
Multiuser Detection with
an Unknown Number of Users
in the Large System Regime

A. Tauste Campo, A. Guillén i Fàbregas
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Abstract

We analyze multiuser detection under the assumption that the number of users accessing the channel is unknown
by the receiver. In this environment, users’ activity must be estimated along with any other parameters such as data,
power, location, etc. Our main goal is to determine the performance loss caused by the need for estimating the
identities of active users, which are not known a priori. To prevent a loss of optimality, we assume that identities and
data are estimated jointly, rather than in two separate steps. We examine the performance of multiuser detectors when
the number of potential users is large. Statistical-physics methodologies are used to determine two macroscopic
performance parameters of the detector, viz., its multiuser efficiency and its spectral efficiency. A special attention
is paid to the fixed-point equation whose solution yields the multiuser efficiency of the optimal (maximum a
posteriori) detector in the large signal-to-noise ratio regime. Our analysis yields closed-form approximate bounds
to the minimum mean-squared error in this regime. These illustrate the set of solutions of the fixed-point equation,
and their relationship with the maximum system load. Next, we study the maximum load that the detector can
support for a given quality of service (specified by error probability), as well as the system spectral efficiency and
the capacity of the system.
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I. INTRODUCTION

In multiple-access communication, the evolution of user activity may play an important role. From
one time instant to the next, some new users may become active and some old users inactive, while
parameters of the persisting users, such as power or location, may vary. Now, most of the available
multiuser detection (MUD) theory is based on the assumption that the number of active users is constant,
known at the receiver, and equal to the maximum number of users entitled to access the system [1]. If
this assumption is not verified, the receiver may exhibit a serious performance loss [2], [3]. In [4], the
more realistic scenario in which the number of active users is unknown a priori, and varies with time
with known statistics, is the basis of a new approach to detector design. The present work follows in the
footsteps of [4], and is devoted to large-system analysis of this new type of detectors for Code Division
Multiple Access (CDMA). Our main goal is to determine the performance loss caused by the need for
estimating the identities of active users, which are not known a priori. To prevent a loss of optimality, we
assume that identities and data are estimated jointly, rather than in two separate steps. Our interest is in
randomly spread CDMA system in terms of multiuser and spectral efficiency, whose natural dimensions
(number of users K, and spreading gain N ) tend to infinity, while their ratio (the “system load”) is kept
fixed. In particular, we consider the optimal maximum a posteriori (MAP) multiuser detector, and use
tools recently adopted from statistical physics [5], [6], [9], [7], [8]. Of special relevance in our analysis is
the decoupling principle introduced in [6] for randomly spread CDMA. The general results derived from
asymptotic analysis are validated by simulations run for a limited number of users [8].

In [10], the same analysis tools were applied to the static channel model described in [4], and used to
derive asymptotic multiuser efficiency and bit error probability of a receiver performing joint estimation
of user activity and data. The results of this report are an extension of those in [10], and focus on the
degradation of multiuser efficiency and bit error probability when the uncertainty on the activity of the
users grows. Asymptotic single-user capacity and spectral efficiency of the multiuser channel were derived
in [11]. Here, we go one step beyond to provide an asymptotic analysis, in the large-system limit, of the
effect of the activity factor on certain CDMA performance measures (minimum mean-square error, and
multiuser efficiency).

This report is organized as follows. Section II introduces the system model and the main notations
used throughout. Section III derives the large-system central fixed-point equation, and analytical bounds
to the MMSE. Based on these results, Section IV discusses the interplay of maximum system load and
multiuser efficiency. From the same asymptotic perspective, Section V analyzes the single-user capacity
and spectral efficiency of the system. Finally, Section VI draws some concluding remarks. Proofs of some
results can be found in the Appendix.

II. SYSTEM MODEL

We consider static CDMA [4], and examine the optimum user-and-data detector. In particular, we study
randomly spread direct-sequence (DS) CDMA with a maximum of K active users, where the received
signal at time t is

yt = SA bt + zt (1)

where yt ∈ RN , with N the length of the spreading sequences, S ∈ RN×K is the matrix of the sequences,
A = diag(a1, . . . , aK) ∈ RK×K is the diagonal matrix of the users’ signal amplitudes, bt = (b1

t , . . . , b
K
t ) ∈

RK is the users’ data vector, and zt is an additive white Gaussian noise vector with i.i.d. entries ∼ N (0, 1
2
).

We assume that ak =
√

γ, where γ is the average received signal-to-noise ratio (SNR)1. We define the
system’s activity rate as α , Pr{user k is active}, 1 ≤ k ≤ K. Active users employ binary phase-shift
keying (BPSK) with equal probabilities. This scheme is equivalent to one where each user transmits

1The analysis presented in this report can be easily extended to different statistics of the ak coefficients, like for example those induced
by Rayleigh fading.
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a ternary constellation X , {−1, 0, +1} with probabilities Pr{bk
t = −1} = Pr{bk

t = +1} = α
2

and
Pr{bk

t = 0} = 1− α. We define the maximum system load as β , K
N

.
In a static channel model, the detector operation remains invariant along a data frame, indexed by t,

but we often omit this time index for the sake of simplicity. Assuming that the receiver knows S and A,
the a posteriori probability (APP) of the transmitted data has the form

p(b|y, S, A) =
1√
π

e−‖y−SA b‖2 p(b)

p(y|S, A)
. (2)

Hence, the maximum a posteriori (MAP) joint activity-and-data multiuser detector solves

b̂ = arg max
b∈XK

p(b|y, S, A) (3)

Similarly, optimum detection of single-user data and activity is obtained by marginalizing over the
undesired users as follows:

b̂k = arg max
bk

∑
b∈{XK\bk}

p(b|y, S, A). (4)

A. The random-set perspective
The assumption of an unknown number of users in multiuser detection suggests Random-Set Theory

(RST) as a tool for system analysis. From this perspective, RST, as used in [12], [4], yields a flexible and
mathematically consistent framework for the problem under study. In fact, it naturally allows consideration
of randomness not only in the data detected but also in the set of active users. This new approach leads to
novel multiuser detectors (RST detectors), which improve on the bit error probability (BEP) performance
with respect to detectors based on the assumption that K users are always simultaneously active [4].

A random set is a map from a sample space Ω to a family of subsets of a given space S. In the model
we present, the space S is formed by the unknown data and parameters of the active interferers. Thus,
the information carried by the users at time t can be modeled as a random set:

X t = {x(1)
t , . . . ,x

(k)
t } (5)

whose elements (the parameters) are random vectors, and k (the number of active interferers) is itself a
random integer taking values in the interval [0, K−1]. If everything about the interferers is known except
their number and identity, then all random sets X t belong to the power set 2K , 2{1,...,K}. Additionally, if
we want to detect the (binary) data that the interferers transmit, X t takes values in a set with 3K elements,
denoted 3K. Our objective here is to detect the number and identity of active interferers as well as the
data they carry, assuming that the remaining parameters do not change during the tracking phase. Thus,
time subscripts can be omitted, and the probability of interferer set X depends only on its cardinality
|X|. If we assume the transmission scheme introduced before, the prior random set distribution in this
detection scenario turns out to be [4]

fX(B) = 2−`|B|α|B|(1− α)K−|B| (6)

where B is a realization of the random set X .

