
tions. In this paper we focus on lognormal, exponential, andFor the CSIT case we will use the recently discovered
gamma-gamma distributed scintillation, which are desctib relationship between mutual information and the MMSE [40].
as follows. This relationship states tiat

For lognormal distributed scintillation,

q=2

d wen mmse(p
N 1 2 12 P ﬁéﬁ (13)
wheremmse(p) is the MMSE in estimating the input from the
2For optical channels with ideal photodetection, the noisaibnE[H] = output of a Gaussian channel as a function of the $INRor

1 is commonly used to keep optical power constant. We assumedeal PPM. we have the foIIowing result

photodetection and work entirely in the electrical domaiance, we chose the ’

normalisationE[H?] = 1, used commonly in RF fading channels. However,

since we consider only the asymptotic behaviour of the autagbability, 3Thelog(2) term arises because we have defid@ts” (p) in bits/channel
the specific normalisation is irrelevant and does not aftectresults. usage.



Theorem 4.1: The MMSE for PPM on the AWGN channeland the Singleton bound, which is the optimal rate-diversit
with SNR p is tradeoff for Rayleigh-faded block fading channels [191H[2
Comparing the channel related parameters in (15)-(17) the
e2VPWPtZ1) 4 (Q — 1)e2VPZ2 effects of the scintillation distribution on the outage Ipability
| (4 are directly visible. For the lognormal case, the chanriated
z Q z '
(eﬁ‘/ﬁ LY eV? ’“) parameter is$ log(1 + %) and hence is directly linked to the
where Zi ~ N(0,1) for i = 1,....Q. gkug/loreover, tfpr_smally?I <1, 810t'g(1 Ttaft)thSIo—%: ant(;l1 the
Proof: See Appendix . _elxponenhls |rrl1verse|y plropgr ional to the Sl. For theoexp
hat both (12) and (14) can be evaluated using standaye tial case, the channel related parameter is a corlsfaats
M(l)\lnc:ﬁ(garlo methods a ected, since the Sl is constant. For the gamma-gamma case
' the channel related parametenisu(a, 5)/2, which highlights
an interesting connection between the outage probabitity a
V. OUTAGE PROBABILITY ANALYSIS WITH CSIR recent results in the theory of optical scintillation. Fangma-
For the CSIR case, we employ uniform power allocatiof@mma distributed scintillation, the fading coefficiensuks
i.e.p1 = ... = pgp = snr. For codewords transmitted overfrom the product of two independent random variables, i.e.
B blocks, obtaining a closed form analytic expression fof = XY, where X andY model fluctuations due to large
the outage probability is intractable. Even fér = 1, in scale and small scale cells. Large scale cells cause reéract
some cases, for example the lognormal and gamma-gam@ff&cts that mainly distort the wave front of the propaggtin
distributions, determining the exact distribution/@fcan be a beam, and tend to steer the beam in a slightly different
difficult task. Instead, as we shall see, obtaining the asgtigpp direction (i.e. beam wander). Small scale cells causeesoagt
behaviour of the outage probab|||ty is Substantia”y Smp| by diffraction and therefore distort the amplitude of thevera
Towards this end, and following the footsteps of [21], [411through beam spreading and irradiance fluctuations [4, @]. 16
we derive theSNR exponent. The parameters, 5 are related to the large and small scale
Theorem 5.1: The outage SNR exponents for a MIMO FSdluctuation variances via = o and 8 = o;,°. For a plane

communications system modelled by (2) are given as followd¥ave (neglecting inner/outer scale effects) > 0%, and
MN as the strength of the optical turbulence increases, thdl sma

mmse(p) =1—E

d(nggsm)z = Tl o7 (14 |B(1—R.)]) (15) ;calc_a fluctuations dominate ant%l — 1 [4, p. 336]. This
M(]’%( +07) implies that the SNR exponent is exclusively dependent on

‘(Ellcgsm) == (1+|B1-R)|), (16) the sm_all sca;le fluctuations. Moreover, und_er;tro_ng tieproee
AN conditions,sy — 1, the gamma-gamma distribution reduces
dg’fgsm) == min(e, ) (14 |B(1-R.)]), (17) to a K-distribution [4, p. 368], and the system has the same

