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Abstract: We study the information rates of noncoherent, stationary, Gaussian, and multiple-input
multiple-output (MIMO) flat-fading channels that are achievable with nearest neighbor decoding
and pilot-aided channel estimation. In particular, we investigate the behavior of these achievable
rates in the limit as the signal-to-noise ratio (SNR) tends to infinity by analyzing the capacity pre-log,
which is defined as the limiting ratio of the capacity to the logarithm of the SNR as the SNR tends to
infinity. We demonstrate that a scheme estimating the channel using pilot symbols and detecting the
message using nearest neighbor decoding (while assuming that the channel estimation is perfect)
essentially achieves the capacity pre-log of noncoherent multiple-input single-output flat-fading
channels, and it essentially achieves the best so far known lower bound on the capacity pre-log of
noncoherent MIMO flat-fading channels. Extending the analysis to fading multiple-access channels
reveals interesting relationships between the number of antennas and Doppler bandwidth in the
comparative performance of joint transmission and time division multiple-access.

Keywords: achievable rates; fading; high signal-to-noise ratio (SNR); mismatched decoding;
multiple-access channels; multiple antennas; nearest neighbor decoding; noncoherent; pilot-aided
channel estimation

1. Introduction

The capacity of coherent multiple-input multiple-output (MIMO) channels increases with the
signal-to-noise ratio (SNR) as min(nt, nr) logSNR, where nt and nr are the number of transmit and
receive antennas, respectively, and SNR denotes the SNR per receive antenna [1,2]. The growth factor
min(nt, nr) is sometimes referred to as the capacity pre-log [3] or spatial multiplexing gain [4–6].
This capacity growth can be achieved using a nearest neighbor decoder which selects the codeword
that is closest (in Euclidean distance) to the channel output. In fact, for coherent fading channels with
additive Gaussian noise, this decoder is the maximum-likelihood decoder and is therefore optimal
in the sense that it minimizes the error probability (see [7] and references therein). The coherent
channel model assumes that there is a genie that provides the exact fading coefficients to the decoder,
an assumption that is difficult to achieve in practice. In this paper, we replace the role of the genie by
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a scheme that estimates the fading coefficients via pilot symbols. This can be viewed as a particular
coding strategy over a noncoherent fading channel, i.e., a channel where both communication ends
do not have access to fading coefficients but may be aware of the fading statistics. Please note that
with imperfect fading estimation, the nearest neighbor decoder that treats the fading estimate as if it
were perfect is not necessarily optimal. Nevertheless, we show that in some relevant cases, nearest
neighbor decoding with pilot-aided channel estimation achieves the capacity pre-log of noncoherent
fading channels. (For noncoherent channels, the capacity pre-log is defined as the limiting ratio of the
capacity to the logarithm of the SNR as the SNR tends to infinity.)

The capacity of noncoherent fading channels has been studied in several works. Building upon [8],
Hassibi and Hochwald [9] studied the capacity of the block-fading channel and used pilot symbols (also
known as training symbols) to obtain reasonably accurate fading estimates. Jindal and Lozano [10]
provided tools for a unified treatment of pilot-based channel estimation in both block and stationary
fading channels with bandlimited power spectral densities. In these works, lower bounds on the
channel capacity were obtained. Lapidoth [3] studied a single-input single-output (SISO) fading
channel for more general stationary fading processes and showed that depending on the predictability
of the fading process, the capacity growth in SNR can be, inter alia, logarithmic or double logarithmic.
The extension of [3] to multiple-input single-output (MISO) fading channels can be found in [11].
A lower bound on the capacity of stationary MIMO fading channels was derived by Etkin and Tse
in [12]. With a view to next-generation (5G and beyond) communication networks, there has been
an interest in capacity analyses of noncoherent massive MIMO channels with the vast majority of
attempts focusing on the block-fading model [13–15].

Lapidoth and Shamai [16] and Weingarten et al. [17] studied noncoherent stationary fading
channels from a mismatched-decoding perspective. In particular, they studied the achievable rates of
Gaussian codebooks and nearest neighbor decoding. In both works, it is assumed that there is a genie
that provides imperfect estimates of the fading coefficients.

In this work, we add the estimation of the fading coefficients to the analysis. In particular,
we study a communication system where the transmitter emits pilot symbols at regular intervals,
and where the receiver separately performs channel estimation and data detection. More precisely, based
on the channel outputs corresponding to pilot transmissions, the channel estimator produces estimates
of the fading coefficients for the remaining time instants using a linear minimum mean-squared error
(LMMSE) interpolator. Using these estimates, the data detector employs a nearest neighbor decoder
that detects the transmitted message. We study the achievable rates of this communication scheme at
high SNR. In particular, we study the pre-log for fading processes with bandlimited power spectral
densities. (The pre-log is defined as the limiting ratio of the achievable rate to the logarithm of the SNR
as the SNR tends to infinity.)

For SISO fading channels, using simplifying arguments, Lozano [18] and Jindal and Lozano [10]
showed that this scheme achieves the capacity pre-log. In particular, they express the achievable
rates of this scheme in terms of the capacity of a fading channel whose SNR is reduced due to the
imperfect channel estimation; (cf. [10], Equation (17)). Their expression ([10], Equation (21)) for the
estimation error is based on the assumption that channel estimation is performed using infinitely
many pilot symbols. However, obtaining ([10], Equation (17)) from the provided references is not
straightforward, since it requires a limiting argument where both the codeword length and the number
of pilot symbols tend to infinity in a controlled manner. The analysis is further complicated by the
fact that for a given number of pilot symbols, the estimation error of the LMMSE interpolator is not
stationary but cyclo-stationary, and it becomes stationary only as the number of pilot symbols tends
to infinity. In this paper, we prove this result without any simplifying assumptions and extend it to
MIMO fading channels. We show that the maximum rate pre-log with nearest neighbor decoding and
pilot-aided channel estimation is given by the capacity pre-log of the coherent fading channel times
the fraction of time used for the transmission of data. Hence, the loss with respect to the coherent case
is solely due to the transmission of pilots used to obtain accurate fading estimates. If the inverse of
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twice the bandwidth of the fading process is an integer, then for MISO channels, the above scheme
achieves the capacity pre-log derived by Koch and Lapidoth [11]. For MIMO channels, the above
scheme achieves the best so far known lower bound on the capacity pre-log obtained in [12]. The proof
steps followed in this paper apply also to other pilot-assisted communication strategies and can be
mimicked to perform rigorous analyses of their achievable rates; see, e.g., [19–22].

The rest of the paper is organized as follows. Section 2 describes the channel model and introduces
our transmission scheme along with nearest neighbor decoding and pilots for channel estimation.
Section 3 defines the pre-log and presents the main result. Section 4 extends the use of our scheme
to a fading multiple-access channel (MAC). Sections 5 and 6 provide the proofs of our main results.
Section 7 summarizes the results and concludes the paper.

2. System Model and Transmission Scheme

We consider a discrete-time MIMO flat-fading channel with nt transmit antennas and nr receive
antennas. Thus, the channel output at time instant k ∈ � (where � denotes the set of integers) is the
complex-valued nr-dimensional random vector given by

Yk =

√
SNR

nt
Hkxk + Zk. (1)

Here xk ∈ �nt denotes the time-k channel input vector (with � denoting the set of complex numbers),
Hk denotes the (nr × nt)-dimensional random fading matrix at time k, and Zk denotes the nr-variate
random additive noise vector at time k.

The noise process {Zk, k ∈ �} is a sequence of independent and identically distributed (i.i.d.)
complex-Gaussian random vectors with zero mean and covariance matrix Inr , where Inr is the nr × nr

identity matrix. SNR denotes the average SNR for each received antenna. The fading process
{Hk, k ∈ �} is stationary, ergodic, and complex-Gaussian. We assume that the nr · nt processes
{Hk(r, t), k ∈ �}, r = 1, . . . , nr, t = 1, . . . , nt are independent and have the same law, with each process
having zero mean, unit variance, and power spectral density fH(λ), − 1

2 ≤ λ ≤ 1
2 . The assumption that

the fading processes are independent is realistic for data transmission over a rich uniform scattering
environment when both transmit and receive antennas have sufficient separation to ensure independent
signal paths that translate into spatially-independent fading coefficients. The power spectral density
fH(·) is a nonnegative (measurable) function satisfying

E [Hk+m(r, t)H∗k (r, t)] =
∫ 1/2

−1/2
ei2πmλ fH(λ)dλ (2)

where (·)∗ denotes complex conjugation, and where i ,
√
−1. We assume that fH(·) has bandwidth

λD < 1/2, i.e., λD is the smallest value such that fH(λ) = 0 for almost every |λ| > λD. We finally
assume that the fading process {Hk, k ∈ �} and the noise process {Zk, k ∈ �} are independent and
that their joint law does not depend on {xk, k ∈ �}.

The transmission involves both codewords and pilots. The former conveys the message to be
transmitted, and the latter are used to facilitate the estimation of the fading coefficients at the receiver.
We denote a codeword conveying a message m, m ∈ M at rate R (whereM =

{
1, . . . , benRc

}
is the

set of possible messages, and where bbc denotes the largest integer smaller than or equal to b) by the
length-n sequence of input vectors x̄1(m), . . . , x̄n(m). The codeword is selected from the codebook C,
which is drawn i.i.d. from an nt-variate complex-Gaussian distribution with zero mean and identity
covariance matrix, so

1
n

n

∑
k=1

E
[
‖X̄k(m)‖2

]
= nt, m ∈ M (3)

where ‖ · ‖ denotes the Euclidean norm.
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To estimate the fading matrix, we transmit orthogonal pilot vectors. The pilot vector pt ∈ �nt used
to estimate the fading coefficients corresponding to the t-th transmit antenna is given by pt(t) = 1 and
pt(t′) = 0 for t′ 6= t. For example, the first pilot vector is p1 = (1, 0, · · · , 0)T, where (·)T denotes the
transpose. To estimate the whole fading matrix, we thus need to send the nt pilot vectors p1, . . . , pnt .

The transmission scheme is as follows. Every L time instants (for some L ∈ �, where � is the
set of positive integers), we transmit the nt pilot vectors p1, . . . , pnt . Each codeword is then split up
into blocks of L− nt data vectors, which will be transmitted after the nt pilot vectors. The process of
transmitting L− nt data vectors and nt pilot vectors continues until all n data vectors are completed.
Herein we assume that n is an integer multiple of L− nt. (If n is not an integer multiple of L− nt,
then the last L− nt instants are not fully used by data vectors and include therefore time instants
where we do not transmit anything. The thereby incurred loss in information rate vanishes as n
tends to infinity.) Prior to transmitting the first data block, and after transmitting the last data block,
we introduce a guard period of L(T − 1) time instants (for some T ∈ �), where we transmit every L
time instants the nt pilot vectors p1, . . . , pnt , but we do not transmit data vectors in between. The guard
period ensures that at every time instant, we can employ a channel estimator that bases its estimation
on the channel outputs corresponding to the T preceding and the T subsequent pilot transmissions.
This facilitates the analysis and, asymptotically, does not incur any loss in terms of achievable rates.
The above transmission scheme is illustrated in Figure 1. The channel estimator is described in
the following.

Pilot Data No transmission

n+
(

n

L−nt
+1

)
nt

L L(T −1)L(T −1)

t = 1

t = 2

Figure 1. Structure of pilot and data transmission for nt = 2, L = 7, and T = 2.

Please note that the total blocklength of the above transmission scheme (comprising data vectors,
pilot vectors, and guard period) is given by

n′ = np + n + ng (4)

where np denotes the number of channel uses reserved for pilot vectors, and where ng denotes the
number of channel uses during the silent guard period, i.e.,

np =

(
n

L− nt
+ 1 + 2(T − 1)

)
nt (5)

ng = 2(L− nt)(T − 1). (6)

We now turn to the decoder. Let D denote the set of integers reserved for the transmission of data
vectors, and let P denote the set of integers reserved for the transmission of pilot symbols. The decoder
consists of two parts: a channel estimator and a data detector. To estimate the fading coefficient at a given
time instant, the channel estimator considers the channel output vectors Yk′ , k′ ∈ P corresponding to
the T preceding and T subsequent pilot transmissions and estimates Hk(r, t) using a linear interpolator.
The estimate Ĥ(T)

k (r, t) of the fading coefficient Hk(r, t) is thus given by

Ĥ(T)
k (r, t) =

k+TL

∑
k′=k−TL :

k′∈P

ak′(r, t)Yk′(r) (7)
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where the coefficients ak′(r, t) are chosen in order to minimize the mean-squared error. (It has been
shown in [23] that for the linear interpolator in (7), only the observations when pilots are transmitted,
i.e., Yk′ , k′ ∈ P are relevant for fading estimation.) In general, these coefficients depend on k and T.
However, for the sake of compactness, we do not reflect this dependence in the notation.