B. Statistical-physics approach to large-system analysis of classic MUD
Of late, the theory of multiuser detection has received important contributions stemming from a large-

system approach. Some of them are due to Tanaka [5], who used statistical physics concepts and method-
ologies in multiuser detection to obtain large-system uncoded minimum BER and spectral efficiency with
equal-power binary inputs. Tanaka’s pioneering approach inspired additional work. Reference [14] studies
the channel capacity, while [6] presents a unified treatment of Gaussian CDMA channels and multiuser
detection in the large-system limit with arbitrary input distribution and flat fading.
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The core of the application of statistical physics to communication problems lies in the concept of free
energy. In statistical physics, the free energy F (X) (where X is the state variable) relates the energy
ε(X) and the entropy H(X) of a physical system of particles in the following way:

F (X) = ε(X)− TH(X) (7)

where T is the temperature of the system. At thermal equilibrium the free energy (7) is minimized, since
the entropy is maximized, as time evolves, following the second law of thermodynamics. Under these
conditions, the free energy can also be expressed as

F (X) = −T ln Z(X) (8)

where Z(X) =
∑

x exp
(
− ε(x)

T

)
is called the partition function, x denotes each microscopic value, ε(.)

is the energy operator, and the temperature T ≥ 0 reflects the energy constraint. A key point here is that
the free energy, as normalized to the dimension of the system, is a self-averaging quantity, which means
that it tends to its expectation as the system dimension grows to infinity. The free energy is the starting
point for calculating macroscopic properties of a thermodynamic system.

In communications systems, the role of the energy function can be played by the metric of a detector in
a multiuser channel. Therefore, by assuming for the system under study the self-averaging property, any
detector parametrized by a certain metric can be analyzed with the tools of statistical mechanics to derive
results in the large-system limit. Hence, the calculation of the limiting free energy at equilibrium, i.e.,
the logarithm of the inverse of the partition function (8), leads to the characterization of the large-system
detector performance in terms of its macroscopic parameters such as multiuser and spectral efficiency.

In a communications scheme such as the one modeled by (2), the goal of the multiuser detector is to
infer the information-bearing symbols given the received signal y and the knowledge about the channel
state. This leads naturally to the choice of the partition function Z(y, S) = p(y | S). The corresponding
free energy, normalized by the number of users and with the choice T = 1, becomes

FK , − 1

K
ln p(y | S) (9)

To calculate this expression we make the self-averaging assumption, which states that the randomness
of (9) vanishes as K → ∞. This is tantamount to saying that the free energy per user FK converges in
probability to its expected value over the distribution of the random variables y and S, denoted by

F , lim
K→∞

E
{
− 1

K
ln p(y | S)

}
. (10)

Evaluation of (10) is made possible by the replica method[7], [9], which consists of introducing n
independent replicas of the input variables, with corresponding density pn(y|S), and computing F as
follows:

F = − lim
n→0

∂

∂n

(
lim

K→∞

1

K
ln E{pn(y | S)}

)
(11)

The equivalence between (10) and (11) uses the following equality:

lim
n→0

∂

∂n
ln E{Zn} = E{ln Z} (12)

under the assumption that Zn = pn(y | S) is valid for all real valued n in the vicinity of n = 0, and that
the limits in K and n can be interchanged.
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C. The statistical-physics framework for MUD with an unknown number of users
Our large-system analysis is based on the assumption that the performance measures are self-averaging

as K grows to infinity. Now, in our multiuser system, the number of active users is not known at the
receiver, and activity is jointly detected with the data. Thus, previous results cannot be directly applied,
because K, a random variable, cannot be used as the normalizing constant in the free energy function. A
simple and sensible way to circumvent this problem consists of assuming a ternary constellation {±1, 0},
where 1 and −1 account for BPSK transmission, whereas symbol 0 represents inactivity. This method
allows us to keep (9) invariant.

An alternative solution might be the reformulation of the free energy approach by defining a new
random variable, Xk, denoting the number of users. Such a formulation would imply the following:

1) Since the normalization quantity is a random variable, the expectation in the free energy must also
be performed over the distribution of Xk (binomial, according to (6)).

2) The limit in the free energy must be performed over the mean of Xk, i.e., αK.
3) If we consider K to be the effective number of users, the detection only refers to data, since the

active users are only transmitting BPSK.
4) Since K is placed outside the logarithm, a modified partition function should be defined as

Ẑn = p
n/K
Y |S (y, S)

to verify (12).
Regardless of last consideration, which might lead to a more complex analysis, the most crucial point is
that user identification is part of the estimation in our problem, and therefore, the alternative analysis can
be used when only the estimation of the parameters of active users is of concern.

In conclusion, to the purpose of activity estimation in the large-system limit, we choose the approach
based on the equivalent ternary representation of the random set distribution (6), with K the number of
potential users accessing the multiuser channel.

D. The decoupling principle
To compute the free energy through replica analysis, one of the cornerstones in large deviation theorem,

the Varadhan’s theorem [15], is invoked to transform the calculation of the limiting free energy into a
simplified optimization problem, whose solution is assumed to exhibit symmetry among its replicas. More
specifically, in the case of a MAP individually optimum detector, the optimization yields a fixed-point
equation, whose unknown is a single operational macroscopic parameter, which is claimed to be the
multiuser efficiency (which reflects the degradation factor of SNR due to interference) of an equivalent
Gaussian channel [6]. Due to the structure of the optimization problem, the multiuser efficiency must
minimize the free energy. The above is tantamount to formulating the decoupling principle:

Claim 2.1: [6], [8] Given a multiuser channel, the distribution of the output b̂k of the individually
optimum (IO) detector, conditioned on bk = b being transmitted with amplitude a, converges to the
distribution of the posterior mean estimate of the single-user Gaussian channel

y =
√

γbk +
1
√

η
z (13)

conditioned on bk = b being transmitted, where z ∼ N (0, 1), and η, the multiuser efficiency, is the solution
of the following fixed-point equation:

η−1 = 1 + βEγ [γMMSE (γ, η, α)] . (14)

If (14) admits more than one solution, we must choose the one minimizing the free energy function

F = −E
[∫

p(y | bk) ln p(y | bk)dy

]
− 1

2
ln

2πe

η
+

1

2β

(
η ln e + ln

2πe

η

)
. (15)



6

In (14)-(15), p(y | bk) is the transition probability of the large-system equivalent single-user Gaussian
channel described by (13), and

MMSE(γ, η, α) , E
[(

bk − b̂k
)2
]

(16)

denotes the minimum mean-square error in estimating bk in Gaussian noise with amplitude equal to
√

γ,
where b̂k = E

[
bk|y

]
is the posterior mean estimate, known to minimize the MMSE [16].

E. A note on the validity of the replica method
We hasten to observe that, in spite of its approximating very well experimental data and being consistent

with previous theoretical work [13], [17], [18], replica method analysis relies on some unproved assump-
tions: the self-averaging property of the free energy, the replica symmetry of the fixed-point solution, and
the exchange of order of limits and analytic continuation of (12) to real n. Although the validation of the
mathematical rigor of these assumptions is still an unsolved problem, there has been some recent progress
in this direction [19], [20], [21].