SNR exponent as the exponential case typically used to model
for lognormal, exponential, and gamma-gamma cases respggntillation in very strong turbulence conditions.
tively, where R, = R/ log,(Q) is the rate of the binary code In comparing the lognormal exponent with the other cases,
and we observe a striking difference. For the lognormal case (15
1og Pyt (snr, R) implies the outage probability is dominated b)(lag(sn.r))? .
k=1,2. (18) term, whereas for exponential and gamma-gamma scirtitiati
it is dominated by dog(snr) term. Thus the outage probability
Proof: See Appendix II. B decays much more rapidly with SNR for the lognormal case
Proposition 5.1: The outage SNR exponents given in Thethan it does for the exponential or gamma-gamma cases.
orem 5.1, are achievable by random coding over PPM copgrthermore, for the lognormal case, the slope of the outage

A .
d(1og snryk = — snl.—lgloo (log snr)*

stellations wheneveB (1 — R.) is not an integer. probability curve, when plotted on lg-log scale, will not
Proof: The proof follows from the proof of Theorem 5.1converge to a constant value. In fact, a constant slope curve
and the proof of [21, Th. 1]. B will only be observed when plotting the outage probability o

The above proposition implies that the outage exponerisog-(log)? scale. As we shall see in the next section, this
given in Theorem 5.1 are the optimal SNR exponents ovgsymptotic behaviour means that when perfect CSl is also
the channel, i.e. the outage probability is a lower bound fgmown at the transmitter, the optimal power control scheme
the error probability of any coding scheme, its correspoadi (subject to long-term power constraints) is able to coneyet
exponents (given in Theorem 5.1) are an upper bound to thgnove system outages, even for a single laser and aperture
exponent of coding schemes. From Proposition 5.1, we cgjstem with single block transmission.
achieve the outage exponents with a particular coding sehem|n deriving (15) (see Appendix II-A) we do not rely on
(random coding, in this case), and therefore, the exponientghe |ognormal approximatidn which has been used on a
Theorem 5.1 are optimal. number occasions in the analysis of FSO MIMO channels,

From (15)-(17) we immediately see the benefits of spatialg. [5], [13], [30]. Under this approximatiod is lognormal
and block diversity on the system. In particular, each e@pon distributed (7) with parameteys= — log(1+02/(MN)) and
is proportional to: the number of lasers times the number of

apertures, reflegting the spatial diverSiFy;. a .Channell'@dla 4This refers to approximating the distribution of the sum ofrformal
parameter that is dependent on the scintillation distidiogt distributed random variables as lognormal [42]-[45].



TABLE |

MINIMUM SIGNAL -TO-NOISE RATIOsnr " (IN DECIBELS) FOR VI. OUTAGE PROBABILITY ANALYSIS WITH CSIT

RELIABLE COMMUNICATION FOR TARGET RATER = R.1 . . . . .
clog2 @ In this section we consider the case where the transmitter

and receiver both have perfect CSI knowledge. In this case,

=1 =1 =3 ; ; . .

Q@ HRe=3 Re=p HRe=3 the transmitter determines the optimal power allocaticat th
2 —0.7992 3.1821  6.4109 minimises the outage probability for a fixed rate, subject
4 02169  4.0598  7.0773 > . )

8 11579 48382  7.7922 to a power constraint [22]. The results of this section are
16 1.9881  5.5401  8.3107 based on the application of results from [23] to PPM and the

scintillation distributions of interest. Using these riégsuve
uncover new insight as to how key design parameters influence

o2 = —u, and we obtain the approximated exponent the performance of the system. Moreover, we show that large
power savings are possible compared to the CSIR case.
d(log snr)y ~ ;2 (1+|B(1—-R)]). (19) For the short-term power constraint given by (5), the optima
8log(1 + 12—5\,) power allocation is given by mercury-waterfilling at each

. channel realisation [23], [46],
Comparing (15) and (19) we see that although the lognormal

approximation also exhibits @og(snr))? term, it has a differ- Dy = immse” (min { Q-1 i}) 22)
ent slope than the true SNR exponent. The difference is due h? Q ' h} ’

to the approximated and true pdfs having different behasiOL*
in the limit ash — 0. However, for very smalb? < 1, using fa
log(1 + ) = x (for z < 1) in (15) and (19) we see that theyF
are approximately equal.