Please note that since the pilot vectors transmit only from one antenna, the fading coefficients
corresponding to all transmit and receive antennas (r, t) can be observed. Furthermore, please note that
since the fading processes {Hk(r, t), k ∈ �}, r = 1, . . . , nr, t = 1, . . . , nt are independent, estimating
Hk(r, t) only based on {Yk(r), k ∈ �} rather than on {Yk, k ∈ �} incurs no loss in optimality.

Since the time-lags between Hk, k ∈ D and the observations Yk′ , k′ ∈ P depend on k, it follows
that the interpolation error

E(T)
k (r, t) , Hk(r, t)− Ĥ(T)

k (r, t) (8)

is not stationary but cyclo-stationary with period L. It can be shown that, irrespective of r, the variance
of the interpolation error

ε2
`,T(r, t) , E

[∣∣∣Hk(r, t)− Ĥ(T)
k (r, t)

∣∣∣
2
]

(9)

tends to the following expression as T tends to infinity [23]:

ε2
`(t) , lim

T→∞
ε2
`,T(r, t) (10)

= 1−
∫ 1/2

−1/2

SNR| fL,`−t+1(λ)|2
SNR fL,0(λ) + nt

dλ (11)

where ` , k mod L denotes the remainder of k/L. Here fL,`(·) is given by

fL,`(λ) =
1
L

L−1

∑
ν=0

f̄H

(
λ− ν

L

)
ei2π` λ−ν

L , ` = 0, . . . , L− 1 (12)

and f̄H(·) is the periodic continuation of fH(·), i.e., it is the periodic function of period [−1/2, 1/2)
that coincides with fH(λ) for −1/2 ≤ λ ≤ 1/2. If

L ≤ 1
2λD

(13)

then | fL,`(·)| becomes

| fL,`(λ)| = fL,0(λ) =
1
L

fH

(
λ

L

)
. (14)

In this case, irrespective of ` and t, the variance of the interpolation error is given by

ε2
`(t) = ε2 = 1−

∫ 1/2

−1/2

SNR [ fH(λ)]
2

SNR fH(λ) + Lnt
dλ, ` = 0, . . . , L− 1, t = 1, . . . , nt (15)

which vanishes as the SNR tends to infinity. Recall that λD denotes the bandwidth of fH(·).
Thus, (13) implies that no aliasing occurs as we undersample the fading process L times. Please
note that in contrast to (11), the variance in (15) is independent of the transmit antenna index t.
See Section 5.1 for a more detailed discussion.

The channel estimator feeds the sequence of fading estimates {Ĥ(T)
k , k ∈ D} (which is composed

of the matrix entries {Ĥ(T)
k (r, t), k ∈ D}) to the data detector. We shall denote its realization by

{Ĥ(T)
k , k ∈ D}. Based on the channel outputs {yk, k ∈ D} and fading estimates {Ĥ(T)

k , k ∈ D}, the data
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detector uses a nearest neighbor decoder to guess which message was transmitted. Thus, the decoder
decides on the message m̂ that satisfies

m̂ = arg min
m∈M

D(m) (16)

where

D(m) , ∑
k∈D(n′)

∥∥∥∥∥yk −
√

SNR

nt
Ĥ
(T)
k xk(m)

∥∥∥∥∥

2

. (17)

On the RHS of (17), assuming that the first pilot symbol is transmitted at time k = 0, we defined

D(n′) , {0, . . . , n′ − 1} ∩ D (18)

as the set of time indices where data vectors corresponding to a codeword of length n′ are transmitted.
(For comparison, D represents the set of all integers that are reserved for the transmission of
data vectors).

3. The Pre-Log

We say that a rate

R(SNR) ,
log |M|

n
(19)

is achievable if there exists a code of length n with |M| codewords such that the error probability
tends to zero as n tends to infinity. In this work, we study the set of rates that are achievable with
nearest neighbor decoding and pilot-aided channel estimation. We focus on the achievable rates at
high SNR. In particular, we are interested in the maximum achievable pre-log, defined as

ΠR∗ , lim sup
SNR→∞

R∗(SNR)
logSNR

(20)

where R∗(SNR) is the maximum rate achievable with nearest neighbor decoding and pilot-aided
channel estimation, maximized over all possible encoders.

The capacity pre-log—which is given by (20) but with R∗(SNR) replaced by the capacity
C(SNR)—of SISO fading channels was computed by Lapidoth [3] as

ΠC = µ
(
{λ : fH(λ) = 0}

)
(21)

where µ(·) denotes the Lebesgue measure on the interval [−1/2, 1/2]. (The capacity is defined as the
supremum of all achievable rates maximized over all possible encoders and decoders.) Koch and
Lapidoth [11] extended this result to MISO fading channels and showed that if the fading processes
{Hk(t), k ∈ �}, t = 1, . . . , nt are independent and have the same law, then the capacity pre-log of
MISO fading channels is equal to the capacity pre-log of the SISO fading channel with fading process
{Hk(1), k ∈ �}. Using (21), the capacity pre-log of MISO fading channels with bandlimited power
spectral densities of bandwidth λD can be evaluated as

ΠC = 1− 2λD. (22)

Since R∗(SNR) ≤ C(SNR), it follows that ΠR∗ ≤ ΠC.
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To the best of our knowledge, the capacity pre-log of MIMO fading channels is unknown.
For independent fading processes {Hk(r, t), k ∈ �}, t = 1, . . . , nt, r = 1, . . . , nr that have the same law,
the best so far known lower bound on the MIMO pre-log is due to Etkin and Tse [12], and is given by

ΠC ≥ min(nt, nr)

(
1−min(nt, nr)µ

(
{λ : fH(λ) > 0}

))
. (23)

For power spectral densities that are bandlimited to λD, this becomes

ΠC ≥ min(nt, nr)
(

1−min(nt, nr) 2λD

)
. (24)

Observe that (24) specializes to (22) for nr = 1.
It should be noted that the capacity pre-log for MISO and SISO fading channels was derived under

a peak-power constraint on the channel inputs, whereas the lower bound on the capacity pre-log for
MIMO fading channels was derived under an average-power constraint. Clearly, the capacity pre-log
corresponding to a peak-power constraint can never be larger than the capacity pre-log corresponding
to an average-power constraint. It is believed that the two pre-logs are in fact identical (see the
conclusions in [3]).

In this paper, we show that a communication scheme that employs nearest neighbor decoding
and pilot-aided channel estimation achieves the following pre-log.

Theorem 1. Consider the Gaussian MIMO flat-fading channel with nt transmit antennas and nr receive
antennas (1). Then, the transmission and decoding scheme described in Section 2 achieves

ΠR∗ ≥ min(nt, nr)

(
1− min(nt, nr)

L∗

)
(25)

where L∗ =
⌊

1
2λD

⌋
.

Proof. See Section 5.

Remark 1. We derive Theorem 1 for i.i.d. Gaussian codebooks, which satisfy the average-power constraint (3).
Nevertheless, it can be shown that Theorem 1 continues to hold when the channel inputs satisfy a peak-power
constraint. More specifically, we show in Section 5.3 that for an input distribution with power constraint
E[‖X̄‖2] ≤ nt to achieve the pre-log (25), it is sufficient that its probability density function pX̄(·) satisfies

pX̄(x̄) ≤ K
πnt

e−‖x̄‖
2
, x̄ ∈ �nt (26)

for some K satisfying

lim
SNR→∞

log K
logSNR

= 0. (27)

The condition (26) is satisfied, for example, by i.i.d., truncated, Gaussian inputs, i.e., by inputs for which the nt

elements in X̄ are i.i.d. and

pX̄(x̄) =

{
1

K̂πnt
e−‖x̄‖

2
, if |x̄(t)| ≤ 1, 1 ≤ t ≤ nt

0, otherwise
(28)

with

K̂ =

(∫

|x̄|≤1

1
π

e−|x̄|
2
dx̄
)nt

. (29)
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If 1/(2λD) is an integer, then (25) becomes

ΠR∗ ≥ min(nt, nr)
(

1−min(nt, nr) 2λD

)
. (30)

Thus, in this case nearest neighbor decoding together with pilot-aided channel estimation achieves the
capacity pre-log of MISO fading channels (22) as well as the lower bound on the capacity pre-log of
MIMO fading channels (24).

Suppose that both transmitter and receiver use the same number of antennas, namely,
nt
′ , nr

′ , min(nt, nr). Then, as the codeword length tends to infinity, we have from (4)–(6) that
the fraction of time consumed for the transmission of pilots is given by

lim
n→∞

np

n′
= lim

n→∞

(
n

L−nt ′
+ 1 + 2(T − 1)

)
nt
′

(
n

L−nt ′
+ 1 + 2(T − 1)

)
nt′ + n + 2(L− nt′)(T − 1)

=
nt
′

L
. (31)

Consequently, by rewriting the pre-log (25) as

ΠR∗ ≥ nt
′
(

1− nt
′

L

)
, L ≤ 1

2λD
(32)

we observe that the loss compared to the capacity pre-log nt
′ = min(nt, nr) of the coherent fading

channel is given by the fraction of time used for the transmission of pilots. This implies that the
nearest neighbor decoder in combination with the channel estimator described in Section 2 is optimal
at high SNR in the sense that it achieves the capacity pre-log of the coherent fading channel. Moreover,
the achievable pre-log in Theorem 1 is the best pre-log that can be achieved by any scheme employing
nt
′ pilot vectors.

To achieve the pre-log in Theorem 1, we assume that the training period L satisfies L ≤ 1
2λD

,
in which case the variance of the interpolation error (15), namely

ε2 = 1−
∫ 1/2

−1/2

SNR [ fH(λ)]
2

SNR fH(λ) + Lnt
dλ ≈ 2λDLnt

SNR
(33)

vanishes as the reciprocal of the SNR. The achievable pre-log is then maximized by maximizing
L ≤ 1

2λD
. Please note that as a criterion of “perfect side information” for nearest neighbor decoding in

fading channels, Lapidoth and Shamai [16] suggested that the variance of the fading estimation error
should be negligible compared to the reciprocal of the SNR. The condition L ≤ 1

2λD
can thus be viewed

as a sufficient condition for obtaining “nearly perfect side information” in the sense that the variance
of the interpolation error is of the same order as the reciprocal of the SNR.

Of course, one could increase the training period L beyond 1
2λD

. By increasing L, we reduce
the rate loss due to the transmission of pilots as indicated in (32) at the cost of obtaining a larger
fading estimation error, which in turn may reduce the reliability of the nearest neighbor decoder.
To understand this trade-off better, we next briefly discuss the achievable pre-log when L > 1

2λD
.

Indeed, for L > 1
2λD

, the variance of the interpolation error follows from (11) as

ε2
`(t) = 1−

∫ 1/2

−1/2

SNR
∣∣ fL,`−t+1(λ)

∣∣2

SNR fL,0(λ) + nt
dλ (34)

=
∫ 1/2

−1/2

nt fL,0(λ)

SNR fL,0(λ) + nt
dλ +

∫ 1/2

−1/2

SNR
(
[ fL,0(λ)]

2 −
∣∣ fL,`−t+1(λ)

∣∣2
)

SNR fL,0(λ) + nt
dλ. (35)

The former integral ∫ 1/2

−1/2

nt fL,0(λ)

SNR fL,0(λ) + nt
dλ ≈ nt

SNR
(36)
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vanishes as the reciprocal of the SNR. However, we prove in Appendix B that, as the SNR tends to
infinity, the latter integral

∫ 1/2

−1/2

SNR
(
[ fL,0(λ)]

2 −
∣∣ fL,`−t+1(λ)

∣∣2
)

SNR fL,0(λ) + nt
dλ (37)

is bounded away from zero. This implies that the interpolation error (35) does not vanish as the SNR
tends to infinity, and the pre-log achievable with the scheme described in Section 2 is zero. It thus
follows that the condition L ≤ 1

2λD
is necessary in order to achieve a positive pre-log.