III. LARGE-SYSTEM MULTIUSER EFFICIENCY

We illustrate here the behavior of multiuser efficiency and system load in the high-SNR region cor-
responding to detection with an unknown number of users. We start by shaping our problem into the
statistical-physics framework [5], [6]. As mentioned earlier, the multiuser detector metric is regarded
as the energy of a system of particles at state X . Therefore, the role of the partition function Z(X) =∑

x exp (−ε(x)/T ) is played by the output density given the channel information, i.e., p(y|S) = π−1/2
∑

b p(b) exp (−‖y − SA b‖2).
The energy operator ε(.), as derived from the free energy, is related to the logarithm of the joint

distribution p(y | b, S)p(b):
ε(b) = ‖y − SAb‖2 − ln p(b) (17)

We can now invoke the decoupling principle (Claim 2.1) in the multiuser system (1), so as to use its
single-user characterization. By doing this, the system is converted into the scalar Gaussian channel (13),
where the input distribution for an arbitrary user k takes values X = {−1, 0, +1} with probabilities
α
2
, 1− α and α

2
, respectively, the signal amplitudes from matrix A are a =

√
γ, where γ is the SNR per

active user (we shall call it SNR), and the inverse noise variance is equal to the multiuser efficiency η.
Hence, η is the solution of the fixed-point equation (14) that minimizes (15), where the MMSE is given
by (16).

Our main results regarding joint multiuser identification and detection are stated as follows:
Proposition 3.1: Given a randomly spread DS-CDMA system with constant equal power per user,

the large-system multiuser efficiency of an individually optimum detector that performs MAP estimation
of users’ identities and their data under BPSK transmission is the solution of the following fixed-point
equation

η =
1

1 + β

(
γ

[
α−

∫
1√
2π

e
−y2

2
α2 sinh(ηγ−y

√
ηγ)

α cosh(ηγ−y
√

ηγ)+(1−α)eη
γ
2

dy

]) (18)

that minimizes the free energy (15).
Proof: See Appendix I.

Our approach differs from that in [6], [14], [5], as the fixed-point equation (18) includes also for the
prior distribution resulting from (6), which accounts for the users’ activity in a static channel. Under MAP
estimation, detection requires the knowledge not only of the prior information of the data, but also of
the activity rate α. Thus, the fixed-point equations depend on MMSE, SNR, and system load. Numerical
solutions vs. SNR at a load β = 3/7 are shown in Fig. 1. Plots like this one illustrate how the multiuser
efficiency is affected by the level of noise and interference, and by the uncertainty in the users’ activity
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Fig. 1. Large-system multiuser efficiency of the user-and-data detector under MAP with prior knowledge of α and β=3/7.

rate. For low SNR, noise dominates, and the performance of the MMSE and the multiuser efficiency
is degraded as α grows, since the presence of more active users adds more noise to the system. On
the other hand, as we shall discuss later, for high SNR the MMSE strongly depends on the minimum
distance between the transmitted symbols, and the activity rate here plays a secondary role. Hence, the
gap between the multiuser efficiencies with α = 1 and α 6= 1 for larger SNR is due to the fact that the
former constellation has twice the minimum distance of the latter. We can observe clearly the transition
behavior from low to high SNR for values of α approaching 1. Moreover, when α = 1, (18) reduces to
the fixed-point equation for the classic assumption, in which all users are active and transmit a binary
antipodal constellation [6]:

η−1 = 1 + β

(
γ

[
1−

∫
1√
2π

e−y2/2 tanh(ηγ − y
√

ηγ)dy

])
(19)

In this case, it can be shown that, for high SNR, we have MMSE(γ, η, α = 1) ≈
√

2π
ηγ

e−ηγ/2. In fact, the
following general result holds:

Lemma 3.2: [22] For large output SNR, the MMSE of a system transmitting an equiprobable M -ary
normalized constellation with minimum Euclidean distance d in a Gaussian channel with noise variance
1/η is:

MMSE(γ, η, α = 1) = κ(η, γ)e−d2ηγ/8 (20)

with κ1(η, γ) ≤ κ(η, γ) ≤ κ2, where κ1(η, γ) = O(1/
√

ηγ) and κ2 is a constant, given by the maximum
distance between neighboring symbols.

For the whole range of activity rates, i.e., α ∈ [0, 1], we can derive lower and upper bounds illustrating
analytically the transition between the classical assumption (α = 1) and the introduction of activity
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detection (α < 1) for large SNR. Our calculations bring about a new analytical framework to deal with
large-system analysis, as we will see in next section. Our bounds are consistent with lemma 3.2 and the
lower bound includes the case α = 1. The general result is stated as follows:

Theorem 3.3: The MMSE of joint user identification an data detection in a large system with an
unknown number of users has the following behavior, valid for large values of the product ηγ:

κ1(γ, η, α) ≤ MMSE(γ, η, α) ≤ κ2(γ, η, α) (21)

where

κ1(γ, η, α) = 2

√
α(1− α)

πηγ
e−ηγ/8 (22)

and

κ2(γ, η, α) = 2αe−ηγ/2 +

√
πα(1− α)

ηγ
e−ηγ/8 (23)

Proof: See Appendix II.
Bounds (22) and (23) describe explicitly, in the high-SNR region, the relationship between the MMSE,

the users’ activity rate, and the SNR. In Fig. 2 these bounds are compared to the true MMSE values as a
function of γ for fixed α. It can be seen that the uncertainty on the users’ activity modifies substantially
the exponential decay of the MMSE for high SNR. In fact, a value of α different from 1 causes the
MMSE to decay as exp(−ηγ/8), rather than as exp(−ηγ/2), which would be the case when all users are
active. Furthermore, we can observe that, for sufficiently large SNR, the behavior vs. α of the optimal
detector is symmetric with respect to α = 1/2, which corresponds to the maximum uncertainty on the
activity rate. As plotted in Fig. 3, for large SNR, the MMSE essentially depends on the minimum distance
between the inactivity symbol {0} and the data symbols {−1, 1}, and thus users’ identification prevails
over data detection. Summarizing, the dependence of the MMSE must be symmetrical with respect to
α = 1/2, since it reflects the impact of prior knowledge on the user’s activity into the estimation.

IV. SYSTEM LOAD AND RELATED CONSIDERATIONS

Recall the definition of maximum system load β = K
N

, where K is the maximum number of users
accessing the multiuser channel. When the number of active users is unknown, and there is a priori
knowledge of the activity rate, the actual system load is β′ = αβ. In this section, we focus on β and
study some of its properties. Notice that, given an activity rate, results on the actual system load follow
trivially.

A. Solutions of the large-system fixed-point equation
We characterize the behavior of the system load subject to quality-of-service constraints. Doing this

helps shedding light into the nature of the solutions of the fixed-point equation (18). In particular, there
might be cases where (18) has multiple solutions. These solutions correspond to those appearing in any
simple mathematical model of magnetism based on the evaluation of the free energy with the fixed-
point method [7]. They represent what in the statistical physics parlance is called phase coexistence (for
example, this occurs in ice or liquid phase of water at 0

oC). In particular, at low temperature, the magnetic
system might have 3 solutions 0 ≤ Ψ1 < Ψ2 < Ψ3 ≤ 1. Solutions Ψ1 and Ψ3 are stable: one of them
is globally stable (it actually minimizes the free energy), whereas the other is metastable, and a local
minimum. Solution Ψ2 is always unstable, since it is is a local maximum. The “true” solution is therefore
given by Ψ1 and Ψ3, for which the free energy is a minimum. The same consideration applies also to
our multiuser detection problem where multiuser efficiencies for the IO detector might vary significantly
depending on the value of the system load and SNR. More specifically, for large enough SNR, stable
solutions may switch between a region that approaches the single-user performance (η = 1 − ε1) and a
region approaching the worst performance (η = ε0), for 0 < ε1, ε0 � 1. Following previous literature [5],
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Fig. 2. Comparing exact MMSE with its upper and lower bounds for α = 0.5.
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we shall call the former solutions good and the latter bad. When the solution is unique, due to low or high
system load, the multiuser efficiency is a globally stable solution that lies in either the good or the bad
solution region. Then, for given system parameters, the set of operational (or globally stable) solutions
is formed by solutions that lie on any of these sets and minimize the free energy.