For the special case of single block transmissiBn: 1, it
is straightforward to express the outage probability imeof
the cumulative distribution function (cdf) of the scirailion
random variable, i.e.

rb=1,...,B where mmse!(u) is the inverse-MMSE
nction andn is chosen to satisfy the power constraint.
rom [23, Prop. 1] it is apparent that the SNR exponent for
the CSIT case under short-term power constraints is the same
as the CSIR case.

For the long-term power constraint given by (6) the optimal
power allocation is [23]

snrip et _{® Zf:l oo < 8 (23)
Poui(snr,R) = Fy < sj:r ) (20) b= 0, otherwise,
A where

where Fy(h) denotes the cdf ofH, and snrip™®" = 1 O—1 1
1*vem—1(R) denotes the SNR value at which the mutual p, = —mmse ' (min{ ~——,— 4], b=1,...,B
. N hj Q " nh
information is equal toR. Table | reports these values for (24)
Q = 24,816 and R = Rclog, @, with Re = 1.5.7. and s is a threshold such thats = oo if

n
Therefore, forB =1, we can C(_)mpute t.he ou_tage pr_obat_nht)ﬁms_}oo Ers) [% 22921 pb} <P, and
analytically when the distribution off is available, i.e., in

the exponential case far/, N > 1 or in the lognormal and 1B
gamma-gamma cases fof, N = 1. In the case of exponential R(s) = {h c Rf ‘g Z op < S} ) (25)
scintillation we have that b=1

B awgn\ 3 . . o 1 B
Po(snt, R) =T (MN, (MN(l Jr]\/ﬂv)snrﬂ ) ) ’ otherwise,s is chosen such thaP = Eg(,) {B ) pb}.

snr In (24), n is now chosen to satisfy the rate constraint
(21) .

whereI'(a,z) £ = ["t* Lexp(—t)dt denotes the regu- 1 awgn af Q-1 1
. ’ . T(a) Jo . — » I*™E - — =R (26
larised (lower) incomplete gamma function [37, p.260]. For B ; mmse i Q ' nh? (26)
the lognormal and gamma-gamma scintillation withV > 1, B o

we must resort to numerical methods. This involved applying From [23], the long-term SNR exponent is given by

the fast Fourier transform (FFT) tf; to numerically compute &l o 5t

its characteristic function, taking it to th&/ Nth power, and it _ )T, “(ogsnn) <1 27)

then applying the inverse FFT to obtajfy;. This method (log snr) 0o E > 1

yields very accurate numerical computations of the outage (log snr)

probability in only a few seconds. wheredj, . is the short-term SNR exponent, i.e., the SNR
Outage probability curves for th® = 1 case are shown exponents (15)-(17). Note thaf&ogsm) = oo implies the

on the left in Fig. 2. For the lognormal case, we see that toeitage probability curve is vertical, i.e. the power alkima
curves do not have constant slope for large SNR, while, fecheme (23) is able to maintain constant instantaneousaiutu
the exponential and gamma-gamma cases, a constant slopefamation (11). Thus for a given SNR, we define the
clearly visible. We also see the benefits of MIMO, particiylar

