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Abstract

Free space optical communication is an attractive alternative to radio frequency for the purpose of transmitting
data on the order of gigabits per second. The main drawback in communicating via the free space optical
channel is the detrimental effect the atmosphere has on a propagating laser beam. Atmospheric turbulence causes
random fluctuations in the irradiance of the received optical laser beam, commonly referred to as scintillation. The
scintillation process is slow compared to the large data rates typical of optical transmission. As such, we adopt a
quasi-static block fading model and study the outage probability of the channel under the assumption of orthogonal
pulse-position modulation. We investigate the mitigation of scintillation through the use of multiple lasers and
multiple apertures, thereby creating a multiple-input multiple output (MIMO) channel. Non-ideal photodetection is
also assumed such that the combined shot noise and thermal noise are considered as signal-independent additive
Gaussian white noise. Assuming perfect receiver channel state information (CSI), we compute the signal-to-noise
ratio exponents for the cases when the scintillation is lognormal, exponential, gamma-gamma and lognormal-Rice
distributed, which cover a wide range of atmospheric turbulence conditions. Furthermore, we illustrate very large
gains, in some cases larger than 20 dB, when transmitter CSI is also available by adapting the transmitted electrical
power.
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I. INTRODUCTION

Free space optical (FSO) communication offers an attractive alternative to the radio frequency (RF)
channel for the purpose of transmitting data at very high rates. By utilising a high carrier frequency in the
optical range, digital communication on the order of gigabits per second is possible. In addition, FSO links
are difficult to intercept, immune to interference or jamming from external sources, and are not subject to
frequency spectrum regulations. FSO communications have received recent attention in applications such
as satellite communications, fiber-backup, RF-wireless back-haul and last-mile connectivity [1].

The main drawback of the FSO channel is the detrimental effect the atmosphere has on a propa-
gating laser beam. The atmosphere is composed of gas molecules, water vapor, pollutants, dust, and
other chemical particulates that are trapped by Earth’s gravitational field. Since the wavelength of a
typical optical carrier is comparable to these molecule and particle sizes, the carrier wave is subject to
various propagation effects that are uncommon to RF systems. One such effect is scintillation, caused by
atmospheric turbulence, and refers to random fluctuations in the irradiance of the received optical laser
beam (analogous to fading in RF systems) [2–4].

Recent works on the mitigation of scintillation concentrate on the use of multiple-lasers and multiple-
apertures to create a multiple-input-multiple-output (MIMO) channel [5–13]. Many of these works consider
scintillation as an ergodic fading process, and analyse the channel in terms of its ergodic capacity. However,
compared to typical data rates, scintillation is a slow time-varying process (with a coherence time on the
order of milliseconds), and it is therefore more appropriate to analyse the outage probability of the channel.
To some extent, this has been done in the works of [6, 10, 12–14]. In [6, 13] the outage probability of the
MIMO FSO channel is analysed under the assumption of ideal photodetection (PD) (i.e. PD is modeled
as a Poisson counting process) with no bandwidth constraints. Wilson et al. [10] also assume perfect
PD, but with the further constraint of pulse-position modulation (PPM). Lee and Chan [12], study the
outage probability under the assumption of on-off keying (OOK) transmission and non-ideal PD, i.e. the
combined shot noise and thermal noise process is modeled as zero mean signal independent additive white
Gaussian noise (AWGN). Farid and Hranilovic [14] extend this analysis to include the effects of pointing
errors.

In this report we study the outage probability of the MIMO FSO channel under the assumptions of
PPM, non-ideal PD, and equal gain combining (EGC) at the receiver. In particular, we model the channel
as a quasi-static block fading channel whereby communication takes place over a finite number of blocks
and each block of transmitted symbols experiences an independent identically distributed (i.i.d.) fading
realisation [15, 16]. Given the slow time-varying nature of scintillation, channel state information (CSI)
can be estimated at the receiver and fed back to the transmitter via a dedicated feedback link. We consider
two types of CSI knowledge. First we assume perfect CSI is available only at the receiver (CSIR case),
and the transmitter knows only the channel statistics. We study a number of scintillation distributions, i.e.,
lognormal, modelling weak turbulence; exponential, modelling strong turbulence; gamma-gamma [17] and
lognormal-Rice [18, 19], modelling a wide range of turbulence conditions. For the CSIR-only case, we
derive signal-to-noise ratio (SNR) exponents and show that these exponents are composed of a channel
related parameter (dependent on the scintillation distribution) times the Singleton bound [20–22]. Then
we consider the case when perfect CSI is known at both the transmitter and receiver (CSIT case). For this
case, the transmitter finds the optimal power allocation to minimise the outage probability [23]. Using
results from [24], we derive the optimal power allocation that minimises the outage probability, subject to
short- and long-term power constraints. We show that under a long-term power constraint, very large power
savings can be achieved, and that the delay-limited capacity [25] always exists for lognormal distributed
scintillation, whereas, for the exponential, gamma-gamma and lognormal-Rice cases, one must code over
several blocks for delay-limited capacity to exist. The number of required blocks depends on the rate of
the binary code via the SNR exponent. We show that with the use of MIMO one needs only to code over
a single realisation to ensure the existance of delay-limited capacity. These results highlight the benefits
of MIMO and block diversity in reducing the outage probability in FSO systems.
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The report is organised as follows. In Section II, we define the channel model and assumptions.
In Section III we review the lognormal, exponential, gamma-gamma and lognormal-Rice scintillation
models. Section IV defines the outage probability and presents results on the minimum-mean squared error
(MMSE). Then in Sections V and VI we present the main results of our asymptotic outage probability
analysis for the CSIR and CSIT cases, respectively. Concluding remarks are then given in Section VII.
Proofs of the various results can be found in the Appendices.

II. SYSTEM MODEL

We consider an FSO system with M transmit lasers an N aperture receiver as shown in Figure 1.
Information data is first encoded by a binary code of rate Rc. The encoded stream is modulated according
to a Q-ary PPM scheme, resulting in rate R = Rc log2 Q (bits/channel use). Repetition transmission is
employed such that the same PPM signal is transmitted in perfect synchronism by each of the M lasers
through an atmospheric turbulent channel and collected by N receive apertures. We assume the distance
between the individual lasers and apertures is sufficient so that spatial correlation is negligible. At each
aperture, the received optical signal is converted to an electrical signal via PD. Non-ideal PD is assumed
such that the combined shot noise and thermal noise processes can be modeled as zero mean, signal
independent AWGN (an assumption commonly used in the literature, see e.g. [3–5, 12, 14, 26–31]).