Comparing (24) and (25) with the capacity pre-log min(nt, nr) of the coherent fading channel,
we observe that, for a fading process of bandwidth λD, the penalty for not knowing the fading
coefficients is roughly (min(nt, nr))2 · 2λD. Consequently, the lower bound (25) does not grow linearly
with min(nt, nr), but it is a quadratic function of min(nt, nr) that achieves its maximum at

min(nt, nr) =
L∗

2
. (38)

This gives rise to the lower bound

ΠR∗ ≥
L∗

4
(39)

which cannot be larger than 1/(8λD). The same holds for the lower bound (23).

4. Fading Multiple-Access Channels

In this section, we extend the use of nearest neighbor decoding with pilot-aided channel estimation
to the fading MAC depicted in Figure 2. We are interested in the pre-log region that can be achieved
with this scheme.

m1 Encoder 1
...

m2 Encoder 2
...

... Decoder (m̂1, m̂2)

Figure 2. The two-user MIMO fading MAC system model.

We consider a two-user MIMO fading MAC, where two terminals wish to communicate with a
third one, and where the channels between the terminals are MIMO fading channels. Extension to more
than two users is straightforward. The first user has nt,1 antennas, the second user has nt,2 antennas,
and the receiver has nr antennas. The channel output at time instant k ∈ � is a complex-valued
nr-dimensional random vector given by

Yk =
√
SNRH1,kx1,k +

√
SNRH2,kx2,k + Zk. (40)

Here xs,k ∈ �nt,s denotes the time-k channel input vector corresponding to user s, s = 1, 2; Hs,k denotes
the (nr × nt,s)-dimensional fading matrix at time k corresponding to user s, s = 1, 2; SNR denotes the
average SNR for each transmit antenna; and Zk denotes the nr-variate additive noise vector at time k.
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The fading processes {Hs,k, k ∈ �}, s = 1, 2 are independent of each other and of the noise process
{Zk, k ∈ �} and have the same distribution as the fading process considered in the point-to-point
channel (Section 2). The noise process {Zk, k ∈ �} is a sequence of i.i.d. complex-Gaussian vectors
with zero mean and covariance matrix Inr .

Both users transmit codewords and pilot symbols over the channel (40). To transmit the messages
ms ∈ {1, . . . , benRsc}, s = 1, 2 (where m1 and m2 are drawn independently), each user’s encoder selects
a codeword of length n from a codebook Cs, where Cs, s = 1, 2 are drawn i.i.d. from an nt,s-variate,
zero-mean, complex-Gaussian distribution of covariance matrix Int,s . Similar to the single-user case,
orthogonal pilot vectors are used. The pilot vector ps,t ∈ �nt,s , s = 1, 2, t = 1, . . . , nt,s used to estimate
the fading coefficients from transmit antenna t of user s is given by ps,t(t) = 1 and ps,t(t′) = 0 for
t′ 6= t. For example, the first pilot vector of user s is given by (1, 0, . . . , 0)T. To estimate the fading
matrices H1,k and H2,k, each training period requires the transmission of (nt,1 + nt,2) pilot vectors
p1,1, . . . , p1,nt,1 , p2,1, . . . , p2,nt,2 .

Assuming that transmission from both users is synchronized, the transmission scheme extends
the point-to-point setup in Section 2 to the two-user MAC setup as illustrated in Figure 3. Every L time
instants (for some L ≥ nt,1 + nt,2, L ∈ �), user 1 first transmits the nt,1 pilot vectors p1,1, . . . , p1,nt,1 .
Once the transmission of the nt,1 pilot vectors ends, user 2 transmits its nt,2 pilot vectors p2,1, . . . , p2,nt,2 .
The codewords for both users are then split up into blocks of (L− nt,1 − nt,2) data vectors, which
are transmitted simultaneously after the (nt,1 + nt,2) pilot vectors. The process of transmitting
(L− nt,1 − nt,2) data vectors and (nt,1 + nt,2) pilot vectors continues until all n data symbols are
completed. Herein we assume that n is an integer multiple of (L− nt,1− nt,2). (As in the point-to-point
setup, in the limit as n tends to infinity, this assumption is not critical in terms of achievable rates.)
Prior to transmitting the first data block, and after transmitting the last data block, a guard period of
L(T− 1) time instants (for some T ∈ �) is introduced for the purpose of channel estimation, where we
transmit every L time instants the (nt,1 + nt,2) pilot vectors but we do not transmit data vectors in
between. Please note that codewords from both users are jointly transmitted at the same time instants
whereas pilots from both users do not interfere and are separately transmitted at different time instants.
The total blocklength of this transmission scheme (comprising data vectors, pilot vectors, and guard
period) is given by

n′ = np + n + ng (41)

where np and ng are

np =

(
n

L− nt,1 − nt,2
+ 1 + 2(T − 1)

)
(nt,1 + nt,2) (42)

ng = 2(L− nt,1 − nt,2)(T − 1). (43)

Pilot Data No transmission

n+
(

n
L−nt,1−nt,2

+1
)
(nt,1 +nt,2)

L L(T −1)L(T −1)

s = 1,
t = 1

t = 2

s = 2, t = 1

Figure 3. Structure of joint-transmission scheme for nt,1 = 2, nt,2 = 1, L = 7, and T = 2.

Similar to the single-user case, the receiver guesses which messages have been transmitted using
a two-part decoder that consists of a channel estimator and a data detector. The channel estimator
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first obtains matrix-valued fading estimates {Ĥ(T)
s,k , k ∈ D}, s = 1, 2 from the received pilots Yk′ ,

k′ ∈ P using the same linear interpolator as (7). From the received codeword {yk, k ∈ D} and
the channel-estimate matrices {Ĥ(T)

s,k , k ∈ D}, s = 1, 2 (which are the realizations of {Ĥ(T)
s,k , k ∈ D},

s = 1, 2), the decoder chooses the pair of messages (m̂1, m̂2) that minimizes the distance metric

(m̂1, m̂2) = arg min
(m1,m2)

D(m1, m2) (44)

where
D(m1, m2) , ∑

k∈D(n′)

∥∥∥yk −
√
SNR Ĥ

(T)
1,k x1,k(m1)−

√
SNR Ĥ

(T)
2,k x2,k(m2)

∥∥∥
2

(45)

and where D(n′) is defined in the same way as (18). In the following, we shall refer to the above
communication scheme as the joint-transmission scheme.

We shall compare the joint-transmission scheme with a time-division multiple-access (TDMA)
scheme, where each user transmits its message using the transmission scheme illustrated in Figure 4.
Specifically, during the first βn′ channel uses (for some 0 ≤ β ≤ 1, and where n′ is given in (41)),
user 1 transmits its codeword according to the transmission scheme given in Section 2 (see also
Figure 4), while user 2 is silent. Then, during the next (1− β)n′ channel uses, user 2 transmits its
codeword according to the same transmission scheme, while user 1 is silent. In both cases, the receiver
guesses the corresponding message ms, s = 1, 2 using a nearest neighbor decoder and pilot-aided
channel estimation.

Pilot Data No transmission

L(T −1) L L(T −1)

L(T −1)

L

L(T −1)

βn′ (1−β)n′

s = 1,
t = 1

t = 2

s = 2, t = 1

Figure 4. Structure of TDMA scheme for nt,1 = 2, nt,2 = 1, L = 4, and T = 2.

4.1. The MAC Pre-Log

Let R∗1(SNR), R∗2(SNR), and R∗1+2(SNR) be the maximum achievable rate of user 1, the maximum
achievable rate of user 2, and the maximum achievable sum-rate, respectively. The achievable-rate
region is given by the set [24]

R(SNR) =
{
(R1, R2) : R1 ≤ R∗1(SNR), R2 ≤ R∗2(SNR), R1 + R2 ≤ R∗1+2(SNR)

}
. (46)

We are interested in the pre-logs of all rate pairs (R1(SNR), R2(SNR)) in R(SNR), defined as the
limiting ratios of R1(SNR) and R2(SNR) to the logarithm of the SNR as the SNR tends to infinity.
More precisely, the pre-log region is defined as the set of all pre-log pairs (ΠR1 , ΠR2) for which there
exists a sequence of rate pairs (R1(SNR), R2(SNR)) that, for every SNR, lies inR(SNR) and satisfies

lim sup
SNR→∞

R1(SNR)

logSNR
= ΠR1 (47)

lim sup
SNR→∞

R2(SNR)

logSNR
= ΠR2 . (48)
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Let the maximum achievable pre-logs be defined as

ΠR∗1
, lim sup

SNR→∞

R∗1(SNR)
logSNR

(49)

ΠR∗2 , lim sup
SNR→∞

R∗2(SNR)
logSNR

(50)

ΠR∗1+2
, lim sup

SNR→∞

R∗1+2(SNR)

logSNR
(51)

and define the capacity pre-logs ΠC1 , ΠC2 , and ΠC1+2 in the same way but with R∗1(SNR), R∗2(SNR),
and R∗1+2(SNR) replaced by the respective capacities C1(SNR), C2(SNR), and C1+2(SNR). If the ratios
of the rates to logSNR in (47)–(51) converge as SNR→ ∞, i.e., if the limits superior are, in fact, limits,
then the pre-log region is given by the set

ΠR =

{
(ΠR1 , ΠR2) : ΠR1 ≤ ΠR∗1

, ΠR2 ≤ ΠR∗2 , ΠR1 + ΠR2 ≤ ΠR∗1+2

}
. (52)

Indeed,R(SNR) includes all rate pairs (R1(SNR), R2(SNR)) satisfying

R1(SNR)

logSNR
≤ R∗1(SNR)

logSNR
(53)

R2(SNR)

logSNR
≤ R∗2(SNR)

logSNR
(54)

R1(SNR)

logSNR
+

R2(SNR)

logSNR
≤ R∗1+2(SNR)

logSNR
. (55)

This implies that, for every pre-log pair (ΠR1 , ΠR2) in ΠR, we can find a sequence of rate pairs
(R1(SNR), R2(SNR)) inR(SNR) that achieve (47)–(48). Conversely, if the pre-log pair (ΠR1 , ΠR2) does
not lie in ΠR, then there exists a sufficiently large SNR0 such that, for all SNR ≥ SNR0, at least one
of the three conditions (53)–(55) is violated. Consequently, we cannot find a sequence of rate pairs
(R1(SNR), R2(SNR)) inR(SNR) that satisfies (47)–(48).

We next present our result on the pre-log region of the two-user MIMO fading MAC achievable
with the joint-transmission scheme.

Theorem 2. Consider the MIMO fading MAC (40). Then, the joint-transmission scheme achieves the
pre-log region



(ΠR1 , ΠR2) : ΠR1 ≤ min (nr, nt,1)

(
1− nt,1 + nt,2

L∗

)
,

ΠR2 ≤ min (nr, nt,2)

(
1− nt,1 + nt,2

L∗

)
,

ΠR1 + ΠR2 ≤ min (nr, nt,1 + nt,2)

(
1− nt,1 + nt,2

L∗

)
 (56)

where L∗ =
⌊

1
2λD

⌋
.

Proof. See Section 6.

The pre-log region given in Theorem 2 is the largest region achievable with any transmission
scheme that uses (nt,1 + nt,2)/L∗ of the time instants for transmitting pilot symbols. Indeed, even if
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the channel estimator would be able to estimate the fading coefficients perfectly, and even if we could
decode the data symbols using a maximum-likelihood decoder, the capacity pre-log region (without
pilot transmission) would be given by the set [1,2,24]

{
(ΠR1 , ΠR2) : ΠR1 ≤ min(nr, nt,1), ΠR2 ≤ min(nr, nt,2), ΠR1 + ΠR2 ≤ min(nr, nt,1 + nt,2)

}
(57)

which, after multiplying by 1 − (nt,1 + nt,2)/L∗ to account for the transmission of pilot symbols,
becomes (56). Thus, in order to improve upon (56), one would need to design a transmission scheme
that employs less than (nt,1 + nt,2)/L∗ pilot symbols per channel use.