It is interesting to discuss the relevance of good and bad solutions in our problem. From a computational
perspective, we are particularly interested in single solutions, either bad or good, that surely avoid
metastability and instability. These solutions belong to a specific subregion within the bad and good
regions, and appear for low and high SNR, respectively. In an information-theoretic perspective, it might
seem that the true solutions should capture all our interest. However, it has been shown that metastable
solutions appear in suboptimal belief-propagation-based multiuser detectors, where the system is easily
attracted into the bad solutions region (that corresponding to low multiuser efficiency), due to initial
configurations far from the true solution [8]. Moreover, the region of good solutions has interest in the
high-SNR analysis, because, for a given system load, it can be observed that the multiuser efficiency
tends to 1, consistently with previous theoretical results [17]. In what follows, we provide an analysis of
the boundaries of the stable solutions regions, as well as their computationally feasible subregions with
practical interest in the low and the high SNR regime.
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Fig. 4. Fixed-point solutions (marked by circles) for different values of β and fixed α = 0.5, and γ = 18dB.

We can have a quantitative illustration of the above considerations by plotting the left- and right-hand
sides of (18) to obtain fixed points for constant values of amplitude and activity rate, and as a function
of the system load. Solutions of (18) are found at the intersection of the curve corresponding to the
right-hand side with the y = η line. Fig. 4 plots different solutions of the right-hand side of (18) for
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increasing system load, α = 0.5 and γ = 18 dB:

W (γ, η, α) ,
1

1 + βγMMSE(γ, η, α)

Notice first that the structure of the fixed-point equation does not allow in general the solution η = 0,
and for finite γ and β, η = 1 is also avoided. In fact, the latter is an asymptotic solution for large SNR
and certain system loads, as the MMSE decays exponentially to 0. From Fig. 4, one can observe phase
transitions and the coexistence of multiple solutions. In particular, we observe that for β = 3/7 the good
solution is computationally feasible. On the other hand, for β = 1 and β = 10 the system has 3 solutions,
where the true solution belongs to either the bad or the good solution region. When the system load
achieves β = 30, the curve only intersects the identity near 0, and the operational solution is unique and
lies in a subregion of the bad solutions.

B. System load and the space of fixed-point solutions
Even in the case of good solutions, the multiuser efficiency can be greatly degraded by the joint effect

of the activity rate and the system load. In order to analyze the fixed-point equation (18) from a different
perspective and shed light into the interplay between these parameters, we express the maximum system
load as the following function, derived from (18):

Υβ(γ, η, α) ,
(1− η)

ηγMMSE(γ, η, α)
(24)

Since MMSE is a continuous function for η, then Υβ(., η, .) is a continuous function in any compact set
over the domain (0, 1] for given SNR and activity rate. It is also easy to observe that, for small values
of η, Υβ(γ, ., α) tends to infinity, whereas in the high-η region, which is of interest here, it decays to 0.
Before analyzing the behavior of (24), we introduce a few definitions that help describe the boundaries
between the regions with and without coexistence (in the statistical-physics literature, these boundaries
are called spinodal lines [5]). We also define appropriately the regions of potentially stable solutions as
introduced before.

Definition 4.1: The critical system load β?(γ, α) is the maximum load up to which a stable good
solution of (18) exists.

Definition 4.2: The transition system load β?(γ, α) is the load at which the true solution of (18), η?

starts to coexist with other solutions η′?.
Definition 4.3: The good solution region corresponds to the domain of (24) formed by the maximum

η in every set of pre-images of Υβ below the critical system load:

Rg =
{
η ∈ [0, 1], η = max{Υ−1

β (β)},∀β ∈ [0, β?]
}

(25)

Similarly, the bad solution region corresponds to the domain of (24) formed by the minimum η in every
set of pre-images of Υβ above the transition system load:

Rb =
{
η ∈ [0, 1], η = min{Υ−1

β (β)},∀β ∈ [β?, +∞]
}

(26)

Fig. 5 illustrates Υβ (for fixed SNR and activity rate) and shows the regions defined by the aforemen-
tioned parameters. It is important to remark that both system loads defined above delimit the regions from
which there is phase coexistence (β? ≤ β ≤ β?) from the areas where there is one solution (β > β? or
β < β?). Additionally, Fig. 5 illustrates the set of solutions that satisfy conditions (25), (26).

As illustrated by the plots, it seems useful to define analytically the domain where stable solutions can
be found. Before doing this, we differentiate for convenience the case with unknown number of users
α ∈ (0, 1), from the case where all users are active (α = 1). We do not consider the case α = 0.
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Fig. 5. System load function in the multiuser efficiency domain for α = 0.5 and γ = 18dB.

1) Case α ∈ (0, 1): In order to analyze the conditions on the system load, SNR, and activity rate,
under which we can find a good solution, we use the asymptotic results on the MMSE (22) and (23),
yielding lower and upper bounds L(., ., .) ≤ Υβ(γ, η, α) ≤ U(., ., .), where

L(γ, η, α) ,
(1− η)√

πηγα(1− α)
eηγ/8

U(γ, η, α) ,
(1− η)

2

√
π

ηγα(1− α)
eηγ/8

Although not exact for low SNR, the dependence on η of the upper and lower bound provides a good
approximation for the dependence of Υβ(γ, ., α) for large SNR and given α. Hence, by using U(., ., .) and
L(., ., .), we obtain necessary and sufficient conditions that determine the regions of stable solutions and
provide analytical expressions for the transition and critical system loads. The main result for α ∈ (0, 1)
follows:

Theorem 4.4: Given the range of activity rates α ∈ (0, 1), a necessary condition for phase coexistence
is

γ ≥ 4(3 + 2
√

2), (γ ≥ 13.67 dB) (27)

Moreover, for high SNR, the condition is met and the transition system load is bounded by

L(γ, ηm, α) < β?(γ, α) < U(γ, ηm, α) (28)
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while the critical system load is bounded by

L(γ, ηM , α) < β?(γ, α) < U(γ, ηM , α) (29)

and ηm, ηM are given by

ηm , (γ/2− 2− 4∆(γ))/γ

ηM , (γ/2− 2 + 4∆(γ))/γ

∆(γ) =
√

(γ/8)2 − 3γ/8 + 1/4

Hence, the bad-solution region is given by Rb = (0, ηm], whereas the good-solution region is Rg = [ηM , 1).
Similarly, the subregions of single bad solutions, that we shall denote Rbc = (0, ηbc] ⊂ Rb, and of single
good solutions, denoted by Rgc = [ηgc, 1) ⊂ Rg, satisfy:

ηbc = min{Υ−1
β (β?)} > max{U−1(β?)}

ηgc = max{Υ−1
β (β?)} < max{L−1(β?)}

Proof: See Appendix III.