Encoder

PPM

PPM

Laser

Laser

Atmospheric 
Turbulence

Aperture PD

PD

Decoder

Aperture

1

M N

1

...
...

Transmitter Receiver

Fig. 1. Block diagram of an FSO MIMO system.

In FSO communications, channel variations are typically much slower than the signaling period. As
such, we model the channel as a non-ergodic block-fading channel, for which a given codeword of length
BL undergoes only a finite number B of scintillation realisations [15, 16]. The received signal at aperture
1 ≤ n ≤ N can be written as

yn
b [`] =

(
M∑

m=1

h̃m,n
b

)√
p̃b xb[`] + z̃n

b [`], (1)

for b = 1, . . . , B, ` = 1, . . . , L, where yn
b [`], z̃n

b [`] ∈ RQ are the received and noise signals at block b,
time instant ` and aperture n, xb[`],∈ RQ is the transmitted signal at block b and time instant `, and
h̃m,n

b denotes the scintillation fading coefficient between laser m and aperture n. Each transmitted symbol
is drawn from a PPM alphabet, xb[`] ∈ X ppm ∆

= {e1, . . . , eQ}, where eq is the canonical basis vector,
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i.e., it has all zeros except for a one in position q, the time slot where the pulse is transmitted. The
noise samples of z̃n

b [`] are independent realisations of a random variable Z ∼ N (0, 1), and p̃b denotes the
received electrical power of block b at each aperture in the absence of scintillation. The fading coefficients
h̃m,n

b are independent realisations of a random variable H̃ with probability density function (pdf) fH̃(h).
At the receiver, we assume equal gain combining (EGC) is employed, such that

yb[`] =
1√
N

N∑
n=1

yn
b [`] (2)

=
1√
N

N∑
n=1

M∑
m=1

h̃m,n
b

√
p̃bxb[`] +

1√
N

N∑
n=1

z̃n
b [`] (3)

= M
√

Np̃b ĥb xb[`] + zb[`], (4)

where

ĥb =
1

MN

M∑
m=1

N∑
n=1

h̃m,n
b (5)

and

zb[`] =
1√
N

N∑
n=1

z̃n
b [`] ∼ N (0, 1). (6)

Letting hb
∆
= ĥb/

√
E[ĥ2

b ] gives
yb[`] =

√
pbhbxb[`] + zb[`], (7)

where
pb = M2NE[ĥ2

b ]p̃b. (8)

Hence (7) can be considered as a SISO channel with an equivalent fading coefficient hb, normalized such
that E[H2] = 1.1Thus, the average received electrical SNR can be expressed as snr , E[ph2

b ] = E[pb].
We will consider two cases of channel state information (CSI). We will first study the case of perfect

CSIR, and we will then consider the case of perfect CSIT as well as CSIR. In the case where we have
only CSIR, we will distribute the electrical power uniformly over the blocks, i.e., pb = p = snr for
b = 1, . . . , B. Otherwise, in the case of CSIT, we will allocate electrical power in order to improve
performance. In particular, in the case of perfect CSIR and CSIT, we will consider the following two
electrical power constraints

Short-term:
1

B

B∑
b=1

pb ≤ P (9)

Long-term: E

[
1

B

B∑
b=1

pb

]
≤ P. (10)

Throughout the report, we will devote special attention to the case of B = 1, i.e., the channel does not
vary within a codeword. This scenario is relevant for FSO, since, due to the large data-rates, one is able
to transmit millions of bits virtually over the same channel realisation. We will see that most results admit
very simple forms, and some times, even closed form. This analysis allows for a system characterisation
where the expressions highlight the roles of the key design parameters.

1For ideal PD, the normalisation E[H] = 1 is used to keep optical power constant. We assume non-ideal PD and work entirely in the
electrical domain. Hence, we chose the normalisation E[H2] = 1, used commonly in RF fading channels. Since we consider only the
asymptotic behaviour of the outage probability, the specific normalisation is irrelevant and does not affect our results.
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III. SCINTILLATION DISTRIBUTIONS

The scintillation pdf, fH̃(h), is parameterised by the scintillation index (SI),

σ2
I ,

Var(H̃)

(E[H̃])2
. (11)

Under weak atmospheric turbulence conditions (defined as those regimes for which σ2
I < 1), the SI is

proportional to the so called Rytov variance which represents the SI of an unbounded plane wave in weak
turbulence conditions, and is also considered as a measure of the strength of the optical turbulence under
strong-fluctuation regimes [4]. As the Rytov variance increases, the SI continues to increase beyond the
weak turbulence regime until it reaches a maximum value greater than unity. At that point the SI begins
to decrease with increasing Rytov variance and approaches unity from above. This region is termed the
saturation region [17, 32].

The distribution of the irradiance fluctuations is dependent on the strength of the optical turbulence.
For the weak turbulence regime, the fluctuations are generally considered to be lognormally distributed,
and for very strong turbulence, exponentially distributed [2, 33]. For moderate turbulence, the distribution
of the fluctuations is not well understood, and a number of distributions have been proposed, such as
the lognormal-Rice distribution [4, 17, 19, 34, 35] (also known as the Beckmann distribution [36]) and K-
distribution [34]. In [17], Al-Habash et al. proposed a gamma-gamma distribution as a general model for
all levels of atmospheric turbulence. Moreover, recent work in [35] has shown that the gamma-gamma
model is in close agreement with experimental measurements under moderate-to-strong turbulence condi-
tions. In this report we focus on lognormal, exponential, gamma-gamma and lognormal-Rice distributed
scintillation.