Remark 2 (TDMA Pre-Log). Consider the MIMO fading MAC (40). Then, the TDMA scheme employing
nearest neighbor decoding and pilot-aided channel estimation achieves the pre-log region



(ΠR1 , ΠR2) : ΠR1 ≤ β min (nr, nt,1)

(
1− nt,1

L∗
)

,

ΠR2 ≤ (1− β)min (nr, nt,2)
(

1− nt,2

L∗
)

, 0 ≤ β ≤ 1



 (58)

where L∗ =
⌊

1
2λD

⌋
. This follows directly from the pre-log of the point-to-point MIMO fading channel

(Theorem 1) with the number of transmit antennas given by nt,1 and nt,2, respectively.

Please note that the sum of the pre-logs ΠR1 + ΠR2 is upper-bounded by the capacity pre-log of
the point-to-point MIMO fading channel with (nt,1 + nt,2) transmit antennas and nr receive antennas,
since the latter channel corresponds to the case where the transmitting terminals can cooperate.
While the capacity pre-log of general point-to-point MIMO fading channels remains an open problem,
the capacity pre-log of point-to-point MISO fading channels is known, cf. (22). It thus follows that,
for nr = nt,1 = nt,2 = 1, we have

ΠR1 + ΠR2 ≤ ΠC1+2 = 1− 2λD (59)

which together with the single-user constraints

ΠR1 ≤ ΠC1 = 1− 2λD (60)

ΠR2 ≤ ΠC2 = 1− 2λD (61)

implies that TDMA achieves the capacity pre-log region of the SISO fading MAC. The next section
provides a more detailed comparison between the joint-transmission scheme and TDMA.

4.2. Joint Transmission Versus TDMA

In this section, we discuss how the joint-transmission scheme performs compared to TDMA.
To this end, we compare the sum-rate pre-log ΠR∗1+2

of the joint-transmission scheme (Theorem 2)
with the sum-rate pre-log of the TDMA scheme employing nearest neighbor decoding and pilot-aided
channel estimation (Remark 2) as well as with the sum-rate pre-log of the coherent TDMA scheme,
where the receiver has knowledge of the realizations of the fading processes {Hs,k, k ∈ �}, s = 1, 2.
In the latter case, the sum-rate pre-log is given by

ΠR∗1+2
= β min(nr, nt,1) + (1− β)min(nr, nt,2). (62)
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The following corollary presents a sufficient condition on L∗ under which the sum-rate pre-log of
the joint-transmission scheme is strictly larger than that of the coherent TDMA scheme (62), as well
as a sufficient condition on L∗ under which the sum-rate pre-log of the joint-transmission scheme
is strictly smaller than the sum-rate pre-log of the TDMA scheme given in Remark 2. Since (62) is
an upper bound on the sum-rate pre-log of any TDMA scheme over the MIMO fading MAC (40),
and since the sum-rate pre-log given in Remark 2 is a lower bound on the sum-rate pre-log of the best
TDMA scheme, it follows that the sufficient conditions presented in Corollary 1 hold also for the best
TDMA scheme.

Corollary 1. Consider the MIMO fading MAC (40). The joint-transmission scheme achieves a larger sum-rate
pre-log than any TDMA scheme if

L∗ >
min(nr, nt,1 + nt,2)(nt,1 + nt,2)

min(nr, nt,1 + nt,2)−min(nr, max(nt,1, nt,2))
(63)

where we define a/0 , ∞ for every a > 0. Conversely, the best TDMA scheme achieves a larger sum-rate
pre-log than the joint-transmission scheme if

L∗ <
min(nr, nt,1 + nt,2)(nt,1 + nt,2)

min(nr, nt,1 + nt,2)−min(nr, nt,1, nt,2)
− min(nt,1nr, nt,1

2, nt,2nr, nt,2
2)

min(nr, nt,1 + nt,2)−min(nr, nt,1, nt,2)
. (64)

Recall that L∗ is inversely proportional to the bandwidth of the power spectral density fH(·),
which in turn is inversely proportional to the coherence time of the fading channel. Corollary 1 thus
demonstrates that the joint-transmission scheme tends to be superior to TDMA when the coherence
time of the channel is large. In contrast, TDMA is superior to the joint-transmission scheme when the
coherence time of the channel is small. Intuitively, this can be explained by observing that, compared
to TDMA, the joint-transmission scheme uses the antennas at the transmitters and at the receiver
more efficiently, but requires more pilot symbols to estimate the fading coefficients. Thus, when the
coherence time is large, the number of pilot symbols required to estimate the fading is small, so the
gain in achievable rate by using the antennas more efficiently dominates the loss incurred by requiring
more pilot symbols. On the other hand, when the coherence time is small, the number of pilot symbols
required to estimate the fading coefficients is large and the loss in achievable rate incurred by requiring
more pilot symbols dominates the gain by using the antennas more efficiently.

We next evaluate (63) and (64) for some particular values of nr, nt,1, and nt,2.

4.2.1. Receiver Employs Less Antennas than Transmitters

Suppose that nr ≤ min(nt,1, nt,2). Then, the right-hand sides (RHSs) of (63) and (64) become ∞,
so every finite L∗ satisfies (64). Thus, if the number of receive antennas is smaller than the number of
transmit antennas, then, irrespective of L∗, TDMA is superior to the joint-transmission scheme.

4.2.2. Receiver Employs More Antennas than Transmitters

Suppose that nr ≥ nt,1 + nt,2, and suppose that nt,1 = nt,2 = nt. Then, (63) and (64) become

L∗ > 4nt (65)

and
L∗ < 3nt. (66)

Thus, if L∗ is greater than 4nt, then the joint-transmission scheme is superior to TDMA. In contrast,
if L∗ is smaller than 3nt, then TDMA is superior. This is illustrated in Figure 5 for the case where nr = 2
and nt,1 = nt,2 = 1. Please note that if L∗ is between 3nt and 4nt, then the joint-transmission scheme is
superior to the TDMA scheme presented in Remark 2, but it may be inferior to the best TDMA scheme.



Entropy 2020, 22, 971 15 of 34

1− 1
L∗

1− 1
L∗

1− 2
L∗

1− 2
L∗

ΠR1

ΠR2

1

1

(a) L∗ < 3

1− 1
L∗

1− 1
L∗

1− 2
L∗

1− 2
L∗

ΠR1

ΠR2

1

1

(b) L∗ > 4

Noncoherent Joint-transmission 

Noncoherent TDMA

Coherent TDMA

Figure 5. Pre-log regions for a fading MAC with nr = 2 and nt,1 = nt,2 = 1 for different values of L∗.
Depicted are the pre-log region for the joint-transmission scheme as given in Theorem 2 (dashed line),
the pre-log region of the TDMA scheme as given in Remark 2 (solid line), and the pre-log region of the
coherent TDMA scheme (62) (dotted line).

4.2.3. A Case in between

Suppose that nr ≤ nt,1 + nt,2 and nt,2 < nr ≤ nt,1. Then, (63) and (64) become

L∗ > ∞ (67)

and
L∗ < nt,2 +

nrnt,1

nr − nt,2
. (68)

Thus, in this case the joint-transmission scheme is always inferior to the coherent TDMA scheme (62),
but it can be superior to the TDMA scheme in Remark 2.

4.3. Typical Values of L∗

We briefly discuss the range of values of L∗ that may occur in practical scenarios. To this end,
we first recall that L∗ = b1/(2λD)c, and that λD is the bandwidth of the fading power spectral density
fH(·), which can be associated with the Doppler spread of the channel as [12]

λD =
fm

Wc
. (69)

Here fm is the maximum Doppler shift given by

fm =
v
c

fc (70)

where v is the speed of the mobile device, c = 3 · 108 m/s is the speed of light, and fc is the carrier
frequency; and Wc is the coherence bandwidth of the channel approximated as [12,25]

Wc ≈
1

5στ
(71)

where στ is the delay spread. Following the order-of-magnitude computations of Etkin and Tse [12],
we determine typical values of λD for indoor, urban, and hilly area environments and for carrier
frequencies ranging from 800 MHz to 5 GHz and tabulate the results in Table 1.
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Table 1. Typical values of L∗ for various environments with fc ranging from 800 MHz to 5 GHz.
The values of the delay spread are taken from [12,25] for indoor and urban environments and from [26]
for hilly area environments.

Environment Delay Spread στ Mobile Speed v λD ≈ 5στ
v
c fc L∗

Indoor 10–100 ns 5 km/h 2× 10−7–10−5 5× 104–2.5× 106

Urban 1–2 µs 5 km/h 2× 10−5–2× 10−4 2.5× 103–2.5× 104

Urban 1–2 µs 75 km/h 2× 10−4–0.004 125–2.5× 103

Hilly area 3–10 µs 200 km/h 0.002–0.05 10–250

For indoor environments and mobile speeds of 5 km/h, we have that L∗ is typically larger than
5× 104. For urban environments, L∗ is typically larger than 2.5× 103 for mobile speeds of 5 km/h
and larger than 125 for mobile speeds of 75 km/h. For hilly area environments and mobile speeds
of 200 km/h, L∗ ranges typically from 10 to 250. Thus, for most practical scenarios, L∗ is typically
large. It therefore follows that, if nr ≥ nt,1 + nt,2, the condition (63) is satisfied unless nt,1 + nt,2 is very
large. For example, if the receiver employs more antennas than the transmitters, and if nt,1 = nt,2 = nt,
then L∗ > 4nt is satisfied even for urban environments and mobile speeds of 75 km/h, as long as
nt < 30. Only for hilly area environments and mobile speeds of 200 km/h, this condition may not be
satisfied for a practical number of transmit antennas. Thus, if the number of antennas at the receiver is
sufficiently large, then the joint-transmission scheme is superior to TDMA in most practical scenarios.
On the other hand, if nr ≤ min(nt,1, nt,2), then TDMA is always superior to the joint-transmission
scheme, irrespective of how large L∗ is. This suggests that one should use more antennas at the receiver
than at the transmitters.

5. Proof of Theorem 1

Theorem 1 is proved as follows. We first characterize the estimation error from the linear
interpolator (7). We then compute the rates achievable with the communication scheme described in
Section 2. Finally, we analyze the pre-log corresponding to these rates.

5.1. Linear Interpolator

We first note that the estimate of Hk(r, t) is given by (7), namely,

Ĥ(T)
k (r, t) =

k+TL

∑
k′=k−TL:

k′∈P

ak′(r, t)Yk′(r), k ∈ D. (72)

We denote the interpolation error by E(T)
k (r, t) = Hk(r, t)− Ĥ(T)

k (r, t).
For future reference, and for any k ∈ �, we express k = jL + `, so ` = k mod L. Assuming that the

first pilot symbol is transmitted at k = 0, it follows that ` = 0, . . . , nt− 1 for k ∈ P and ` = nt, . . . , L− 1
for k ∈ D. The statistical properties of the channel estimator for a given window size T are summarized
in the following lemma.

Lemma 1. For a given T, the linear interpolator (72) has the following properties.

1. For each t = 1, . . . , nt, r = 1, . . . , nr, and ` = nt, . . . , L − 1, the estimate Ĥ(T)
jL+`(r, t) and the

corresponding estimation error E(T)
jL+`(r, t) are independent zero-mean complex-Gaussian random variables.

2. (a) For a given transmit antenna t and ` ∈ {nt, . . . , L− 1}, the nr processes

{(Ĥ(T)
jL+`(1, t), E(T)

jL+`(1, t)), j ∈ �}, . . . , {(Ĥ(T)
jL+`(nr, t), E(T)

jL+`(nr, t)), j ∈ �} (73)

are independent and have the same law.
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(b) For a given receive antenna r and ` ∈ {nt, . . . , L− 1}, the nt processes

{(Ĥ(T)
jL+`(r, 1), E(T)

jL+`(r, 1)), j ∈ �}, . . . , {(Ĥ(T)
jL+`(r, nt), E(T)

jL+`(r, nt)), j ∈ �} (74)

are independent but have different laws.