in the exponential and gamma-gamma cases, where the SNflote that in [23], [46], the minimum in (22) is betwednand ag- For
exponent has increased fram2 and1 to 2 and4 respectively. QPPM, mmse(0) = % (see (14)). Hence we must replatevith %.
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Fig. 2. Outage probability curves for the CSIR (left) and T8light) cases withv? = 1, B =1, Q = 2, R. = 1/2, snr?%g" = 3.18 dB: lognormal
(solid); exponential (dashed); and, gamma-gamma disétbscintillation (dot-dashed}y = 2, 8 = 3.
maximum rate at which constant mutual information can hgheneverh < 5“’??@“ and hence
maintained as theelay-limited capacity [24].
From (27) and (15)-(17), we therefore have the following opraven
corollary. Pous(snr, R) = Fy ( %) (31)
Corollary 6.1: The delay-limited capacity of the channel oo
described by (2) with CSIT subject to long-term power con- ] ] .
straint (6) is zero whenever Wherew_l(snr) is the solution to the equatiof(s) = snr,
ie.,
. -1 ; . > h
MN < 2 (12+ |B(1—-R.)|) 3 exponential 2(s) & Snr%wgn/ fh}rlg ) dh. (32)
e L+ B - R.)|) gamma-gamma v
(28)
For lognormal scintillation, delay-limited capacity isnays where » 2 =" Moreover, the snr at which

S

nonzero. P,y (R,snr) — 0 is preciselylim,_o, v(s). In other words,
Corollary 6.1 outlines fundamental design criteria for b@r the minimum long-term average SNR required to maintain a
delay-limited capacity in FSO communications. Single klocconstant mutual information d® bits per channel use, denoted
transmission B = 1) is of particular importance given by snr, is

the slow time-varying nature of scintillation. From (28 t

obtain nonzero delay-limited capacity with = 1, one  __awen  awen [ JH(R) . awenmigr—2
requiresM N > 2 and MN > 2/ min(a, 8) for exponential ~ °"'R T "R /0 pr A =snry EHTT (39
and gamma-gamma cases respectively. Note that typically,

a,8 > 1. Thus a3 x 1, 1 x 3 or 2 x 2 MIMO system Hence, recalling thasnry’®" = I*ve%~1(R), the delay-

is sufficient, even under worst case turbulence conditiolisited capacity (under the constraint of PPM§ is

(exponential scintillation).
awgn snr
Cy(snr) = I*V8 (IE[HQ]) .

In addition, for the special casB = 1, the solution (24)
Thus, when the expectatidi{ H —2] exists, a plot of the delay-

) e ) (34)
can be determined explicitly since

n= (h2mmse(Ia‘”g“’*1(1‘%)))71 = (h2mmse(snrj{{vgm))71

(Zé) limited capacity versusnr (in dB) will have the same shape as
Therefore, the mutual information of the non-fading PPM AWGN chan-
awgn nel, only shifted to the right by a factor ef10log,, E[H ~2]
OOt — Snth2 . (30) dB.

In the cases where the distribution &f is known in
Intuitively, (30) implies that for single block transmiesi, Closed form, (32) can be solved explicitly, hence yielding
wheneversnr¥8 /b2 < s, one simply transmits at the the exact expressions for outage probability (31) and delay
minimum power necessary so that the received instantaned{fited capacity (34). For lognormal distributed scirztibn
SNR is equal to the SNR thresholdn(;;"*") of the code.

Otherwise, transmission is turned off. Thus an outage @ccur®Note that a similar expression was derived in [24].



. TABLE I
with B = M = N = 1, we have that COMPARISON OFCSIRAND CSITCASESWITHB =1, R=1/2, Q = 2
In 1 awen o4 02 =1, =2, 8= 3. BOTHsnr* AND SAr ARE MEASURED IN DECIBELS
7" (s) = SR (1 +07)

2 1 awgn 1 lognormal exponential gamma-gamma
rfc <310g(1 + 1) 1 5 oy 7 5logs MN  snr*  SAF  snr* saF snr* snr
2log(1 + 07) 1 401 152 1062 (56.2) 656  (24.5)
(35) 2 292 99 579 (17.8) 407 12.2
3 244 79 420 110 317 9.0
and 4 215 69 341 84 269 7.5
snr
CLN — Jawen 36
d (Snr) ((1_"_0_%)4) ? ( )
where we have explicitly solved the integrals in (32) and) (34 VII. CONCLUSION
respectively. . _ . In this paper we have analysed the outage probability of the
For the exponential case with = 1, we obtain, MIMO Gaussian FSO channel under the assumption of PPM
XD (5) e MN(1+ MN) and non-ideal photodetection, for lognormal, exponerairad
VoS =R (MN —1)(MN —2) gamma-gamma distributed scintillation. When CSI is known