For MIMO-EGC FSO communication systems, ĥb and hb are realisations of random variables Ĥ and
H respectively, which are functions of h̃m,n

b for m = 1, . . . ,M and n = 1, . . . , N . In (8) we can determine
E[Ĥ2] in terms of the scintillation index,

E[Ĥ2] =
E[H̃2]

MN
+

(MN − 1)

MN
E[H̃]2 = E[H̃]2

(
1 +

σ2
I

MN

)
(12)

Hence the mean and variance of H is therefore

E[H] =
E[H̃]√
E[Ĥ2]

=
1√

1 +
σ2

I

MN

. (13)

var[H] = E[H2]− E[H]2 = 1− 1

1 +
σ2

I

MN

. (14)

A. Lognormal Scintillation
For lognormal distributed scintillation,

fH̃(h) =
1

hσ̃
√

2π
exp

(
−(log h− µ̃)2/(2σ̃2)

)
, (15)

where µ̃ and σ̃ are related to the SI via µ̃ = − log(1 + σ2
I ) and σ̃2 = log(1 + σ2

I ). The distribution of H
results from a summation of MN lognormal distributions, for which the pdf is unknown. However, it is
well known that the distribution resulting from the sum of independent lognormal random variables can
be accurately approximated by a lognormal distribution [37–40], i.e.

fH(h) ≈ 1

hσ
√

2π
exp

(
−(log h− µ)2/(2σ2)

)
, (16)
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where from (13) and (14) we have

µ = − log

(
1 +

σ2
I

MN

)
(17)

σ2 = log

(
1 +

σ2
I

MN

)
. (18)

Thus as M, N →∞, µ, σ2 → 0 and the distribution becomes more concentrated about a mean of 1, i.e.
the system approaches the non-fading channel.

The distribution of H can also be computed numerically by performing an (MN − 1)-fold convolution
or via a fast Fourier transform (FFT) method. The later approach, being less computationally expensive,
involves performing the FFT of a truncated lognormal distribution, raising it to the MN th power and then
computing the inverse-FFT (IFFT) (details are given in Appendix I). The accuracy of the FFT method
depends both on the truncation and the length of the FFT. Fig. 2 compares the PDF of H computed
numerically using the FFT method (with hmax = 64 and NFFT = 221) to the log-normal approximation.
It can be seen that the lognormal approximation is quite a good fit except for the right hand side tail, for
which the approximation tends to over-estimate.
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H
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histogram
PDF
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MN = 1

MN = 4

MN = 64

Fig. 2. PDF of H when H̃ is a lognormal random variable with σ2
I = 1 : solid line shows simulation results; dashed line shows PDF

computed numerically via FFT method and the dot-dashed line shows the lognormal approximation (16).

B. Exponential Scintillation
For exponential distributed scintillation,

fH̃(h) = λ exp(−λh). (19)
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Note that this corresponds to the super-saturated turbulence regime, for which σ2
I = 1. We may also

interpret H̃ as a Gamma distributed random variable, since fH̃(h) = g(h; 1, 1/λ) where [41, Ch. 17]

g(h; k, θ) = hk−1 exp(−h/θ)

θkΓ(k)
. (20)

Since sums of Gamma distributed random variables are also Gamma distributed [41, Ch. 17] we have,

fĤ(h) = g

(
h; MN ;

1

λMN

)
(21)

and
E[Ĥ2] =

1

λ2

(
1 +

1

MN

)
. (22)

The normalized combined fading coefficient is

fH(h) = g
(
h; MN ; (MN(1 + MN))−

1
2

)
, (23)

which is independent of λ. Fig. 3 plots (23) for MN = 1, 4, 64.
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Fig. 3. PDF of H when H̃ is exponential distributed (23).

C. Gamma-Gamma Scintillation
The gamma-gamma distribution arises from the product of two independent Gamma distributed random

variables and [17],

fH̃(h) =
2(αβ)

α+β
2

Γ(α)Γ(β)
h

α+β
2
−1 Kα−β(2

√
αβh), (24)
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where Kν(x) denotes the modified Bessel function of the second kind. The parameters α and β are related
with the scintillation index via σ2

I = α−1 + β−1 + (αβ)−1.
The moments of h can be determined via

E[H̃k] =
Γ(α + k)Γ(β + k)

Γ(α)Γ(β)
(αβ)−k , (25)

or recursively using
E[H̃k] = E[H̃k−1](k − 1 + α)(k − 1 + β)(αβ)−1. (26)

Hence, E[H̃] = 1 and E[H̃2] = 1/(1 + σ2
I ).

Unfortunately, finding a closed form expression for the distribution resulting from sums of Gamma-
Gamma distributed random variables is difficult. We can however obtain the moment generating function
(MGF) from which we can obtain the distribution of H via the inverse Fourier transform. First consider
the following theorem..

Theorem 3.1: The moment generating function (MGF) of the Gamma-Gamma distribution (24) is given
by

MH̃(t) = 2 F0(α, β; t/(αβ)), (27)

for t < 0, where 2 F0 denotes the generalized hypergeometric function.
Proof: See Appendix II-A.

Note that the hypergeometric function (27) may also be written as [42, Ch. 13]

2 F0(α, β; t/(αβ)) =

(
−αβ

t

)α

U

(
α, 1 + α− β,−αβ

t

)
,

where U(a, b, z) = 1
Γ(a)

∫∞
0

e−zt(t−1)a−1tb−a−1 dt. Furthermore, for the special case, β = 1 corresponding
to K-distributed scintillation [4, Sec. 9.9.1], we have

2 F0(α, 1; t/α) = exp
(
−α

t

)(
−α

t

)α

Γ
(
1− α,−α

t

)
,

where Γ(a, x)
∆
=
∫∞

x
ta−1 exp(−t)dt denotes the upper incomplete gamma function [42, p.260].