The above result provides the general boundaries of the space of solutions of our problem. It is important
to note that ηm and ηM are very good approximations for high SNR of the positions of the minimum
and maximum observed in Fig. 5, which determine transition and critical system loads. Remark also
that the activity rate affects the boundaries in the same symmetrical manner as it does the MMSE (i.e.,
the worst case here also corresponds to α = 0.5) but has no impact on the operational region, that is
only reduced in size by increasing SNR. Since the different solution domains are unaltered by α, the
overall performance maintains the same behavior as the MMSE. In particular, the region of good and bad
solutions is characterized, in the limit of high SNR, as follows:

Corollary 4.5: In the limit of high SNR, Rg → {1}, and Rb → {0}.
Proof: It results from

lim
γ→∞

ηM = lim
γ→∞

(γ/2− 2 + 4
√

(γ/8)2 − 3γ/8 + 1/4)

γ
= 1

lim
γ→∞

ηm = lim
γ→∞

(γ/2− 2− 4
√

(γ/8)2 − 3γ/8 + 1/4)

γ
= 0

Note that, given a system load β with β? > β, for sufficiently large SNR the unique true (large-
system) solution is η = 1, which corroborates the main result in [17]. Moreover, the description of
the feasible good solutions by analytical means allows the computation of a sufficient condition on the
system load to guarantee a given multiuser efficiency in practical implementations. More specifically, we
use the aforementioned lower bound on Υ to state that any system load below L(., ., .) guarantees that
the requirement is met. The result is stated as follows:

Corollary 4.6: The maximum system load, βα,η, for a given activity rate and multiuser efficiency
requirement, η = 1− ε (0 < ε � 1) that lies in Rgc, is lower-bounded in the high-SNR region by:

βα,η >
ε√

πηγα(1− α)
e(1−ε)γ/8 (30)

In Fig. 6 we show the numerical values of the transition and the critical system load as function of
the SNR in a (γ, β) space. We also use the asymptotic expansion to derive upper and lower bounds,
respectively. The curves plotted are the spinodal lines, and mark the boundary between the regions with
and without solution coexistence. The β? (lower branch) separates the region where the bad solution
disappears, whereas β? (upper branch) contains the bifurcation points at which the operational solution
disappears. The intersection point between both branches corresponds to the SNR threshold (27), which
provides the necessary condition for solution coexistence.
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Fig. 6. Upper and lower bounds on the numerical spinodal lines (thicker line) for α = 0.5.

2) Case α = 1.0: We apply now the same reasoning to the “classical” approach to multiuser detection,
corresponding to activity rate 1. In that case, using the approximation in [22], the system load function
can be lower-bounded by:

Υβ(γ, η) =
(1− η)

ηγMMSE(γη)
<

(1− η) eηγ/2

√
πηγ

(31)

Hence, we can derive the following spinodal lines:
Corollary 4.7: Given α = 1 a necessary condition for the phase coexistence is that:

γ ≥ 3 + 2
√

2, (γ ≥ 7.65dB)

Moreover, for high SNR, the condition is met and the transition system load is upper-bounded by

β? <
(1− ηm′)

2

√
π

ηm′γ
e

ηm′γ
2 (32)

and the critical system load is upper-bounded by

β? <
(1− ηM ′)

2

√
π

ηM ′γ
e

ηM′γ
2 (33)
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where ηm′ and ηM ′ are given by:

ηm′ ,
(γ/2− 1/2− Λ(γ))

γ

ηM ′ ,
(γ/2− 1/2 + Λ(γ))

γ

Λ(γ) =
√

(γ/2)2 − 3γ/2 + 1/4,

the bad solution region is given by Rb = (0, ηm′ ] whereas the good solution region is Rg = [ηM ′ , 1).
Proof: The proof is analogous to that of Theorem 4.4.

The same consequence for the asymptotic operational region holds here:
Corollary 4.8: In the limit of high SNR, Rg → {1}, and Rb → {0}.

Proof: It results from

lim
γ→∞

ηM = lim
γ→∞

(γ/2− 1/2 +
√

(γ/2)2 − 3γ/2 + 1/4)

γ
= 1

lim
γ→∞

ηm = lim
γ→∞

(γ/2− 1/2−
√

(γ/2)2 − 3γ/2 + 1/4)

γ
= 0
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Fig. 7. Comparison of upper bounds on the spinodal lines for α = 1.0 (left) and α = 0.5 (right).

In Fig. 7, one can observe a 6 dB-difference between the spinodal lines corresponding to α = 0.5
and to α = 1.0. This is due to the minimum distance of the underlying constellations (which causes
the MMSE to have different exponential decays). This can be interpreted by saying that the addition of
activity detection to data detection is reflected in an increase of 6 dB of the SNR needed to achieve
the same system load performance. Moreover, with α < 1, the transition system load is lower than the
case where all users are active, and, therefore, computationally good solutions admit lower values of the
maximum system load.
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C. Maximum system load with error probability constraints
A natural application of the above results to practical designs appears when the quality-of-service

requirements of the system are specified in terms of uncoded error probability. Such an application can
provide some extra insight into the plausible values of β with joint activity and data detection for efficient
design of large CDMA systems. Once a multiuser-efficiency requirement is assigned, the corresponding
probability of error follows naturally. Note first that, in order to detect the activity as well as the transmitted
data, our model deals with a ternary constellation {−1, 0, 1}. When any of these symbols is transmitted
by each user with constant SNR= γ through a bank of large-system equivalent Gaussian channels with
white noise variance 1/η, the probability of error over X depends on the prior probabilities as well as
the Euclidean distance between symbols. The actual error probability is

Pe = 2(1− α)Q

(√
ηγ

2
+

λα√
ηγ

)
+ αQ

(√
ηγ

2
− λα√

ηγ

)
(34)

where Q(x) , 1√
2π

∫∞
x

e−
t2

2 dt is the Gaussian tail function, and λα , ln
(

2(1−α)
α

)
.

The relationship between η and Pe for our particular case can be used to reformulate the bounds on
the function Υβ in terms of error probability.

Corollary 4.9: The maximum system load, Υβ(η, γ, α), for a given error probability Pe, γ, and activity
rate is bounded for high SNR by:

L(γ, ηmax, α) < Υβ(ηmax, γ, α) < U(γ, ηmax, α) (35)

where
ηmax , max {ηP , ηgc}

ηP = P−1
e (γ, α).

Proof: The result is obtained by noticing that the multiuser efficiency requirement extracted from
Pe must lie on the subregion [ηgc, 1).

Notice that, if the error probability satisfies ηp ≤ ηgc = ηmax, then the constraint is given by the general
transition load. However, if ηgc < ηp = ηmax, then, for Corollary 4.6, the maximum system load can
be easily lower-bounded. Fig. 8 plots the critical system load for two different requirements in error
probabilities and three different users’ activity rate.

V. SPECTRAL EFFICIENCY OF A CDMA SYSTEM WITH AN UNKNOWN NUMBER OF USERS

Statistical-physics tools can also be applied to analyze the information-theoretic capacity of CDMA
channels. As shown in [5], the large-system capacity per user of CDMA can be written as

C = lim
K→∞

1

K
I(b1, . . . , bK ; y) = F − 1

2β
log(2πe) (36)

where I(· ; ·) denotes mutual information, b1, . . . , bK are the users’ transmitted symbols, y is the received
signal, and F is the free energy (15).