S . . .
e is proportional to the number lasers and apertures, times
a channel related parameter (dependent on the scintillatio

- awgn only at the receiver, we have shown that the SNR exponent
r <MN—2, \/MN(1+MN) ) (37)

and distribution), times the Singleton bound, even in the cases
Jawen ((MN—l)(MN—Q) Snr) MN > 2 vv_here a.closed form e?<pres§ion of the equivalent SISO gﬂlanne
C*P(snr) = { MN(1+MN) _ distribution is not available in closed-form. When the §i€in
otherwise. lation is lognormal distributed, we have shown that the geta

(38)  probability is dominated by #log(snr))? term, whereas for
For the gamma-gamma case with= M = N =1, 79%(s) the exponential and gamma-gamma cases it is dominated by
can be expressed in terms of hypergeometric functions,iwhig 1og(snr) term. When CSl is also known at the transmitter,
are omitted for space reasons. The delay-limited capacifye applied the power control techniques of [23] to show that
however, reduces to a simpler expres$ion very significant power savings are possible. We showed that
Jawen ((a72)(a71)(ﬁ72)(ﬁ71)snr) 08> 2 for single block transmission, with optimal power allocati
CSC(snr) = { ’

(ef)(e+1)(A+1) ”  (subject to long-term power constraint8),N = 3 is sufficient
otherwise. to completely remove system outages, even in the worst-case

. . . (39)  scintillation (exponential).
Fig. 2 (right) compares the outage probability for the= 1

CSIT case (with long-term power constraints) for each of APPENDIX |
the scintillation distributions. FoA/N = 1 we see that the PROOF OFTHEOREM 4.1
outage curve is vertical only for the lognormal case, smceSuppose PPM symbols are transmitted over an AWGN

Ca = 0 for the exponential and gamma-gamma cases._ln thec eannel, the non-fading equivalent of (2). The receivedyoi
cases one must code over multiple blocks €&y > 0, i.e.

i — ppm
from Corollary 6.1,B > 6 and B > 4 for the exponential symbols are given by = \/px + 2, wherez € ¥ (we

and gamma-gamma cases respectively (with — 1/2) have dropped the time indéexfor brevity of notation).
Comparing the CSIR and CSIT cases in Fig. 2 we can see tha%JSIng Bayes’ rule [47], the MMSE estimate is

very large power savings are possible when CSl is known at . eq exp(y/PYq)

the transmitter. These savings are further illustratechinl & 11, & =E[zly] = Z Q . (40)
which compares the SNR required to achigRg, < 10~° a=1 2i=1 XP(V/PYk)

(denoted bynr*) for the CSIR case, and the long-term averagerom (40) theith element ofz is

SNR required forP,,; — 0 in the CSIT case (denoted Byr, ) exp(y/pyi)

which is given by (33)). Note that in the CSIT case, the values Ii = =g : : (41)
of st given in the parentheses’ is the minimum SNR required =1 exp(v/PYr)

to achieveP,,; < 1075, sinceC; = 0 for these cases (i.e. Using the orthogonality principle [48]mmse(p) =
AT = oo). From Table Il we see that the power saving is & [||z — &[|?] = E[||z||*] — E[[|&]?]. Since|le,||* = 1 for
least around 15 dB, and in some cases as high as 50 dB. &lleg = 1,...,Q, thenE[||z||?] = 1. Due to the symmetry
also see the combined benefits of MIMO and power contraif QPPM we need only consider the case wheg- e; was
e.g. atM N = 4, the system is only 3.7 dB (lognormal) to 5.2ransmitted. Hence,

dB (exponential) from the capacity of nonfading PPM channel

(Snréll‘/Nan = 3.18 dB). mmse(p) =1- (E[‘%%] + (Q - 1)E[£§]) : (42)