Setting t = jω in (27), one obtains the characteristic function. The characteristic function of a sum of
independent random variables is equal to the multiplication of their respective characteristic functions [43].
Hence, by taking the inverse Fourier transform, the pdf of Ĥ and H are respectively

fĤ(h) =
MN

2π

∫ ∞

−∞
[2 F0(α, β; jω/(αβ))]MN exp (−jωMNh) dω, (28)

fH(h) =

[
1 +

σ2
I

MN

] 1
2

fĤ

([
1 +

σ2
I

MN

] 1
2

h

)
. (29)

In addition to (29) we may also compute the PDF of H using the FFT method (as in the case
for lognormal H̃). The FFT method turns out to be much faster than performing the integration (29)
numerically. Fig. 4 compares the PDF of H using the FFT method (dashed line) to histograms of 108

i.i.d. samples from H (solid).
From [4, 17] the gamma-gamma cdf is given by:

FH̃(h) =
(αβh)αΓ(β − α)

αΓ(α)Γ(β)
1 F2(α; 1 + α, 1 + α− β; αβh)

+
(αβh)βΓ(α− β)

βΓ(α)Γ(β)
1 F2(β; 1 + β, 1 + β − α; αβh) (30)

Note (30) is not valid when α = β, or when |α−β| is an integer. However, for small h, we can circumvent
this problem by using the following approximation.
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Fig. 4. PDF of H when H̃ is Gamma-Gamma distributed with α = 2.05 and β = 2.45: solid lines, histogram of randomly generated
samples; dashed lines, numerical computation using the FFT method.

Proposition 3.1: For small h the cdf of a gamma-gamma distributed random variable can be approxi-
mated as

FH̃(h) ≈

{
α2(α−1)

(Γ(α))2

[
1 + 2α log 1

2α
+ α log 1

h

]
hα, β = α

Γ(|α−β|)
Γ(α)Γ(β)

(αβh)min(α,β)

min(α,β)
, β 6= α

(31)

Proof: See Appendix II-B.
Fig. 5 illustrates the convergence of (31) to (30) as h decreases. This figure shows that the approximation
is tight as h → 0.

D. Lognormal-Rice Scintillation
For the lognormal-Rice distribution, like the gamma-gamma case, the fading random variable is written

as the product of two independent random variables, H̃ = XY , where X is a lognormal distributed
random variable with parameters σ2 and µ = −σ2/2, and

√
Y Rice distributed random variable, i.e.

f√Y (y) =
y

σ2
R

exp

(
−y2 + ν2

R

2σ2
R

)
I0

(
yνR

σ2
R

,

)
(32)

where I0(z) denotes the modified Bessel function of the first kind, and the parameters of the distribution
are set to

σ2
R =

1

2(r + 1)
, νR =

√
r

r + 1
. (33)

Hence the pdf of Y is

fY (y) = (r + 1) exp(−r − (r + 1)y)I0

(√
4r(r + 1)y

)
(34)
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Fig. 5. Gamma-gamma cdf (30) (solid) and the approximation (31) (dashed) for α = 2.05 and β = 2.45.

The parameter r is referred to as the coherence parameter [34], and is also well known as the Rice
factor in the analysis of RF fading channels with a line of sight component. When r = 0, (32) becomes
a Rayleigh pdf and the system reduces to the lognormal-exponential case. As r →∞ the pdf approaches
a unit impulse function at y = 1. In other words as r → ∞, Y → 1, and the scintillation is purely
lognormal distributed (weak turbulence case). Furthermore, as r, σ → 0, the lognormal-Rice distribution
reduces to the exponential distribution. Therefore, the lognormal-Rice distribution includes the lognormal,
lognormal-exponential and exponential distributions as special cases.

The overall distribution of H̃ = XY has no closed form expression, but can be written in integral
form [4]

fH̃(h) =
(1 + r)e−r

√
2πσ

∫ ∞

0

1

z2
I0

(
2

√
(1 + r)rh

z

)
exp

(
−(1 + r)h

z
− 1

2σ2

(
log z +

1

2
σ2

)2
)

dz (35)

It is easy to show that for the scintillation distribution given by (35), the SI is given by

σ2
I = exp(σ2)

(
1 +

1 + 2r

(r + 1)2

)
− 1. (36)

Despite its complicated pdf, as will be shown later, we will still be able to determine the corresponding
asymptotic outage probability behaviour in the general MIMO case.

IV. OUTAGE PROBABILITY, MUTUAL INFORMATION AND MMSE
The channel described by (7) under the quasi-static assumption is not information stable [44] and

therefore, the channel capacity in the strict Shannon sense is zero. It can be shown that the codeword
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error probability of any coding scheme can be lower bounded by the information outage probability [15,
16],

Pout(snr, R) = Pr(I(p, h) < R), (37)

where R is the transmission rate and I(p, h) is the instantaneous input-output mutual information for
a given power allocation p , (p1, . . . , pB), and vector channel realisation h , (h1, . . . , hB). The
instantaneous mutual information can be expressed as [45]

I(p, h) =
1

B

B∑
b=1

Iawgn(pbh
2
b), (38)

where Iawgn(ρ) is the input-output mutual information of an AWGN channel with SNR ρ. For PPM [26]

Iawgn(ρ) = log2 Q− E

[
log2

(
1 + exp(−ρ)

Q∑
q=2

exp (
√

ρ(Zq − Z1))

)]
, (39)

where Zq ∼ N (0, 1) for q = 1, . . . , Q. We can show the following result.
Proposition 4.1: The input-output mutual information for Q-PPM transmission over an AWGN channel

with SNR ρ can be lower bounded by

Iawgn(ρ) ≥ Iawgn
lb (ρ)

∆
= log2 Q− EU

[
log2

(
1 + (Q− 1) exp

(
−ρ

2
−√ρU

))]
(40)

where U ∼ N (0, 1).
Proof: See Appendix III.

Since U ∼ N (0, 1), the lower bound (40) can be efficiently computed using Gauss-Hermite quadra-
tures [42]. Note that (40) was derived by [46] using the law of large numbers, and the authors considered
it as an approximation. Here we proved that it is not just an approximation, but also a bound to the
mutual information. Furthermore, as Q increases, Iawgn(ρ) → Iawgn

lb (ρ), i.e., Iawgn
lb (ρ) is asymptotically

tight for large Q. This can be observed in Fig 6, where the mutual information and the lower bound (40)
are plotted for various values of Q. Remark that the bound (40) will lead to an upper bound to the outage
probability.

For the CSIT case we will use the recently discovered relationship between mutual information and
the MMSE [47]. This relationship states that2

d

dρ
Iawgn(ρ) =

mmse(ρ)

log(2)
(41)

where mmse(ρ) is the MMSE in estimating the input from the output of a Gaussian channel as a function
of the SNR ρ. For the case of PPM, we can express the MMSE as follows.