Under the decoupling principle, the mutual information between the input symbol and the output of any
MAP estimator turns out to be equal to the input–output mutual information of the Gaussian equivalent
channel, so that

I(bk; y) = Ebk,y

[
log

(
P (y|γ, η, bk)

P (y)

)]
(37)

where P (bk) is the input distribution and P (y) =
∑

bk P (bk)P (y|γ, η, bk) is the output density. Finally,
the spectral efficiency under joint decoding is obtained by adding the single-user mutual information
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Fig. 8. Critical system load for different uncoded error probabilities and activity rates. Thicker lines represent numerical results, whereas
regular lines show the corresponding lower bounds. Lines with circle markers: Pe = 10−3 and α = 0.99. Lines with cross markers:
Pe = 10−3 and α = 0.1. Lines with star markers: Pe = 10−3 and α = 0.5. Lines with square markers: error probability 10−5 and α = 0.5.

(normalized to the dimensionality of the multiuser channel—the spreading length) to a divergence factor
depending on the multiuser efficiency η [8]:

C = β Eγ

[
I(bk, y)

]
+

1

2
[(η − 1) log e− log η] (38)

Based on the above, in this section we present some results concerning single-user and spectral capacity
for the model introduced in this work.

Proposition 5.1: In randomly spread DS-CDMA with constant equal power per user, the large-system
single-user capacity of a multiuser channel with MAP user identification and data detection and BPSK
transmission is

C(α) =− α

∫
e−

y2

2

√
2π

log

(
α cosh(ηγ − y

√
ηγ) + (1− α)eηγ/2

)
dy

− (1− α)

∫
e−

(y−√ηγ)2

2

√
2π

log

(
α cosh(ηγ − y

√
ηγ) + (1− α)eηγ/2

)
dy

+ ηγ
(α + 1)

2
log(e) (39)

where η, the multiuser efficiency, is the solution of (18) that minimizes the free energy (15), and the
logarithm is in base-3 over α ∈ [0, 1), and in base-2 for α = 1.0.

Proof: The single-user channel capacity and the joint spectral efficiency for each case are calculated
from (37) and (38), by using the multiuser-efficiency fixed-point solution that yields the smallest free
energy (or, equivalently, the smallest spectral efficiency).

Corollary 5.2: The optimal spectral efficiency of a detector performing user identification and data
detection is
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C(α) = βC(α) +
1

2
[(η − 1) log e− log η] (40)
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Fig. 9. Large-system joint spectral efficiency and channel capacity with MAP detection of user identities and their data with prior knowledge
of α and β=1.

For sufficiently large SNR (γη →∞) the limiting spectral efficiency is given by the following corollary:
Corollary 5.3: The optimal spectral efficiency of a detector performing user identification and data

detection for constant and equally-powered users satisfies

lim
ηγ→∞

C(α) = β (α log(2) + H2(α)) (41)

where H2(α) = −α log(α) − (1 − α) log(1 − α) is the binary entropy, and the log function is in base 3
for α ∈ (0, 1), and in base 2 for α = 1.

Proof: This result follows straightforwardly from the fact that the conditional entropy of the
equivalent Gaussian channel satisfies H(bk|y) → 0 in the large SNR limit, and, consequently, I(bk; y) →
H(bk), where bk is the input user symbol.

Fig. 9 compares single-user capacity and spectral efficiency of the MAP detector of user identities and
data for different values of α. The capacity curves show the additional cost incurred by the estimation
of active-user identities with respect to the case where all users are known to be active (α = 1.0).
The maximum capacity is achieved for α = 2/3, which corresponds to equal prior distribution of data
and activity We observe from the figure that, in the low-SNR regime, the multiuser efficiency tends to
compensate the differences in capacity due to the effect of users’ activity in their a priori distribution.
However, for high SNR, the multiuser efficiency approaches 1, and therefore the knowledge of the activity
rate is the main factor that determines the difference in performance for each case. The limiting values
as γ →∞ of each curve are given by Corollary 5.3.
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VI. CONCLUSIONS

We have analyzed multiuser detectors for CDMA where the fraction of active users is unknown, and
must be estimated in a tracking phase. Using a large-system approach and statistical-physics tools, we have
derived a fixed-point equation for the optimal user-and-data detector, and provided asymptotic bounds for
the corresponding MMSE. Further, we have described the space of of stable solutions of the fixed-point
equation, and derived explicit bounds on the critical and transition system loads for all user’s activity rates.
These are consistent with the results obtained under the classic multiuser-detection assumption (α = 1.0)
made in previous literature. The study of the so-called spinodal lines allowed us to determine the regions
of stable good and bad solutions, including subregions of single solutions (also called computationally
feasible), in the system load–SNR parameter space of our model. Our results show that for a user-and-data
detector, the boundaries of the space of solutions do depend on the activity rate, whereas the regions of
stable solutions (good and bad) are only affected by the SNR. Hence, the overall system load performance
keeps a symmetric behavior with respect to α. In practical implementations with high quality-of-service
demands, we are interested in a critical system load as large as possible, keeping the optimal detector
in the feasible subregion of good multiuser efficiencies, so that a a wider range of potential users can
access successfully the channel with a given rate. By increasing the SNR, this goal can be achieved, but
for limited SNR, the certainty on the users’ activity allows allocation of more users for a given spreading
length. A relevant example corresponds to a system requirement expressed in terms of error probability.
For this case, we have shown that, for sufficiently large SNR, we can choose the minimum multiuser
efficiency in the domain of feasible good solutions, and maximize the critical system load regardless of
the error probability target.

We have also addressed the derivation of the asymptotic single-user capacity and the spectral efficiency
under the decoupling principle. The results show the sensitivity of the system performance to the activity
rate, and its impairment due to the uncertainty on the number of users accessing the system.
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APPENDIX I
PROOF OF PROPOSITION 3.1

We first derive the MMSE for our particular ternary input distribution in the general fixed-point equation
(14):

MMSE(γ, η, α) = E

[(
bk − E{bk|S, y}

)2
]

= α−
∫ E2

bk{bkP (y|η, bk, S)}
Ebk{P (y|η, bk, S)}

dy

= α−
∫ (√

η
2π

α
2

[
e−

η
2
(y−√γ)2 − e−

η
2
(y+

√
γ)2
])2

√
η
2π

(
α
2

[
e−

η
2
(y−√γ)2 + e−

η
2
(y+

√
γ)2
])

+ (1− α)e
η
2
y2 dy

= α−
∫ (√

η
2π

α
2

[
e−

η
2
(y−√γ)2 − e−

η
2
(y+

√
γ)2
])

α sinh(ηy
√

γ)

α cosh(ηy
√

γ) + (1− α)e
ηγ
2

dy

= α− 1

2

√
η

2π

[∫
e−

η
2
(y−√γ)2α2 sinh(ηy

√
γ)

α cosh(ηy
√

γ) + (1− α)e
ηγ
2

dy −
∫

e−
η
2
(y′+

√
γ)2α2 sinh(ηy′

√
γ)

α cosh(ηy′
√

γ) + (1− α)e
ηγ
2

dy′

]