Now y1 = \/p+ 21 andy; = z fori = 2,...,Q, where

"Note that since we assume the normalisatiBfff?2] = 1, then z, is a realisation of a random variablg, ~ N(0,1) for
Joo 2P gp = L [ fﬁu;”) du, wherec = 1/,/1+ 0% and fS%(h) ¢ = 1,...,Q. Hence, substituting these values in (41) and

is defined as in (9) such th&H] = 1. taking the expectation (42) yields the result given the teeo



APPENDIXII
PROOF OFTHEOREMS5.1

We begin by defining a normalised (with respect to SNR)

2log E;n’"
logsnr !

fading coefficient(, " = — which has a pdf

fg (<) log snr _%Clogsnr fH (e—%Clogsnr) )
2

The instantaneous SNR for bloékis given by

2
pb = snrhg = < Z anr 1— C;” n ) (44)

m=1n=1
forb=1,..., B. Therefore,
0 ifall ¢;"" >1

{1og2 Q atleaston&;"" <1
=log, Q (1 — 1{¢, >~ 1})

where ¢, 2 (¢, ¢MY), 1{-} denotes the indicator
function, 1 £ (1,...,1) is al x MN vector of 1's, and
the notationa > b for vectorsa, b € R* means that; > b;
fori=1,...,k.

From the definition of outage probability (10), we have

(43)

l
2

MN

lim T*V8%(pp) =

snr—oo

Paws (50, B) = Pr(ln(sn) < R) = [ f(¢)ac  (49)
A

where( 2 (¢y,-.-,¢p) isal x BMN vector of normalised
fading coefficientsf(¢) denotes their joint pdf, and

| o

B
¢CeRPMN:N"1{¢, - 1} > B(1 - R)
b=1

is the asymptotic outage set. We now compute the asymptcﬁ

behaviour of the outage probability, i.e.

— lim log Pout(snr, R) =

snr—oo

— lim log
snr—oo

/mwmn
A

A. Lognormal case
From (7) and (43) we obtain the joint pdf,

YD) PP WL

b=1 m=1n=1

log snr)?
802

f(©) iexr><

) , (48)

where we have ignored terms of order less tliag snr)? in
the exponent and constant terms independeng afi front

of the exponential. Combining (47), (48), and using Varad[s]

han’s lemma [49],

— lim log Pyyi(snr, R)

o {23 S

b=1 m=1n=1
The above infimum occurs when aryof the ¢, vectors are
such that¢, > 1 and the otheB — x vectors are zero, where

_ (logsnr)?
802

k is the smallest integer satisfying (46). Hence, it follolwatt
k=1+|B(1- R.)] and thus,
— lim log Pyyt(snr, R)

B (logsnr)?

802
Dividing both sides of (49) by(logsnr)? the SNR expo-
nent (15) is obtained.

MN(1+[B(1-R)|). (49

B. Exponential case
From (8) and (43) we obtain the joint pdf,

ZZZ<

=1 m=1n=1

f(¢) =exp (—logsnr ) ,  (50)
where we have ignored exponential terms in the exponent and
constant terms independent ¢fin front of the exponential.
Following the same steps as the lognormal case i.e. the
defining the same asymptotic outage set and application of
Varadhan’s lemma [49], the SNR exponent (16) is obtained.

C. Gamma-gamma case

Let us first assume: > 5. From (9) and (43) we obtain the
joint pdf,
N B
femn () = exp —§Clogsnr , ¢>0 (51)
for largesnr, where we have used the approximation(z) ~
1T (v)(32)~ for smallz andv > 0 [37, p. 375]. The extra
condition, ¢ > 0, is required to ensure the argument of the
Bessel function approaches zerosas — oo to satisfy the
requirements of the aforementioned approximation. For the
seﬁ > o we need only swap and 3 in (51). Hence we
ave the joint pdf
) , ¢>0.

(52)
Now, following the same steps as in the lognormal and
exponential cases, with the additional constrgint- 0, the
SNR exponent (17) is obtained

InlIl

1ogsnr Z Z ZC

b=1m=1n=1

f(C)éeXp<
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