Theorem 4.1: Suppose QPPM symbols are transmitted across an AWGN channel with SNR ρ. Then,
the MMSE is

mmse(ρ) = 1− E

exp(2
√

ρ(
√

ρ + Z1)) + (Q− 1) exp(2
√

ρZ2)(
exp(ρ) exp(

√
ρZ1) +

∑Q
k=2 exp(

√
ρZk)

)2

 , (42)

where Zi ∼ N (0, 1) for i = 1, . . . , Q.
Proof: See Appendix IV.

A more careful look at the MMSE, yields the following result, which is relevant in the wideband regime
[48].

2The log(2) term arises because we have defined Iawgn(ρ) in bits/channel usage.
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Fig. 6. Mutual information Iawgn(ρ) (solid lines) and lower bound Iawgn
lb (ρ) (40) (dashed lines) for Q-PPM signal sets with Q = 2, 4, 8, 16.

Theorem 4.2:
mmse(0) =

Q− 1

Q
(43)

Proof: See Appendix IV.

Both (39) and (42) can be evaluated using standard Monte-Carlo methods.
Like the mutual information quantity (39), computation of (42) requires Q dimensional integration and

we must again resort to Monte Carlo methods. Fig. 7 plots mmse(ρ) for increasing Q using this method.

V. OUTAGE PROBABILITY ANALYSIS WITH CSIR
For the CSIR case, we employ uniform power allocation, i.e. p1 = . . . = pB = snr. For codewords

transmitted over B blocks, obtaining a closed form analytic expression for the outage probability is
intractable. Even for B = 1, in some cases, for example the lognormal, gamma-gamma and lognormal-
Rice distributions, determining the exact distribution of H can be a difficult task. Instead, as we shall see,
obtaining the asymptotic behaviour of the outage probability is substantially simpler. Towards this end,
and following the footsteps of [22, 49], we derive the SNR exponent.

Theorem 5.1: The outage SNR exponents for a MIMO FSO communications system modeled by (7)
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Fig. 7. Computation of mmse(ρ) (in dB) via Monte Carlo evaluation for Q = 2, 4, 8, 16. Larger Q corresponds to a higher mmse(ρ) curve.

are given as follows:

dln
(log snr)2 =

MN

8 log(1 + σ2
I )

(1 + bB (1−Rc)c) (44)

dexp
(log snr) =

MN

2
(1 + bB (1−Rc)c) , (45)

dgg
(log snr) =

MN

2
min(α, β) (1 + bB (1−Rc)c) , (46)

dlr
(log snr) =

MN

2
(1 + bB (1−Rc)c) , (47)

for lognormal, exponential, gamma-gamma and lognormal-Rice respectively, where Rc = R/ log2(Q) is
the rate of the binary code and

d(log snr)k
∆
= − lim

snr→∞

log Pout(snr, R)

(log snr)k
k = 1, 2. (48)

Proof: See the Appendix.
Proposition 5.1: The outage SNR exponents for a MIMO FSO communications system modeled by (7)

are given in Theorem 5.1, are achievable by random coding over PPM constellations whenever B (1−Rc)
is not an integer.

Proof: The proof follows from the proof of Theorem 5.1 and the proof of [22, Th. 1].
The above results imply that the outage exponents given by (44)-(47) are the optimal SNR exponents

over the channel: the outage probability is a lower bound to the error probability of any coding scheme, its
corresponding exponents (given in Theorem 5.1) are an upper bound to the exponent of coding schemes.
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From Proposition 5.1, we can achieve the outage exponents with a particular coding scheme (random
coding, in this case), and therefore, the exponents given in Theorem 5.1 are optimal.

From (44)-(47) we immediately see the benefits of spatial and block diversity on the system. In particular,
each exponent is proportional to: the number of lasers times the number of apertures, reflecting the spatial
diversity; a channel related parameter that is dependent on the scintillation distribution; and the Singleton
bound, which is the optimal rate-diversity tradeoff for Rayleigh-faded block fading channels [20–22].

Comparing the channel related parameters in (44)-(47) the effects of the scintillation distribution on the
outage probability are directly visible. For the lognormal case, the channel related parameter is 8 log(1+σ2

I )
and hence is directly linked to the SI. Moreover, for small σ2

I < 1, 8 log(1 + σ2
I ) ≈ 8σ2

I and the SNR
exponent is inversely proportional to the SI. For the exponential case, the channel related parameter is
a constant 1/2 as expected, since the SI is constant. For the gamma-gamma case the channel related
parameter is min(α, β)/2, which highlights an interesting connection between the outage probability and
recent results in the theory of optical scintillation. For gamma-gamma distributed scintillation, the fading
coefficient results from the product of two independent random variables, i.e. H̃ = XY , where X and Y
model fluctuations due to large scale and small scale cells. Large scale cells cause refractive effects that
mainly distort the wave front of the propagating beam, and tend to steer the beam in a slightly different
direction (i.e. beam wander). Small scale cells cause scattering by diffraction and therefore distort the
amplitude of the wave through beam spreading and irradiance fluctuations [4, p. 160]. The parameters α, β
are related to the large and small scale fluctuation variances via α = σ−2

X and β = σ−2
Y . For a plane wave

(neglecting inner/outer scale effects) σ2
Y > σ2

X , and as the strength of the optical turbulence increases,
the small scale fluctuations dominate and σ2

Y → 1 [4, p. 336]. This implies that the SNR exponent is
exclusively dependent on the small scale fluctuations. Moreover, in the strong fluctuation regime, σ2

Y → 1,
the gamma-gamma distribution reduces to a K-distribution [4, p. 368], and the system has the same SNR
exponent as the exponential case typically used to model very strong fluctuation regimes. In the case
of lognormal-Rice scintillation, we observe that the exponent is exactly equal to that of exponential
scintillation. Remark, however, that this does not imply that the two distributions yield the same outage
probability. The inclusion of the Ricean component results in an error floor whose exponent is the same
as that of the exponential distribution.

In comparing the lognormal exponent with the rest, we observe a striking difference. For the lognormal
case (44) implies the outage probability is dominated by a (log(snr))2 term, whereas for the other cases it
is dominated by a log(snr) term. Thus the outage probability decays much more rapidly with SNR for the
lognormal case than it does for the exponential or gamma-gamma cases. Furthermore, for the lognormal
case, the slope of the outage probability curve, when plotted on a log-log scale, will not converge to a
constant value. In fact, a constant slope curve will only be observed when plotting the outage probability
on a log-(log)2 scale.