At this stage, we use the change of variables
{

z =
√

η(
√

γ − y), z′ = −y′
}

, which yields

α− 1

2

√
η

2π

[∫
e−

z2

2 α2 sinh(ηγ − z
√

ηγ)

α cosh(ηγ − z
√

ηγ) + (1− α)e
ηγ
2

dz +

∫
e−

η
2
(−z′+

√
γ)2α2 sinh(ηz′

√
γ)

α cosh(ηz′
√

γ) + (1− α)e
ηγ
2

dz′

]

Finally, the change of variable
{

ẑ =
√

η(
√

γ − z′)

}
leads to the following MMSE:

MMSE(γ, η, α) = α− 1

2

1√
2π

[∫
e−

z2

2 α2 sinh(ηγ − z
√

ηγ)

α cosh(ηγ − z
√

ηγ) + (1− α)eηγ/2
dz

+

∫
e
−ẑ2

2 α2 sinh(ηγ − ẑ
√

ηγ)

α cosh(ηγ − ẑ
√

ηγ) + (1− α)eηγ/2
dz′

]

= α−
∫

1√
2π

e
−y2

2
α2 sinh[ηγ − y

√
ηγ]

α cosh[ηγ − y
√

ηγ] + (1− α)eηγ/2
dy

Since the SNR is constant among users, it follows naturally that the large-system fixed-point equation is
given by (18).
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APPENDIX II
PROOF OF THEOREM 3.3

From now on, for simpliciy’s sake we omit the explicit indication of the arguments of the MMSE
function. The lower bound is obtained by noting that, for large SNR, the general MMSE, denoted MMSEα,
is lower-bounded by MMSE{0,1}, which describes the detection performance when the transmitted symbols
are {0, 1}, with probabilities {1− α, α}. In this case the MMSE has the following form:

MMSE{0,1} = α−
∫ (√

η
2π

αe−
η
2
(y−√γ)2

)2

√
η
2π

(
αe−

η
2
(y−√γ)2 + (1− α)e−

η
2
y2
)dy

= α− α

√
η

2π

∫ ∞

−∞

e−
η
2
(y−√γ)2

1 + e−yη
√

γ+ηγ/2+2λα
dy

where λα , 1
2
ln
(

1−α
α

)
. We make the change of variable ŷ =

√
ηy to obtain

MMSE{0,1} = α− α

√
1

2π

∫ ∞

−∞

e−
1
2
(ŷ−√ηγ)2

1 + e−ŷ
√

ηγ+ηγ/2+2λα
dŷ

= α− α

√
1

2π

∫ ∞

−∞

e−
1
2
(ŷ−√ηγ)2+

ŷ
√

ηγ

2
− ηγ

4
−λα

2 cosh
(
− ŷ

√
ηγ

2
+ ηγ

4
+ λα

)dŷ

Manipulation of the denominator yields

MMSE{0,1} = α− αe−
3ηγ
8
−λα

√
1

8π

∫ ∞

−∞
e−

1
2
(ŷ− 3

√
ηγ

2
)2 sech

(
−

ŷ
√

ηγ

2
+

ηγ

4
+ λα

)
dŷ

After the change of variable ŷ = 2z +
√

ηγ

2
+ 2λα√

ηγ
, we obtain

MMSE{0,1} = α− αe−
3ηγ
8
−λα

√
1

2π

∫ ∞

−∞
e
− 1

2
(2z−√ηγ+ 2λα√

ηγ
)2

sech (z
√

ηγ) dz

Use now the following asymptotic expansion for sech(z): |z| → ∞:

sech(z) = 2e−|z|

(
1 +

∞∑
`=1

(−1)`e−2`|z|

)
and obtain

MMSE{0,1} = α− αe−
3ηγ
8
−λα

√
1

2π

[∫ 0

−∞
e
− 1

2
(2z−√ηγ+ 2λα√

ηγ
)2

2ez
√

ηγ

(
1 +

∞∑
`=1

(−1)`e2`z
√

ηγ

)
dz

+

∫ ∞

0

e
− 1

2
(2z−√ηγ+ 2λα√

ηγ
)2

2e−z
√

ηγ

(
1 +

∞∑
`=1

(−1)`e−2`z
√

ηγ

)
dz

]
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We now use the expansion

MMSE{0,1} = α− αe−ηγ/8+λα−
2F2

α
ηγ

[
∞∑

`=0

(−1)`

√
2

π

∫ 0

−∞
e
−2z2+

“
(3+2`)

√
ηγ− 4λα√

ηγ

”
zdz

+
∞∑

`=0

(−1)`

√
2

π

∫ ∞

0

e
−2z2+

“
(1−2`)

√
ηγ− 4λα√

ηγ

”
zdz

]

Express now the integrals in terms of the Q-function, Q(x) , 1√
2π

∫∞
x

e−
t2

2 dt:

MMSE{0,1} = αe−ηγ/8+λα−
2F2

α
ηγ

[
e

„√
ηγ
2 − 2λα√

ηγ

«2

2 Q

(√
ηγ

2
− 2λα√

ηγ

)
− e

„
3
√

ηγ
2 − 2λα√

ηγ

«2

2 Q

(
3
√

ηγ

2
− 2λα√

ηγ

)

−
∞∑

`=1

(−1)`

[
e

„
(2`−1)

√
ηγ

2 + 2λα√
ηγ

«2

2 Q

(
(2`− 1)

√
ηγ

2
+

2λα√
ηγ

)

+ e

„
(3+2`)

√
ηγ

2 − 2λα√
ηγ

«2

2

(
Q

(
(3 + 2`)

√
ηγ

2
− 2λα√

ηγ

))]]
Next, use the expansion of the Q function, [1]:

Q(x) =
e−x2/2

√
2πx

(
1 +

∞∑
`=1

(−1)`

∏`
q=1(2q − 1)

x2`

)
(42)

to obtain

MMSE{0,1} = 2

√
α(1− α)

2πηγ
e−ηγ/8− 2F2

α
ηγ

[
1(

1− 4λα

ηγ

) +
1(

1 + 4λα

ηγ

) − 1(
3− 4λα

ηγ

) − 1(
3 + 4λα

ηγ

)
+ · · ·+O

(
1

√
ηγ

)]
where the linear term in λα is substituted in the common factor. Assuming large enough ηγ, and using
the result

2
∞∑

n=0

(−1)n+1

2n + 1
=

π

2

we obtain the following lower bound:

MMSE{0,1} > 2

√
α(1− α)

2πηγ
e−ηγ/8

√
2 = 2

√
α(1− α)

πηγ
e−ηγ/8

As far as the upper-bound is concerned, we derive the general MMSE, denoted MMSEα, and its
particularization to the case when all users are assumed to be active, denoted MMSE1. Hence, we express
the corresponding integrals in an analogous manner:

ζα =

∫
1√
2π

e
−(y−√ηγ)2

2
α sinh(y

√
ηγ)

α cosh(y
√

ηγ) + (1− α)eη γ
2

dy.