3. For each ` = nt, . . . , L− 1, the process {(Ĥ(T)
jL+`, HjL+`, ZjL+`, XjL+`), j ∈ �} is jointly stationary

and ergodic.
4. For ` = nt, . . . , L− 1, it holds that

E
[

Z†
` Ĥ

(T)
` X`

]
= 0 (75)

where (·)† denotes the conjugate transpose.

Proof. See Appendix A.

5.2. Achievable Rates and Pre-Logs

In the following proof, we only consider the case where nt = nr. The more general case of
nt 6= nr follows then by using only nr transmit antennas or by ignoring nr − nt antennas at the receiver.
This yields a lower bound on the maximum achievable rate and does not incur a loss with respect to
the pre-log. Indeed, it can be shown that the nearest neighbor decoder described in Section 2 achieves
the pre-log min(nr, nt). Thus, increasing nt beyond nr or nr beyond nt does not improve the pre-log
achievable by such a decoder. In fact, increasing nt beyond nr requires the transmission of more
pilot symbols and does therefore even reduce the pre-log achievable with the communication scheme
described in Section 2.

To prove Theorem 1, we analyze the generalized mutual information (GMI) [27] for the channel
and communication scheme in Section 2. The GMI, denoted by Igmi

T (SNR), specifies the highest
information rate for which the average probability of error, averaged over the ensemble of i.i.d.
Gaussian codebooks, tends to zero as the codeword length n tends to infinity (see [7,16,17] and
references therein). The GMI for stationary Gaussian fading channels employing nearest neighbor
decoding has been evaluated in [16,17] for the case where a genie provides the receiver with an estimate
of the fading process. However, the estimate considered in [16,17] is assumed to be jointly stationary
and ergodic with {(Hk, Xk, Zk), k ∈ �}, which is not satisfied by {Ĥ(T)

k , k ∈ D}. We therefore need to
adapt the work in [16,17] to our channel model. For completeness, we present all the main steps here,
even though they are very similar to the ones in [16,17].

We prove Theorem 1 as follows:

1. We compute a lower bound on Igmi
T (SNR) for a fixed window size T (Section 5.2.1).

2. We analyze the behavior of this lower bound as T tends to infinity (Section 5.2.2).
3. We evaluate the limiting ratio of this lower bound to logSNR as SNR tends to infinity

(Section 5.2.3).

5.2.1. Igmi
T (SNR) for a Fixed T

We analyze the GMI for a fixed T using a random coding upper bound on the average error
probability. Please note that due to the symmetry of the codebook construction, it suffices to consider
the error behavior conditioned on the event that message 1 was transmitted. Let E(m′) denote the event
that D(m′) ≤ D(1), where D(·) was defined in (17). The ensemble-average error probability—where
the average is over the ensemble of i.i.d. Gaussian codes—corresponding to message m = 1 is thus
given by

P̄e(1) = Pr




⋃

m′ 6=1

E(m′)



 . (76)
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To evaluate the GMI from the RHS of (76), we next define some useful quantities. Recall the
channel and transmission model in Section 2. Without loss of generality, assume that the first pilot
vector is transmitted at time k = 0. Let

F(SNR) , nr +
SNR

(L− nt)nt

(L−1)

∑
`=nt

E

[∥∥∥E(T)
`

∥∥∥
2

F

]
(77)

where E(T)
` is a random matrix whose row-r column-t entry is given by E(T)

` (r, t), and where ‖ · ‖F
denotes the Frobenius norm. For some arbitrary δ > 0, we further define the typical set

Tδ ,




(

xk, yk, Ĥ(T)
k

)
, k = 0, . . . , n′ − 1 :

∣∣∣∣∣∣
1
n ∑

k∈D(n′)

∥∥∥∥∥yk −
√

SNR

nt
Ĥ
(T)
k xk

∥∥∥∥∥

2

− F(SNR)

∣∣∣∣∣∣
< δ



 (78)

with D(n′) = {0, . . . , n′ − 1} ∩ D and n′ = np + n + ng, as given in (18) and (4), respectively. Then,
we have the following convergence as n tends to infinity.

Lemma 2. For the channel model and communication scheme described in Section 2, we have that

lim
n→∞

Pr
{(

Xn′ , Yn′ , Ĥ(T),n′
)
∈ Tδ

}
= 1, ∀δ > 0 (79)

where we have used the notation Un′ to denote the sequence U0, . . . , Un′−1.

Proof. We have

lim
n→∞

1
n ∑

k∈D(n′)

∥∥∥∥∥yk −
√

SNR

nt
Ĥ
(T)
k xk

∥∥∥∥∥

2

= lim
n→∞

1
n ∑

k∈D(n′)

∥∥∥∥∥

√
SNR

nt

(
Hk − Ĥ

(T)
k

)
xk + zk

∥∥∥∥∥

2

(80)

=
1

L− nt

L−1

∑
`=nt

lim
n→∞

L− nt

n

n
L−nt
−1

∑
j=0

∥∥∥∥∥

√
SNR

nt

(
HjL+` − Ĥ

(T)
jL+`

)
xjL+` + zjL+`

∥∥∥∥∥

2

(81)

=
1

L− nt

L−1

∑
`=nt

E



∥∥∥∥∥

√
SNR

nt

(
H` − Ĥ(T)

`

)
X̄` + Z`

∥∥∥∥∥

2
 , almost surely (82)

=
1

L− nt

L−1

∑
`=nt

(
nr +

SNR

nt
E

[∥∥∥E(T)
` X̄`

∥∥∥
2
])

(83)

= F(SNR). (84)

Herein (82) follows from (Part 3) of Lemma 1 and the ergodic theorem ([28], Chapter 7); (83) follows
from (Part 4) of Lemma 1; and (84) follows since X̄` has zero mean and covariance matrix Int , and is
independent from E(T)

` (since {E(T)
k , k ∈ D} is a function of {(Hk, Zk), k ∈ �}). It thus follows that,

as n→ ∞,

1
n ∑

k∈D(n′)

∥∥∥∥∥yk −
√

SNR

nt
Ĥ
(T)
k xk

∥∥∥∥∥

2

(85)

converges to F(SNR) almost surely, which in turn implies that it also converges in probability,
which is (79).
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Considering the typical set (78), and following the derivation in [16,17], the error probability P̄e(1)
in (76) can be upper-bounded as

P̄e(1) ≤ enR · Pr
{

1
n
· D(m′) < F(SNR) + δ

∣∣∣∣
(

Xn′(1), Yn′ , Ĥ(T),n′
)
∈ Tδ

}

+ Pr
{(

Xn′(1), Yn′ , Ĥ(T),n′
)
∈ T c

δ

}
, m′ 6= 1 (86)

where T c
δ denotes the complement of Tδ. It follows from Lemma 2 that the second term on the RHS

of (86) can be made arbitrarily small by letting n tend to infinity.
The GMI characterizes the rate of exponential decay of the expression

Pr
{

1
n
· D(m′) < F(SNR) + δ

∣∣∣∣
(

Xn′(1), Yn′ , Ĥ(T),n′
)
∈ Tδ

}
, m′ 6= 1 (87)

as n → ∞ [16,17]. The computation of the GMI requires the conditional log moment-generating
function of the metric D(m′) associated with the wrong message output m′ 6= 1, conditioned on the
channel outputs and on the fading estimates, which is defined as

κn

(
θ, yn′ , Ĥ(T),n′

)
, logE


exp


 θ

n ∑
k∈D(n′)

Dk(m′)



∣∣∣∣∣∣

{
(yk, Ĥ(T)

k ), k ∈ D(n′)
}

 (88)

where

Dk(m′) ,

∥∥∥∥∥yk −
√

SNR

nt
Ĥ
(T)
k xk(m′)

∥∥∥∥∥

2

. (89)

Proceeding along the lines of [16,17], we can express the conditional log moment-generating function
in (88) as the sum of conditional log moment-generating functions for the individual vector metrics
Dk(m′), k ∈ D(n′), i.e.,

κn

(
θ, yn′ , Ĥ(T),n′

)

= ∑
k∈D(n′)

logE

[
exp

(
θ

n
Dk(m′)

)∣∣∣∣ yk, Ĥ(T)
k

]
(90)

= ∑
k∈D(n′)

(
θ

n
y†

k

(
Inr −

θ

n
SNR

nt
Ĥ
(T)
k Ĥ

†(T)
k

)−1
yk − log det

(
Inr −

θ

n
SNR

nt
Ĥ
(T)
k Ĥ

†(T)
k

))
. (91)

We then have that, for all θ < 0,

lim
n→∞

1
n
· κn

(
nθ, yn′ , Ĥ(T),n′

)

= lim
n→∞

1
n ∑

k∈D(n′)
θy†

k

(
Inr − θ

SNR

nt
Ĥ
(T)
k Ĥ

†(T)
k

)−1
yk

− lim
n→∞

1
n ∑

k∈D(n′)
log det

(
Inr − θ

SNR

nt
Ĥ
(T)
k Ĥ

†(T)
k

)
(92)

=
1

L− nt

L−1

∑
`=nt

lim
n→∞

L− nt

n

n
L−nt
−1

∑
j=0

θy†
jL+`

(
Inr − θ

SNR

nt
Ĥ
(T)
jL+`Ĥ

†(T)
jL+`

)−1
yjL+`

− 1
L− nt

L−1

∑
`=nt

lim
n→∞

L− nt

n

n
L−nt
−1

∑
j=0

log det
(
Inr − θ

SNR

nt
Ĥ
(T)
jL+`Ĥ

†(T)
jL+`

)
(93)
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=
1

L− nt

L−1

∑
`=nt

E

[
θY†

` ·
(
Inr − θ

SNR

nt
Ĥ(T)

` Ĥ†(T)
`

)−1
· Y`

]

− 1
L− nt

L−1

∑
`=nt

E

[
log det

(
Inr − θ

SNR

nt
Ĥ(T)

` Ĥ†(T)
`

)]
, almost surely (94)

, κ(θ, SNR) (95)

where the last step should be regarded as the definition of κ(θ,SNR). The convergence in (94) is
due to the ergodicity of {(YjL+`, Ĥ

(T)
jL+`), j ∈ �}, ` = nt, . . . , L− 1 (see (Part 3) of Lemma 1) and the

ergodic theorem.
Following the same steps as in [16,17], we can then show that for all δ′ > 0, the ensemble-average

error probability can be bounded as

P̄e(1) ≤ exp(nR)exp
(
−n
(

Igmi
T (SNR)− δ′

))
+ ε(δ′, n) (96)

for some ε(δ′, n) satisfying
lim

n→∞
ε(δ′, n) = 0, δ′ > 0. (97)

On the RHS of (96), Igmi
T (SNR) denotes the GMI as a function of the SNR for a fixed T, which is given by

Igmi
T (SNR) =

L− nt

L

(
sup
θ<0

(θF(SNR)− κ(θ,SNR))

)
. (98)

Herein the pre-factor (L − nt)/L equals the fraction of time instants used for data transmission.
The bound (96) implies that for rates below Igmi

T (SNR), the communication scheme described in
Section 2 has vanishing error probability as n tends to infinity.