In deriving (44) (see Appendix V-A) we do not rely on the lognormal approximation, which has been
used in e.g. [5, 12, 31] to simplify the analysis of FSO MIMO links in the presence of lognormal distributed
scintillation. Under this approximation, we have an approximate exponent

d(log snr)2 ≈
1

8 log(1 +
σ2

I

MN
)
(1 + bB (1−Rc)c) . (49)

Comparing (44) and (49) we see that although the lognormal approximation also exhibits a (log(snr))2

term, it has a different slope than the true SNR exponent. The difference is due to the lognormal
approximation of the sum of random variables and the fact that the left tails of the true distribution
and the approximation have different behaviours (see Fig. 2). However, for very small σ2

I , using the
approximation log(1 + x) ≈ x in (44) and (49) we see that they are approximately equal. This behaviour
is shown in Fig. 8, which also shows that as σ2

I increases, the lognormal approximation (49) tends to
underestimate the SNR exponent and worsens as MN increases.
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For the special case of single block transmission, B = 1, it is straightforward to express the outage
probability in terms of the cumulative distribution function (cdf) of the scintillation random variable, i.e.

Pout(snr, R) = FH

(√
snrawgn

R

snr

)
(50)

where FH(h) denotes the cdf of H , and snrawgn
R

∆
= Iawgn,−1(R) denotes the SNR value at which the

mutual information is equal to R. Table I reports these values for Q = 2, 4, 8, 16 and R = Rc log2 Q,
with Rc = 1

4
, 1

2
, 3

4
. Therefore, for B = 1, we can compute the outage probability analytically when

the distribution of H is available, i.e., in the exponential case for M, N ≥ 1 or in the lognormal and
gamma-gamma cases for M, N = 1. In the case of exponential scintillation we have that

Pout(snr, R) = Γ̄

(
MN,

(
MN(1 + MN)

snrawgn
R

snr

) 1
2

)
, (51)

where Γ̄(a, x) , 1
Γ(a)

∫ x

0
ta−1 exp(−t) dt denotes the regularised (lower) incomplete gamma function [42,

p.260]. As mentioned in Section III and described in the Appendix I, it is possible to evaluate the
distribution numerically using the FFT, yielding very accurate computations of the outage probability for
B = 1 and M, N ≥ 1 in only a few seconds.

Outage probability curves for the B = 1 case are shown in Fig. 9. For the lognormal case, we see
that the curves do not have constant slope for large SNR, while, for the exponential and gamma-gamma
cases, a constant slope is clearly visible. In the case of lognormal-Rice scintillation, we observe that for
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TABLE I

MINIMUM SIGNAL-TO-NOISE RATIO snrawgn
R (IN DECIBELS) FOR RELIABLE COMMUNICATION FOR TARGET RATE R = Rc log2 Q.

Q Rc = 1
4

Rc = 1
2

Rc = 3
4

2 −0.7992 3.1821 6.4109
4 0.2169 4.0598 7.0773
8 1.1579 4.8382 7.7222
16 1.9881 5.5401 8.3107

low SNR the behaviour is very close to the lognormal case, while at large SNR the curve changes slope
and shows an error floor. The slope of the error floor is the same as the exponential curve as predicted
by our analysis. We also see the benefits of MIMO, particularly in the exponential, gamma-gamma and
lognormal-Rice cases, where the SNR exponent has increased from 1/2 and 1 to 2 and 4 respectively.
In the case of lognormal-Rice scintillation, we observe that the curve is very close to the lognormal one
in the range of error probability shown in the figure. This curve will change slope, yielding an error
floor parallel to that of the exponential case. To verify this, Figure 10 shows the outage probability for
lognormal-Rice scintillation in a different range of error probability. As we observe, the error probability
changes slope and shows an error floor of slope MN/2 = 2, as predicted by our analysis.

VI. OUTAGE PROBABILITY ANALYSIS WITH CSIT
In this section we consider the case where the transmitter and receiver both have perfect CSI knowledge.

In this case, the transmitter determines the optimal power allocation that minimises the outage probability
for a fixed rate, subject to a power constraint [23]. The results of this section are based on the application
of results from [24] to PPM and the scintillation distributions of interest. Using these results we show
power savings on the order of 20 dB with respect to the CSIR-only case, and uncover new insight as to
how key design parameters influence the performance of the system.

For the short-term power constraint given by (9), the optimal power allocation is given by mercury-
waterfilling at each channel realisation [24, 50],

pb =
1

h2
b

mmse−1

(
min

{
1,

η

h2
b

})
, (52)

for b = 1, . . . , B where mmse−1(u) is the inverse-MMSE function and η is chosen to satisfy the power
constraint. From [24, Prop. 1] it is apparent that the SNR exponent for the CSIT case under short-term
power constraints is the same as the CSIR case.

For the long-term power constraint given by (10) the optimal power allocation is [24]

p =

{
℘,

∑B
b=1 ℘b ≤ s

0, otherwise,
(53)

where
℘b =

1

h2
b

mmse−1

(
min

{
1,

1

ηh2
b

})
, b = 1, . . . , B (54)

and s is a threshold such that s = ∞ if lims→∞ ER(s)

[
1
B

∑B
b=1 ℘b

]
≤ P , and

R(s) ,

{
h ∈ RB

+ :
1

B

B∑
b=1

℘b ≤ s

}
, (55)
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otherwise, s is chosen such that P = ER(s)

[
1
B

∑B
b=1 ℘b

]
. In (54), η is now chosen to satisfy the rate

constraint
1

B

B∑
b=1

Iawgn

(
mmse−1

(
min

{
1,

1

ηh2
b

}))
= R (56)

From [24], the long-term SNR exponent is given by

dlt
(log snr) =


dst
(log snr)

1−dst
(log snr)

dst
(log snr) < 1

∞ dst
(log snr) > 1

, (57)

where dst
(log snr) is the short-term SNR exponent, i.e., the SNR exponent obtained in the previous section.