ζ1 =

∫
1√
2π

e
−(y−√ηγ)2

2 tanh(y
√

ηγ)dy
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We obtain:

MMSEα = α(1− ζα) = α (1 + ζ1 − ζ1 − ζα) = α ((1− ζ1) + (ζ1 − ζα))

= α (MMSE1 + (ζ1 − ζα))

Next, we expand α(ζ1 − ζα), which yields

α(ζ1 − ζα) = (1− α)eηγ/2

∫
1√
2π

e
−(y−√ηγ)2

2
α sinh[y

√
ηγ]

α cosh2[y
√

ηγ] + (1− α)eηγ/2 cosh(y
√

ηγ)
dy

= (1− α)eηγ/2

∫
1√
2π

e
−(y−√ηγ)2

2
tanh[y

√
ηγ]

cosh[y
√

ηγ] + eηγ/2+ln( 1−α
α )

dy (43)

Consider now the following inequalities:

tanh(z) ≤ 1

cosh(z) ≥ ez

2

After substitution and manipulation of the denominator of (43), we obtain

α (ζ1 − ζα) ≤(1− α)eηγ/2

∫ ∞

−∞

e
−(y−√ηγ)2

2

√
2π

1

ey
√

ηγ

2
+ eηγ/2+ln( (1−α)

α )
dy

=(1− α)eηγ/2

∫ ∞

−∞

e
−(y−√ηγ)2

2

√
2π

e−
y
√

ηγ

2
− ηγ

4
−φα

cosh
(

y
√

ηγ

2
− ηγ

4
− φα

)dy

where φα , 1
2
ln
(

2(1−α)
α

)
. We readjust terms to express the integral in a convenient form:

α (ζ1 − ζα) ≤ (1− α)e−ηγ/8−φα

∫ ∞

−∞

e
−

„
y−

√
ηγ
2

«2

2

√
2π

sech

(
y
√

ηγ

2
− ηγ

4
− φα

)
dy

We now use the following transformation in the variable of integration: y = 2z +
√

ηγ

2
+ 2φα√

ηγ
.

α (ζ1 − ζα) ≤2(1− α)e
7ηγ
8
−φα

∫ 0

−∞

e
−

„
2ẑ−2

√
ηγ− 2φα√

ηγ

«2

2

√
2π

sech (z
√

ηγ) dẑ

+2(1− α)e−ηγ/8−φα

∫ ∞

0

e
−

„
2z+

2φα√
ηγ

«2

2

√
2π

sech (z
√

ηγ) dz

and the asymptotic expansion for sech(z) in the above derivation:

sech(z) = 2e−|z|

(
1 +

∞∑
`=1

(−1)`e−2`|z|

)
This yields:

α (ζ1 − ζα) ≤4(1− α)e−ηγ/8−φα−
2φ2

α
ηγ

∞∑
`=0

(−1)`

∫ ∞

0

e
−2ẑ2+

“
(1+2`)

√
ηγ− 4φα√

ηγ

”
ẑ

√
2π

dz

+ 4(1− α)e−ηγ/8−φα−
2φ2

α
ηγ

∞∑
`=0

(−1)`

∫ ∞

0

e
−2ẑ2−

“
(1+2`)

√
ηγ+ 4φα√

ηγ

”
ẑ

√
2π

dz
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Finally, expressing the integrals in terms of the Q function:

α (ζ1 − ζα) ≤ 2(1− α)e−ηγ/8−φα−
2φ2

α
ηγ

[
∞∑

`=0

(−1)`e

„
(1+2`)

√
ηγ

2 − 2φα√
ηγ

2
«2

2 Q

(
(1 + 2`)

√
ηγ

2
− 2φα√

ηγ

)

+
∞∑

`=0

(−1)`e

„
(1+2`)

√
ηγ

2 +
2φα√

ηγ

«2

2 Q

(
(1 + 2`)

√
ηγ

2
+

2φα√
ηγ

)]
and manipulating the expansion:

α (ζ1 − ζα) ≤2(1− α)e−ηγ/8−φα−
2φ2

α
ηγ

[
e

„√
ηγ
2 − 2φα√

ηγ

«2

2 Q

(√
ηγ

2
− 2φα√

ηγ

)

+ e

„√
ηγ
2 +

2φα√
ηγ

«2

2 Q

(√
ηγ

2
+

2φα√
ηγ

)
+

∞∑
`=1

(−1)`e

„
(1+2`)

√
ηγ

2 − 2φα√
ηγ

«2

2 Q

(
(1 + 2`)

√
ηγ

2
− 2φα√

ηγ

)

+
∞∑

`=1

(−1)`e

„
(1+2`)

√
ηγ

2 +
2φα√

ηγ

«2

2 Q

(
(1 + 2`)

√
ηγ

2
+

2φα√
ηγ

)]
we obtain, after using the series expansion (42),

α (ζ1 − ζα) ≤2

√
(1− α)α

πηγ
e−ηγ/8

[
1(

1− 4φα

ηγ

) +
1(

1 + 4φα

ηγ

) − 1(
3− 4φα

ηγ

) − 1(
3 + 4φα

ηγ

)
+ · · ·+O

(
1

√
ηγ

)]

where the linear term in φα = 1
2
ln
(

2(1−α)
α

)
is substituted in the common factor, and quadratic terms are

neglected.
Using the same result as before on the series 2

∑∞
n=0

(−1)n+1

2n+1
, we obtain the following upper bound:

α (ζ1 − ζα) <

√
πα(1− α)

ηγ
e−ηγ/8

Finally, using the upper bound given in Lemma 3.2 for BPSK, the overall MMSE can be upper-bounded
by

MMSEα ≤ 2αe−ηγ/2 +

√
πα(1− α)

ηγ
e−ηγ/8

where ρ is a constant.

APPENDIX III
PROOF OF THEOREM 4.4

We analyze the function:
G(η) = (1− η)euη/

√
η (44)
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where u is a constant, which entirely describes the dependence of Υβ on η for large enough ηγ. By simple
derivation of (44), it is easy to observe that the solution has critical points in the domain (0, 1) if and
only if u ≥ (3 +

√
8)/2. These points are:

ηm =
u− 1/2−

√
u2 − 3u + 1/4

2u

ηM =
u− 1/2 +

√
u2 − 3u + 1/4

2u

and lie in the domain (0, 1). In fact, note that u2 − 3u + 1/4 < (u − 3/2)2, and thus it can be verified
that 0 < 1/2u < ηm < ηM < 1 − 1/u < 1. By using the second derivative of (44) we observe
that these solutions correspond to a local minimum and a local maximum, respectively. Let us now
study the function (44) to justify the range of values of the critical system load. G(η) is a continuous
function in (0, 1] that takes positive values. Since G(η) tends to 0 as η approaches 1, and tends to
infinity as η approaches 0, it can be concluded that the range for which G(η) has only one pre-image
is (0, G(ηm)) ∪ (G(ηM),∞). Hence, there are single pre-images in the ranges (0, min{G−1(G(ηM))})
and (max{G−1(G(ηm))}, 1). For G(ηm) ≤ G(.) ≤ G(ηM), there are multiple pre-images (exactly, 3)
due to the local minimum and maximum. Then, the smallest pre-image lies on [min{G−1(G(ηm))}, ηM ]
whereas the largest lie on [ηM , max{G−1(G(ηm))}]. In conclusion, the overall smallest pre-images belong
to (0, ηm], whereas the largest pre-images belong to [ηM , 1). In particular, single small and large solutions
satisfy (0, min{G−1(G(ηM))} ⊂ (0, ηm] and (max{G−1(G(ηm))}, 1) ⊂ [ηM , 1) respectively. By bounding
MMSE by (22) and (23), and replacing u = γ/8, we obtain the expected results.
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