Combining (77) and (94) with (98) yields

Igmi
T (SNR) = sup

θ<0

1
L

L−1

∑
`=nt

{
θ

(
nr +

SNR

nt
E

[∥∥∥E(T)
`

∥∥∥
2

F

])
+ E

[
log det

(
Inr − θ

SNR

nt
Ĥ(T)

` Ĥ†(T)
`

)]

− E

[
θY†

`

(
Inr − θ

SNR

nt
Ĥ(T)

` Ĥ†(T)
`

)−1
Y`

]}
. (99)

Following the steps used in ([29], Appendix D), it can be shown that, for θ < 0,

E

[
θY†

`

(
Inr − θ

SNR

nt
Ĥ(T)

` Ĥ†(T)
`

)−1
Y`

]
≤ 0. (100)

As observed in ([29], Appendix D), a good lower bound on Igmi
T (SNR) for high SNR follows by choosing

θ =
−1

nr + SNR nrε2
∗,T

(101)

where
ε2
∗,T = max

r=1,...,nr,
t=1,...,nt,

`=nt,...,L−1

ε2
`,T(r, t). (102)
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Hence, substituting the choice of θ in (101), and applying (100) to the RHS of (99), we obtain the
following lower bound on Igmi

T (SNR):

Igmi
T (SNR) ≥ 1

L

L−1

∑
`=nt

{
E

[
log det

(
Inr +

SNR

ntnr + ntnrSNRε2
∗,T

Ĥ(T)
` Ĥ†(T)

`

)]
− 1

}
. (103)

5.2.2. Igmi
T (SNR) as T → ∞

We next analyze the RHS of (103) in the limit as T tends to infinity. To this end, we note that,
for L ≤ 1

2λD
, the variance of the interpolation error tends to (15), namely

ε2
`(t) = 1−

∫ 1/2

−1/2

SNR [ fH(λ)]
2

SNR fH(λ) + Lnt
dλ (104)

as T tends to infinity, irrespective of ` and t. We shall therefore omit the subscript and argument and
write ε2 instead of ε2

`(t). Please note that for a fixed T, the entries of

1√
ntnr + ntnrSNRε2

∗,T
Ĥ(T)

` (105)

are independent but not i.i.d., which follows from Part 2) of Lemma 1. However, as T tends to infinity,
their distribution becomes identical due to (104) and hence they converge in distribution to

1√
ntnr + ntnrSNRε2

∗,T
Ĥ(T)

`
d−→ 1√

ntnr + ntnrSNRε2
H̄ (106)

where the entries of H̄ are i.i.d. complex-Gaussian random variables with zero mean and variance
(1− ε2).

Next note that

log det

(
Inr +

SNR

ntnr + ntnrSNRε2
∗,T

Ĥ(T)
` Ĥ†(T)

`

)
(107)

is a nonnegative, continuous function with respect to the entries of the matrix

1
ntnr + ntnrSNRε2

∗,T
Ĥ(T)

` Ĥ†(T)
` . (108)

It therefore follows from Portmanteau’s lemma [30] that, as T → ∞, the RHS of (103) can be
lower-bounded by

lim
T→∞

1
L

L−1

∑
`=nt

{
E

[
log det

(
Inr +

SNR

ntnr + ntnrSNRε2
∗,T

Ĥ(T)
` Ĥ†(T)

`

)]
− 1

}

≥ L− nt

L

{
E

[
log det

(
Inr +

SNR

ntnr + ntnrSNRε2 H̄H̄†
)]
− 1
}

(109)

≥ L− nt

L

(
E

[
log det

(
SNR

ntnr + ntnrSNRε2 H̄H̄†
)]
− 1
)

(110)

where the last inequality follows from the lower bound log det (I+ A) ≥ log det A.



Entropy 2020, 22, 971 22 of 34

Combining (110) with (103), and using that, by assumption, nt = nr, we obtain that

Igmi(SNR) , lim
T→∞

Igmi
T (SNR) (111)

≥ L− nt

L

(
nt logSNR− nt log

(
nt

2 + nt
2SNRε2

)
+ E

[
log det H̄H̄†

]
− 1
)

. (112)

5.2.3. The Pre-Log

It remains to compute a lower bound on the pre-log. To this end, we compute the limiting ratio of
the RHS of (112) to logSNR as SNR tends to infinity. We first consider

SNR ε2 = SNR

(
1−

∫ 1/2

−1/2

SNR [ fH(λ)]
2

SNR fH(λ) + Lnt
dλ

)
(113)

=
∫ 1/2

−1/2

SNR fH(λ)Lnt

SNR fH(λ) + Lnt
dλ. (114)

Since the integrand is bounded by

0 ≤ SNR fH(λ)Lnt

SNR fH(λ) + L
≤ Lnt (115)

it follows that 0 ≤ SNR ε2 ≤ Lnt, which implies that

lim
SNR→∞

log
(
nt

2 + nt
2SNR ε2)

logSNR
= 0. (116)

We next consider the term E
[
log det H̄H̄†]− 1. Please note that by ([31], Lemma A.2) and the

assumption nt = nr, we have

E
[
log det H̄H̄†

]
− 1 = nt log(1− ε2) +

nt−1

∑
b=0

ψ(nt − b)− 1 (117)

where ψ(·) is Euler’s digamma function [32]. Furthermore, since

0 ≤ SNR [ fH(λ)]
2

SNR fH(λ) + Lnt
≤ fH(λ) (118)

we have by the Dominated Convergence Theorem [28] that

lim
SNR→∞

ε2 = lim
SNR→∞

(
1−

∫ 1/2

−1/2

SNR [ fH(λ)]
2

SNR fH(λ) + Lnt
dλ

)
= 0 (119)

so log(1− ε2) vanishes as the SNR tends to infinity. Combining (119) with (117) yields

lim
SNR→∞

E
[
log det H̄H̄†]− 1

logSNR
= 0. (120)

It follows from (112), (116), and (120) that

ΠR∗ ≥ nt

(
1− nt

L

)
(121)

= min(nt, nr)

(
1− min(nt, nr)

L

)
, L ≤ 1

2λD
(122)
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where we have used that nt = nr = min(nt, nr). Please note that the condition L ≤ 1
2λD

is necessary
since otherwise (104) would not hold. This proves Theorem 1.

5.3. A Note on the Input Distribution

The pre-log in Theorem 1 is derived using codebooks whose entries are drawn i.i.d. from an
nt-variate Gaussian distribution with zero mean and identity covariance matrix. However, Gaussian
inputs are not necessary to achieve the pre-log (25). In fact, as we shall argue next, the pre-log (25) can
be achieved by any i.i.d. inputs with a probability density function satisfying E[‖X̄‖2] ≤ nt and (26)
and (27), namely,

pX̄(x̄) ≤ K
πnt

e−‖x̄‖
2
, x̄ ∈ �nt (123)

lim
SNR→∞

log K
logSNR

= 0. (124)

Indeed, since the inputs have a density, they also satisfy E[‖X̄‖2] > 0. To show that the conditions (26)
and (27) suffice to achieve (25), we follow the steps in Section 5.2 but with F(SNR) replaced by

F(SNR) = nr +
SNR

(L− nt)nt

L−1

∑
`=nt

E

[∥∥∥E(T)
` X̄`

∥∥∥
2

F

]
. (125)

We then upper-bound F(SNR) and κ(θ,SNR) as follows. Using that for any two matrices A and B we
have ‖AB‖2

F ≤ ‖A‖2
F · ‖B‖2

F ([33], Section 5.6), and using that E(T)
` and X̄` are independent, we can

upper-bound F(SNR) by

F(SNR) ≤ nr +
SNR

(L− nt)nt

L−1

∑
`=nt

E

[∥∥∥E(T)
`

∥∥∥
2

F

]
· E
[
‖X̄`‖2

]
. (126)

As for κ(θ,SNR), we have

E

[
exp

(
θ

n
Dk(m′)

)∣∣∣∣ yk, Ĥ(T)
k

]

=
∫

x̄k

pX̄(x̄k) exp


 θ

n

∥∥∥∥∥yk −
√

SNR

nt
Ĥ
(T)
k x̄k

∥∥∥∥∥

2
 dx̄k (127)

≤
∫

x̄k

K
πnt

exp


−‖x̄k‖2 +

θ

n

∥∥∥∥∥yk −
√

SNR

nt
Ĥ
(T)
k x̄k

∥∥∥∥∥

2
 dx̄k (128)

=
K

det
(
Inr − θ

n
SNR

nt
Ĥ
(T)
k Ĥ

†(T)
k

)exp

(
θ

n
y†

k

(
Inr −

θ

n
SNR

nt
Ĥ
(T)
k Ĥ

†(T)
k

)−1
yk

)
. (129)

Here (128) follows from (123), and (129) follows by evaluating the integral as in ([17], Appendix A).
By following the steps in Section 5.2, and by choosing

θ =
−1

nr + SNR nrε2
∗,TE [‖X̄‖2]

(130)

where ε2
∗,T is given in (102), we obtain from (126) and (129) that
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Igmi
T (SNR) ≥ 1

L

L−1

∑
`=nt

{
E

[
log det

(
Inr +

SNR

ntnr + ntnrSNRε2
∗,TE [‖X̄‖2]

Ĥ(T)
` Ĥ†(T)

`

)]}

− L− nt

L
(1 + log K) . (131)

Taking the limit as T tends to infinity, and repeating the steps in Section 5.2, it follows that

Igmi(SNR) = lim
T→∞

Igmi
T (SNR) (132)

≥ L− nt

L

(
E

[
log det

(
SNR

ntnr + ntnrSNR ε2E [‖X̄‖2]
H̄H̄†

)]
− 1− log K

)
(133)

=
L− nt

L

(
nt logSNR− nt log

(
nt

2 + nt
2SNR ε2E

[
‖X̄‖2

])

+ E
[
log det H̄H̄†

]
− 1− log K

)
(134)

where we have again used the assumption nt = nr.
We conclude by evaluating the limiting ratio of the RHS of (134) to logSNR as SNR tends to

infinity. Using (115) and that E[‖X̄‖2] ≤ nt, we obtain that

lim
SNR→∞

log
(
nt

2 + nt
2SNR ε2E

[
‖X̄‖2])

logSNR
= 0. (135)

This in turn yields together with (120) that

lim
SNR→∞

Igmi(SNR)

log SNR
≥ nt

(
1− nt

L

)
(136)

provided that

lim
SNR→∞

log K
logSNR

= 0. (137)

It thus follows that any i.i.d. input distribution satisfying E[‖X̄‖2] ≤ nt and (26) and (27) achieves the
pre-log (25).

6. Proof of Theorem 2

In contrast to the proof of Theorem 1, for the fading MAC, it is not sufficient to restrict ourselves
to the case of nt,1 = nt,2 = nr. For example, increasing nr beyond nt,1 and nt,2 does not increase the
single-rate pre-logs ΠR∗1

and ΠR∗2 , but it does increase the pre-log of the achievable sum-rate ΠR∗1+2
.

For the proof of Theorem 2, we therefore consider a general setup of nt,1, nt,2, and nr.
We derive the achievable pre-logs for the MAC case by following similar steps as in the

point-to-point case. We first consider the average error probability, averaged over the ensemble
of i.i.d. Gaussian codebooks. Let P̄e and P̄e(m1, m2) be the ensemble-average error probability and the
ensemble-average error probability when messages m1 and m2 are transmitted, respectively. Due to
the symmetry of the codebook construction, P̄e is equal to P̄e(1, 1) and it therefore suffices to consider
P̄e(1, 1) to derive the achievable rates. Let E(m′1, m′2) denote the event that D(m′1, m′2) ≤ D(1, 1),
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where D(·, ·) was defined in (45). Using the union bound, the error probability P̄e(1, 1) can be
upper-bounded as

P̄e(1, 1) = Pr





⋃

(m′1,m′2) 6=(1,1)

E(m′1, m′2)



 (138)

≤ Pr




⋃

m′1 6=1

E(m′1, 1)



+ Pr




⋃

m′2 6=1

E(1, m′2)



+ Pr




⋃

m′1 6=1

⋃

m′2 6=1

E(m′1, m′2)



 . (139)

We next analyze the three probabilities on the RHS of (139). Let the matrix E(T)
s,k , s = 1, 2 with

entries E(T)
s,k (r, t) be the estimation-error matrix in estimating Hs,k, i.e.,

E(T)
s,k = Hs,k − Ĥ(T)

s,k . (140)

To facilitate the analysis, we first generalize F(SNR) and Tδ, defined in the point-to-point case in (77)
and (78), to the MAC case:

F(SNR) , nr +
SNR

L− nt,1 − nt,2

L−1

∑
`=nt,1+nt,2

E

[∥∥∥E(T)
1,`

∥∥∥
2

F
+
∥∥∥E(T)

2,`

∥∥∥
2

F

]
, (141)

Tδ ,




(

xs,k, yk, Ĥ(T)
s,k

)
, k = 0, . . . , n′ − 1, s = 1, 2 :

∣∣∣∣∣∣
1
n ∑

k∈D(n′)

∥∥∥yk −
√
SNR Ĥ

(T)
1,k x1,k −

√
SNR Ĥ

(T)
2,k x2,k

∥∥∥
2
− F(SNR)

∣∣∣∣∣∣
< δ



 (142)

for some δ > 0, with n′ given in (41) and D(n′) = {0, . . . , n′ − 1} ∩ D. Using F(SNR) and the typical
set Tδ, we continue by evaluating the GMI for each of the three probabilities on the RHS of (139),
which correspond to the error events (m′1 6= 1, m′2 = 1), (m′1 = 1, m′2 6= 1), and (m′1 6= 1, m′2 6= 1).