Note that dlt
(log snr) = ∞ implies the outage probability curve is vertical, i.e. delay-limited capacity [25]

exists. From (44) we see that dst
(log snr) = ∞ for the lognormal case, i.e. delay-limited capacity always

exists, and the outage probability curve is vertical. In the exponential and lognormal-Rice case from (45)
and (47) we require that MN (1 + bB (1−Rc)c) > 2, while in the gamma-gamma case from (46) we
need MN min(α, β) (1 + bB (1−Rc)c) > 2, for delay-limited capacity to exist. In other words, for these
cases, M, N, B and Rc need to be chosen carefully to ensure the existance of delay-limited capacity.
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Single block transmission (B = 1) is most relevant in FSO communications since the coherence time
is on the order of milliseconds which is large compared to typical data rates. In this case the solution (54)
can be determined explicitly since

η =
(
h2mmse(Iawgn,−1(R))

)−1
=
(
h2mmse(snrawgn

R )
)−1

. (58)

Therefore,

℘opt =
snrawgn

R

h2
. (59)

Intuitively, (59) implies that for single block transmission, whenever snrawgn
R /h2 ≤ s, one simply transmits

at the minimum power necessary so that the received instantaneous SNR is equal to the SNR threshold

(snrawgn
R ) of the code. Otherwise, transmission is turned off. Thus an outage occurs whenever h <

√
snrawgn

R

s
and hence

Pout(snr, R) = FH

(√
snrawgn

R

γ−1(snr)

)
(60)

where γ−1(snr) is the solution to the equation γ(s) = snr, i.e.,

γ(s) = snrawgn
R

∫ ∞

ν

fH(h)

h2
dh, (61)



19

where ν ,
√

snrawgn
R

s
. In the cases where the distribution of H is known in closed form, Eq. (61) can be

solved explicitly, hence yielding the exact outage probability expression when combined with (60). For
lognormal distributed scintillation and B = M = N = 1, the integral (59) can be solved explicitly,

γln(s) =
1

2
snrawgn

R (1 + σ2
I )

4erfc

(
3 log(1 + σ2

I ) + 1
2
log snrawgn − 1

2
log s√

2 log(1 + σ2
I )

)
. (62)

We also find that
lim
s→∞

snrln(s) = snrawgn
R (1 + σ2

I )
4, (63)

which is precisely the threshold SNR at which Pout(snr, R) → 0. For exponential distributed scintillation
with B = 1 , we obtain,

γexp(s) = snrawgn
R

MN(1 + MN)

(MN − 1)(MN − 2)
Γ̄

(
MN − 2,

√
MN(1 + MN)

snrawgn
R

s

)
. (64)

Similarly, for the case when MN > 2,

lim
s→∞

snrexp(s) = snrawgn
R

MN(1 + MN)

(MN − 1)(MN − 2)
. (65)

For the case when MN ≤ 2, there exists no threshold SNR for which Pout(snr, R) → 0. This is
interesting, because it means that a combined total of more than 3 lasers and apertures is required to
drive Pout(snr, R) → 0 under strong turbulence conditions, unlike the weak turbulence case (lognormal),
where a threshold s exists for any MN to drive Pout(snr, R) → 0.

Fig. 11 compares the outage probability for the B = 1 CSIT case (with long-term power constraints)
for each of the scintillation distributions. For the MN = 1 case we see that delay-limited capacity only
exists in the lognormal case, since for the other two distributions dst

(log snr) < 1. In this situation, one must
code over more blocks to ensure the existance of delay-limited capacity. When MN = 4, delay-limited
capacity exists in all three distribution cases since dst

(log snr) > 1. Note that the SNR threshold at which
Pout → 0 can be determined by computing the expectation snrawgn

R E [H−2], which, as described above,
can be determined explicitly for some cases. Comparing the CSIR and CSIT cases (Figs. 9 and 11) we
can see that very large power savings are possible when CSI is known at the transmitter. For example,
for the case of gamma-gamma scintillation, at 10−4 we observe around 20 dB gain with power control
(for MN = 4).

VII. CONCLUSIONS

In this report we have analysed the outage probability of the MIMO Gaussian FSO channel under the
assumption of PPM and non-ideal PD, for lognormal, exponential, gamma-gamma and lognormal-Rice
distributed scintillation. When CSI is known only at the receiver, we have shown that the SNR exponent
is proportional to the number lasers and apertures, times a channel related parameter (dependent on the
scintillation distribution), times the Singleton bound, even in the cases where a closed form expression
of the equivalent SISO channel distribution is not available in closed-form. When the scintillation is
lognormal distributed, we have shown that the outage probability is dominated by a (log(snr))2 term,
whereas for the exponential, gamma-gamma and lognormal-Rice cases it is dominated by a log(snr) term.
When CSI is also known at the transmitter, we applied the power control techniques of [24] to PPM to
show very significant power savings.
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APPENDIX I
FAST FOURIER TRANSFORM METHOD

This appendix describes how to use the fast Fourier transform (FFT) to numerically compute the
distribution of sums of i.i.d. random variables.

1) Set ∆h = hmax

NFFT
, where hmax and NFFT are the truncation value and FFT length respectively.

2) Compute φ[n] = cMNfH̃(cMN∆hn) for n = 0, . . . , NFFT−1, where c =

√
E[Ĥ2] is given by (12).

3) Approximate the characteristic function via the discrete Fourier transform (DFT), i.e.

Φ[k] = ∆h

NFFT−1∑
n=0

φ[n] exp(−j2πkn/NFFT) (66)

for k = 0 . . . , NFFT − 1, which can be computed efficiently using an FFT algorithm.
4) Now compute the distribution by performing the inverse DFT (using an IFFT algorithm) as follows,

fH(∆hn) =
1

∆h

1

NFFT

NFFT−1∑
k=0

(Φ[k])MN exp(j2πkn/NFFT), (67)

for n = 0 . . . , NFFT − 1.
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APPENDIX II
GAMMA-GAMMA DISTRIBUTION PROOFS

A. Proof of Theorem 3.1
We begin using the property that the Gamma-Gamma distributed random variable can be written as

the product of two independent Gamma distributed random variables X and Y , i.e. pX(x) = g(x; α, 1/α)
and pX(y) = g(y; β, 1/β) where g(k, θ) is defined as in (20). Hence we have

Mh(t) = E[exp(tXY )]

=

∫ ∞

0

∫ ∞

0

exp(txy)g(x; α, 1/α)g(y; β, 1/β) dxdy

=

∫ ∞

0

(
1− t

α
y

)−α

g(y; β, 1/β) dy (68)

=
∞∑
i

(
α + i− 1

i

)(
t

α

)i ∫ ∞

0

yig(y; β, 1/β) dy (69)

=
∞∑
i=0

Γ(α + i)

Γ(α)i!