6.1. Error Event (m′1 6= 1, m′2 = 1)

Following the steps in Section 5.2 to derive (86), we can upper-bound the ensemble-average error
probability for the error event E(m′1, 1), m′1 6= 1 as

Pr




⋃

m′1 6=1

E(m′1, 1)





≤ enR1 · Pr
{

1
n
· D(m′1, 1) < F(SNR) + δ

∣∣∣∣
{(

Xn′
s (1), Yn′ , Ĥ(T),n′

s

)
, s = 1, 2

}
∈ Tδ

}

+ Pr
{{(

Xn′
s (1), Yn′ , Ĥ(T),n′

s

)
, s = 1, 2

}
∈ T c

δ

}
, m′1 6= 1. (143)

Note that the second probability on the RHS of (143) vanishes as n tends to infinity, which can be
shown along the lines of the proof of Lemma 2.

The GMI of user 1 gives the rate of exponential decay of the term

Pr
{

1
n
· D(m′1, 1) < F(SNR) + δ

∣∣∣∣
{(

Xn′
s (1), Yn′ , Ĥ(T),n′

s

)
, s = 1, 2

}
∈ Tδ

}
(144)
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as n→ ∞. Its evaluation requires the expression of the log moment-generating function of the metric
D(m′1, 1), conditioned on the channel outputs, on m′2 = 1, and on the fading estimates, which is
defined as

κ1,n

(
θ, yn′ , xn′

2 (1), Ĥ(T),n′
1 , Ĥ(T),n′

2

)

, logE


exp


 θ

n ∑
k∈D(n′)

Dk(m′1, 1)



∣∣∣∣∣∣

{(
yk, x2,k(1), Ĥ

(T)
1,k , Ĥ(T)

2,k

)
, k ∈ D(n′)

}

 (145)

where
Dk(m′1, m′2) ,

∥∥∥yk −
√
SNR Ĥ

(T)
1,k x1,k(m′1)−

√
SNR Ĥ

(T)
2,k x2,k(m′2)

∥∥∥
2

. (146)

Following the steps used in Section 5.2 to obtain (90) and (91), it can be shown that

κ1,n

(
θ, yn′ , xn′

2 (1), Ĥ(T),n′
1 , Ĥ(T),n′

2

)

= ∑
k∈D(n′ )

{
θ

n

(
yk −

√
SNR Ĥ

(T)
2,k x2,k(1)

)†
(
Inr −

θ

n
SNR Ĥ

(T)
1,k Ĥ

†(T)
1,k

)−1 (
yk −

√
SNR Ĥ

(T)
2,k x2,k(1)

)

− log det
(
Inr −

θ

n
SNR Ĥ

(T)
1,k Ĥ

†(T)
1,k

)}
. (147)

Then, following the steps used in Section 5.2 to derive (92)–(94), we obtain that, for all θ < 0,

lim
n→∞

1
n
· κ1,n

(
nθ, yn′ , xn′

2 (1), Ĥ(T),n′
1 , Ĥ(T),n′

2

)

=
1

L− nt,1 − nt,2

L−1

∑
`=nt,1+nt,2

(
g1,`(θ,SNR)− E

[
log det

(
Inr − θ SNR Ĥ(T)

1,` Ĥ
†(T)
1,`

)])
(148)

, κ1(θ,SNR), almost surely (149)

where the last step should be regarded as the definition of κ1(θ,SNR). In (148), we define

g1,`(θ,SNR) , E

[
θ
(

Y` −
√
SNR Ĥ(T)

2,` X2,`

)† (
Inr − θ SNR Ĥ(T)

1,` Ĥ
†(T)
1,`

)−1 (
Y` −

√
SNR Ĥ(T)

2,` X2,`

) ]
. (150)

Following the derivation in [16,17], we can then upper-bound

Pr




⋃

m′1 6=1

E(m′1, 1)



 ≤ exp (nR1) exp

(
−n
(

Igmi
1,T (SNR)− δ′

))
+ ε1(δ

′, n) (151)

for any δ′ > 0, and for some ε1(δ
′, n) satisfying

lim
n→∞

ε1(δ
′, n) = 0, δ′ > 0. (152)

On the RHS of (151), Igmi
1,T (SNR) denotes the GMI for user 1 as a function of the SNR for a fixed T, i.e.,

Igmi
1,T (SNR) =

L− nt,1 − nt,2

L

(
sup
θ<0

(
θF(SNR)− κ1(θ,SNR)

))
. (153)

The pre-factor (L− nt,1 − nt,2)/L equals the fraction of time used for data transmission. The bound
(151) implies that, for all rates below Igmi

1,T (SNR), the error probability in decoding user 1’s message for
the scheme described in Section 4 vanishes as n tends to infinity.
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Combining (141) and (148) with (153), we obtain that

Igmi
1,T (SNR) = sup

θ<0

1
L

L−1

∑
`=nt,1+nt,2

{
θ

(
nr + SNR E

[∥∥∥E(T)
1,`

∥∥∥
2

F
+
∥∥∥E(T)

2,`

∥∥∥
2

F

])
− g1,`(θ,SNR)

+ E
[
log det

(
Inr − θ SNR Ĥ(T)

1,` Ĥ
†(T)
1,`

)]}
. (154)

Since the supremum over θ < 0 is difficult to evaluate, we next consider a lower bound on Igmi
1,T (SNR).

By noting that g1,`(θ,SNR) ≤ 0 for θ ≤ 0 (which can be shown using the technique developed in ([29],
Appendix D), and by choosing

θ =
−1

nr + nr (nt,1 + nt,2) SNR ε2
∗,T

(155)

where

ε2
∗,T = max

s=1,2,
r=1,...,nr,
t=1,...,nt,s ,

`=nt,1+nt,2,...,L−1

E

[∣∣∣E(T)
s,` (r, t)

∣∣∣
2
]

(156)

we obtain the following lower bound on Igmi
1,T (SNR):

Igmi
1,T (SNR) ≥ 1

L

L−1

∑
`=nt,1+nt,2

E


 log det


Inr +

SNR Ĥ(T)
1,` Ĥ

†(T)
1,`

nr + nr (nt,1 + nt,2) SNR ε2
∗,T


− 1


. (157)

(As pointed out in Section 5, this choice of θ yields a good lower bound at high SNR.) We continue by
analyzing the RHS of (157) in the limit as the observation window T of the channel estimator tends
to infinity. To this end, we note that, for L ≤ 1

2λD
, the variance of the interpolation error tends to (15)

(with SNR in (15) replaced by ntSNR due to the difference between the point-to-point channel model
(1) and the MAC channel model (40)), so

lim
T→∞

E

[∣∣∣E(T)
s,` (r, t)

∣∣∣
2
]
= ε2 = 1−

∫ 1/2

−1/2

SNR [ fH(λ)]
2

SNR fH(λ) + L
dλ (158)

irrespective of s, `, r, and t. It follows that the estimate Ĥ(T)
1,` tends to H̄1 in distribution as T tends to

infinity, which implies that

Ĥ(T)
1,` Ĥ

†(T)
1,`

nr + nr (nt,1 + nt,2) SNR ε2
∗,T

d−→ H̄1H̄†
1

nr + nr (nt,1 + nt,2) SNR ε2 (159)

where the nr × nt,1 entries of H̄1 are i.i.d., circularly-symmetric, complex-Gaussian random variables
with zero mean and variance (1− ε2). Using Portmanteau’s lemma (as used in (109)), we obtain that

Igmi
1 (SNR) = lim

T→∞
Igmi
1,T (SNR) (160)

≥ L− nt,1 − nt,2

L


E

[
log det

(
Inr +

SNR H̄1H̄†
1

nr + nr (nt,1 + nt,2) SNR ε2

)]
− 1


 (161)

≥ L− nt,1 − nt,2

L
min(nr, nt,1)

[
logSNR− log

(
nr + nr(nt,1 + nt,2) SNR ε2

)]

+
L− nt,1 − nt,2

L
Ψ1 (162)
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where

Ψ1 ,

{
E
[
log det H̄1H̄†

1
]
− 1, nr ≤ nt,1

E
[
log det H̄†

1H̄1
]
− 1, nr > nt,1.

(163)

The inequality (162) follows by lower-bounding log det (I+ A) ≥ log detA.
By evaluating the limiting ratio of the RHS of (162) to logSNR as SNR tends to infinity following

similar steps as in Section 5.2.3, we obtain the following lower bound on the maximum achievable
pre-log of user 1:

ΠR∗1
≥ min(nr, nt,1)

(
1− nt,1 + nt,2

L

)
, L ≤ 1

2λD
. (164)

As in the point-to-point case, the condition L ≤ 1/(2λD) is necessary to obtain (15). The lower bound
(164) yields one boundary of the pre-log region presented in Theorem 2.

6.2. Error Event (m′1 = 1, m′2 6= 1)

The error event (m′1 = 1, m′2 6= 1) can be analyzed by swapping user 1 and user 2 and then using
the results obtained in the previous subsection for the error event (m′1 6= 1, m′2 = 1). We thus have the
lower bound

ΠR∗2 ≥ min(nr, nt,2)

(
1− nt,1 + nt,2

L

)
, L ≤ 1

2λD
(165)

which yields the second boundary of the pre-log region presented in Theorem 2.

6.3. Error Event (m′1 6= 1, m′2 6= 1)

For the error event (m′1 6= 1, m′2 6= 1), the analysis of the achievable sum rate follows the same
analysis as in the point-to-point case (Section 5.2). More specifically, the GMI Igmi

1+2,T(SNR) that describes
the exponential decay of the term

Pr
{

1
n
· D(m′1, m′2) < F(SNR) + δ

∣∣∣∣
{(

Xn′
s (1), Yn′ , Ĥ(T),n′

s

)
, s = 1, 2

}
∈ Tδ

}
(166)

can be viewed as the GMI of an nr × (nt,1 + nt,2)-dimensional point-to-point MIMO channel with

fading matrix [H1,k,H2,k] and fading estimate matrix
[
Ĥ(T)

1,k , Ĥ(T)
2,k

]
. The maximum achievable sum-rate

pre-log can therefore be obtained by following the same steps as in Section 5.2, but with arbitrary nr

and nt = nt,1 + nt,2. It can thus be shown that the maximum achievable sum-rate pre-log ΠR∗1+2
is

lower-bounded by

ΠR∗1+2
≥ min(nr, nt,1 + nt,2)

(
1− nt,1 + nt,2

L

)
, L ≤ 1

2λD
. (167)

On the RHS of (167), the term min(nr, nt,1 + nt,2) corresponds to the MIMO gain, which is given by

the minimum number of receive and transmit antennas, and the term
(

1− nt,1+nt,2
L

)
corresponds to

the fraction of time indices for data transmission. This yields the third boundary of the pre-log region
presented in Theorem 2.

7. Conclusions

In this paper, we studied a communication scheme for MIMO fading channels that estimates
the fading via transmission of pilot symbols at regular intervals and feeds the fading estimates to
the nearest neighbor decoder. Restricting ourselves to fading processes with a bandlimited power
spectral density, we studied the information rates achievable with this scheme at high SNR. Specifically,
we analyzed the achievable rate pre-log, defined as the limiting ratio of the achievable rate to the
logarithm of the SNR in the limit as the SNR tends to infinity.
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We showed that in order to obtain fading estimates whose variance vanishes as the SNR tends to
infinity, the portion of time required for pilot transmission must be greater than or equal to the number
of transmit antennas times twice the bandwidth of the fading power spectral density. We demonstrated
that in this case, the nearest neighbor decoder achieves the capacity pre-log of the coherent fading
channel times the fraction of time used for the transmission of data. Hence, the loss with respect to
the coherent case is solely due to the transmission of pilots used to obtain accurate fading estimates.
Our achievability bounds are tight in the sense that any scheme using as many pilots as our proposed
scheme cannot achieve a higher pre-log using a nearest neighbor decoder. Furthermore, if the inverse
of twice the bandwidth of the fading process is an integer, then, for MISO channels, our scheme
achieves the capacity pre-log of the noncoherent fading channel derived by Koch and Lapidoth [11].
For noncoherent MIMO channels, our scheme achieves the best so far known lower bound on the
capacity pre-log obtained by Etkin and Tse [12]. Since the last result only yields a lower bound on the
capacity pre-log of MIMO channels, there may exist other schemes achieving a better pre-log than our
scheme.
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Appendix A. Proof of Lemma 1

We prove each part of Lemma 1 in a separate item:

1. By the orthogonality principle [34], it follows that Ĥ(T)
k (r, t) and E(T)

k (r, t) are uncorrelated.
Noting that the pilot symbols are unity, we can write (72) as

Ĥ(T)
k (r, t) =

k+TL

∑
k′=k−TL:

k′∈P

ak′(r, t)

(√
SNR

nt
Hk′(r, t) + Zk′(r)

)
, k ∈ D. (A1)

Since the processes {Hk(r, t), k ∈ �} and {Zk(r), k ∈ �} are zero-mean complex-Gaussian,
we have from (A1) and the orthogonality principle that Ĥ(T)

k (r, t) and E(T)
k (r, t) are independent

zero-mean complex-Gaussian random variables.
2. Recall from Section 5.1 that the time index k can be written as k = jL + `. Then, for k ∈ D,

we have ` = nt, . . . , L− 1, and for k ∈ P we have ` = 0, . . . , nt − 1. Since the pilot vectors are
transmitted sequentially from p1 to pnt , we have for (jL + `) ∈ P that

xjL+` = p`+1, ` = 0, . . . , nt − 1. (A2)



Entropy 2020, 22, 971 30 of 34

That is, the pilot vectors that help estimate the fading coefficients from transmit antenna t are
transmitted at time instants whose remainder after division by L is equal to t− 1. This implies
that in order to estimate Hk(r, t), there is no loss in optimality by considering only the outputs
Yk′(r) for k′ ∈ P ∩ {k− TL, . . . , k + TL} satisfying

k′mod L = t− 1. (A3)

Indeed, the channel outputs Yk′(r), k′ mod L 6= t − 1 correspond to Hk′(r, t′), t′ 6= t, which
are independent from Hk(r, t) since we assumed that the fading processes corresponding to
different transmit and receive antennas are independent. It follows that for estimation at time
k = jL + `, the coefficients ak′(r, t) that minimize the mean-squared error depend only on L and `

[23]. The fading estimate (72) can then be expressed as

Ĥ(T)
jL+`(r, t) =

T−1

∑
τ=−T

α−τL,`(r, t)Y(j−τ)L+t−1(r) (A4)

=
T−1

∑
τ=−T

α−τL,`(r, t)

(√
SNR

nt
H(j−τ)L+t−1(r, t) + Z(j−τ)L+t−1(r)

)
(A5)

where for a given L and ` = nt, . . . , L− 1, we defined

α−τL,`(r, t) , a(j−τ)L+t−1(r, t), τ = −T, . . . , T − 1. (A6)

Noting again that the nr · nt processes {Hk(r, t), k ∈ �} are independent from each other and
have the same law, we obtain the following results from (A5):

(a) For a given t, the time differences between the index of interest (jL + `) and the positions of
pilots ((j− τ)L + t− 1) do not depend on r. It thus follows that for a given t, the optimal
coefficients α−τL,`(r, t) are identical for all r = 1, . . . , nr [23]. This implies that for a given t
and `, the nr processes

{(Ĥ(T)
jL+`(1, t), E(T)

jL+`(1, t)), j ∈ �}, . . . , {(Ĥ(T)
jL+`(nr, t), E(T)

jL+`(nr, t)), j ∈ �} (A7)

are independent and have the same law.
(b) For a given r, the time differences between the index of interest (jL + `) and the position of

pilots ((j− τ)L + t− 1) depend on t. It thus follows from [23] that for a given r, the optimal
coefficients α−τL,`(r, t) are generally different for t = 1, . . . , nt. This implies that for a given
r and `, the nt processes

{(Ĥ(T)
jL+`(r, 1), E(T)

jL+`(r, 1)), j ∈ �}, . . . , {(Ĥ(T)
jL+`(r, nt), E(T)

jL+`(r, nt)), j ∈ �} (A8)

are independent but have different laws.

3. We first note that {Hk, k ∈ �} is an ergodic Gaussian process, which implies that it is also weakly
mixing [35]. (See [36] for a definition of a weakly-mixing process.) Since {Zk, k ∈ �} is an i.i.d.
Gaussian process and independent from {Hk, k ∈ �}, it follows from ([36], Proposition 1.6) that
{(Hk, Zk), k ∈ �} is jointly ergodic.

We next evaluate the process {(Ĥ(T)
k ,Hk, Zk), k ∈ D}. Please note that this process cannot

be expressed directly as a time-invariant function of {(Hk, Zk), k ∈ �}. Indeed, by assuming
k = jL+ `, we can see from (A5) that the function to produce Ĥ(T)

k from {(Hk, Zk), k ∈ �} depends
on the time index k via `. To sidestep this problem, and to facilitate the analysis, we introduce a
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“dummy” matrix-valued process {Ak,`, k ∈ �} of dimension nr × nt, where the row-r column-t
entry of Ak,` is given by

Ak,`(r, t) =
T−1

∑
τ=−T

α−τL,`(r, t)

(√
SNR

nt
Hk−τL−`+t−1(r, t) + Zk−τL−`+t−1(r)

)
. (A9)

Here the coefficients α−τL,`, τ = −T, . . . , T have the same value as those in (A5) for a given L
and `. Consequently, for every ` = nt, . . . , L− 1, the process {Ak,`, k ∈ �} is a time-invariant

function of {(Hk, Zk), k ∈ �} that coincides with Ĥ(T)
k for k = jL + `. This in turn implies that for

every ` = nt, . . . , L− 1, the process {(Ak,`,Hk, Zk), k ∈ �} is jointly weakly mixing. Furthermore,
by the definition of weakly mixing [35–37], the process {(AjL+`,`,HjL+`, ZjL+`), j ∈ �} (for
every ` = nt, . . . , L− 1) is also jointly weakly mixing. Since for k = jL + `, k ∈ D, the matrix
AjL+`,` is identical to Ĥ(T)

jL+`, it follows that the process {(Ĥ(T)
jL+`,HjL+`, ZjL+`), j ∈ �} (for every

` = nt, . . . , L− 1) is jointly weakly mixing, which implies ergodicity.

We finally evaluate the joint behavior of the two processes {(Ĥ(T)
jL+`,HjL+`, ZjL+`), j ∈ �} and

{XjL+`, j ∈ �} for ` = nt, . . . , L− 1. Since, for every ` = nt, . . . , L− 1, the process {XjL+`, j ∈ �}
is i.i.d. and independent from {(Ĥ(T)

jL+`,HjL+`, ZjL+`), j ∈ �}, we have by ([38], Lemma 2) that

{(Ĥ(T)
jL+`, HjL+`, ZjL+`, XjL+`), j ∈ �}, ` = nt, . . . , L− 1 (A10)

is jointly ergodic.

4. Please note that the process {Ĥ(T)
k , k ∈ D} is a function of {(Hk, Zk), k ∈ P}. Since {Zk, k ∈ D}

has zero mean and is independent from {(Hk, Zk), k ∈ P} and {Xk, k ∈ D}, it follows that for
every of ` = nt, . . . , L− 1 (which correspond to k ∈ D),

E
[

Z†
` Ĥ

(T)
` X`

]
= 0. (A11)

Appendix B. Variance of the Interpolation Error for L > 1
2λD

Recall that the variance of the interpolation error tends to the following value as T tends to infinity:

ε2
`(t) = 1−

∫ 1/2

−1/2

SNR
∣∣ fL,`−t+1(λ)

∣∣2

SNR fL,0(λ) + nt
dλ (A12)

where

fL,`(λ) =
1
L

L−1

∑
ν=0

f̄H

(
λ− ν

L

)
ei2π` λ−ν

L , −1
2
≤ λ ≤ 1

2
. (A13)

This can be lower-bounded as

ε2
`(t) =

∫ 1/2

−1/2

nt fL,0(λ)

SNR fL,0(λ) + nt
dλ +

∫ 1/2

−1/2

SNR
(
[ fL,0(λ)]

2 −
∣∣ fL,`−t+1(λ)

∣∣2
)

SNR fL,0(λ) + nt
dλ (A14)

≥
∫ 1/2

−1/2

SNR
(
[ fL,0(λ)]

2 −
∣∣ fL,`−t+1(λ)

∣∣2
)

SNR fL,0(λ) + nt
dλ (A15)
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where the inequality follows because the first integral in (A14) is nonnegative. Defining `′ , `− t + 1,
we next note that

[ fL,0(λ)]
2 −

∣∣ fL,`′(λ)
∣∣2 =

1
L2

L−1

∑
ν=0

L−1

∑
ν′=0,
ν′ 6=ν

f̄H

(
λ− ν

L

)
f̄H

(
λ− ν′

L

) [
1− ei2π`′ λ−ν

L · e−i2π`′ λ−ν′
L

]
(A16)

=
2
L2

L−1

∑
ν=0

L−1

∑
ν′>ν

f̄H

(
λ− ν

L

)
f̄H

(
λ− ν′

L

) [
1− cos

(
2π`′

ν′ − ν

L

)]
. (A17)

Since the summands are nonnegative, it follows that

[ fL,0(λ)]
2 −

∣∣ fL,`′(λ)
∣∣2 ≥ 2

L2 f̄H

(
λ

L

)
f̄H

(
λ− 1

L

) [
1− cos

(
2π`′

L

)]
. (A18)

The RHS of (A15) can thus be lower-bounded as

∫ 1/2

−1/2

SNR
(
[ fL,0(λ)]

2 −
∣∣ fL,`′(λ)

∣∣2
)

SNR fL,0(λ) + nt
dλ ≥

2
[
1− cos

(
2π`′

L

)]

L2

∫

L

SNR f̄H

(
λ
L

)
f̄H

(
λ−1

L

)

SNR fL,0(λ) + nt
dλ (A19)

where L denotes the interval in [−1/2, 1/2] where f̄H

(
λ
L

)
and f̄H

(
λ−1

L

)
overlap.

We next express L as

L =
1

2λD
+ ε (A20)

for some ε > 0. Then, the interval L is of Lebesgue measure

µ (L) = min(1, 2λDε). (A21)

By Fatou’s lemma [39], we obtain that

lim inf
SNR→∞

2
[
1− cos

(
2π`′

L

)]

L2

∫

L

SNR f̄H

(
λ
L

)
f̄H

(
λ−1

L

)

SNR fL,0(λ) + nt
dλ

≥
2
[
1− cos

(
2π`′

L

)]

L2

∫

L
lim inf
SNR→∞

SNR f̄H

(
λ
L

)
f̄H

(
λ−1

L

)

SNR fL,0(λ) + nt
dλ (A22)

=
2
[
1− cos

(
2π`′

L

)]

L2

∫

L

f̄H

(
λ
L

)
f̄H

(
λ−1

L

)

fL,0(λ)
dλ. (A23)

Since L is of positive Lebesgue measure, and since the integrand on the RHS of (A23) is strictly positive,
it follows that [40]

∫

L

f̄H

(
λ
L

)
f̄H

(
λ−1

L

)

fL,0(λ)
dλ > 0. (A24)

Furthermore, for `′ = `− t + 1 and ` = nt, . . . , L− 1, we have

cos
(

2π`′

L

)
< 1. (A25)

Consequently, combining (A25) and (A24) with (A23), (A19), and (A15), we obtain the desired result

lim inf
SNR→∞

ε2
`(t) > 0. (A26)
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