(
t

α

)i
Γ(β + i)

Γ(β)βi

=
∞∑
i=0

(α)i(β)i

i!

(
t

αβ

)i

= 2 F0(α, β; t/(αβ)),

where in (68) we used the MGF of a Gamma distributed random variable and in (69) we used the Binomial
theorem.

B. Proof of Proposition 3.1
For small h the gamma-gamma pdf can be approximated as

fH̃(h) ≈

{
2α2α

(Γ(α))2
hα−1 log 1

2α
√

h
, β = α

Γ(|α−β|)
Γ(α)Γ(β)

(αβh)min(α,β)−1, β 6= α
,

where we have used K0(x) ∼ − log(x) and Kν(x) ∼ 1
2
Γ(ν)

(
2
x

)ν for ν > 0 and x → 0 [42, p. 375]. The
result therefore follows via simple integration.
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APPENDIX III
PROOF OF PROPOSITION 4.1

Using Jensen’s inequality [45] we have that

Iawgn(ρ) = log2 Q− Ey|x=e1

[
log2

(
1 +

Q∑
q=2

exp (
√

ρ(yq − y1))

)]
(70)

≥ log2 Q− Ey1|x=e1

[
log2

(
1 +

Q∑
q=2

Eyq |x=e1 [exp (
√

ρ(yq − y1))]

)]
(71)

= log2 Q− Ey1|x=e1

[
log2

(
1 + exp(−√ρy1)

Q∑
q=2

Eyq |x=e1 [exp (
√

ρyq)]

)]
(72)

= log2 Q− Ey1|x=e1

[
log2

(
1 + (Q− 1) exp(−√ρy1) exp

(ρ

2

))]
(73)

= log2 Q− EU

[
log2

(
1 + (Q− 1) exp(−√ρ(

√
ρ + U)) exp

(ρ

2

))]
(74)

= log2 Q− EU

[
log2

(
1 + (Q− 1) exp

(
−ρ

2
−√ρU

))]
(75)

where (73) follows from yq ∼ N (0, 1) for q = 2, . . . , Q, which implies that exp(
√

ρyq) is lognormal with
mean exp

(
ρ
2

)
.
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APPENDIX IV
PROOF OF THEOREM 4.1

The MMSE estimate is given by

x̂ = E [x|y] (76)

=
∑
x∈X

xp(x|y) (77)

=
∑
x∈X

xp(y|x)p(x)

p(y)
(78)

=
∑
x∈X

xp(y|x)p(x)∑
x′∈X p(y|x′)p(x′)

(79)

=
∑
x∈X

xp(y|x)∑
x′∈X p(y|x′)

(80)

=
∑
x∈X

x exp
(
−1

2
‖y −√ρx‖2

)∑
x′∈X exp

(
−1

2
‖y −√ρx′‖2

) , (81)

=

Q∑
q=1

eq exp(
√

ρyq)∑Q
i=1 exp(

√
ρyi)

(82)

where (76)-(77) follow from the definition of the MMSE estimate [51], (78) is application of Bayes’
rule, (80) assumes equiprobable input symbols and (81) follows since y Gaussian conditioned on x.

From (82) the ith element of x̂ is

x̂i =
exp(

√
ρyi)∑Q

k=1 exp(
√

ρyk)
. (83)

Now, the MMSE is defined as [51]

mmse(ρ) = E
[
‖x− x̂‖2

]
= E[‖x‖2]− E[‖x̂‖2], (84)

where the last line follows from the orthogonality principle [51]. Now,

E[‖x‖2] =
∑
x∈X

p(x)‖x‖2 =
∑
x∈X

1

Q
= 1. (85)

Due to the symmetry of QPPM we may assume that x = e1 was transmitted. Hence, from (83),

E[‖x̂‖2] =

Q∑
i=1

E[x̂2
i ] (86)

= E[x̂2
1] + (Q− 1)E[x̂2

2] (87)

Since y1 =
√

ρ + z1 and yi = zi for i = 2, . . . , Q we may write

E[x̂2
1] = E

 exp(2
√

ρ(
√

ρ + z1))(
exp(

√
ρ(
√

ρ + z1)) +
∑Q

k=2 exp(
√

ρzk)
)2

 (88)

Similarly,

E[x̂2
2] = E

 exp(2
√

ρz2)(
exp(ρ) exp(

√
ρz1) +

∑Q
k=2 exp(

√
ρzk)

)2

 . (89)

Hence combining (88), (88) and (84) the theorem follows.
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PROOF OF THEOREM 4.2
The theorem follows directly from setting ρ = 0 in (81). We find that the estimate that minimizes the

mean squared error is x̂ = ( 1
Q
, . . . , 1

Q
). Regardless of which symbol was transmitted, the squared error is

‖x− x̂‖2 =
Q− 1

Q2
+

(
1− 1

Q

)2

=
Q− 1

Q
.

Hence (43) follows.
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APPENDIX V
PROOF OF THEOREM 5.1

We begin by defining a normalized (with respect to SNR) fading coefficient,

ζm,n
b = −2 log h̃m,n

b

log snr
, (90)

which has a pdf given by

fζm,n
b

(ζ) =
log snr

2
exp

(
−1

2
ζ log snr

)
fH̃

(
exp

(
−1

2
ζ log snr

))
. (91)

Since we are only concerned with the asymptotic outage behaviour, the scaling of the coefficients is
irrelevant, and to simplify our analysis we assume E[Ĥ2] = 1. Hence the instantaneous SNR for block b
is given by

ρb = snrh2
b = snr

(
1

MN

M∑
m=1

N∑
n=1

h̃m,n
b

)2

=

(
1

MN

M∑
m=1

N∑
n=1

snr
1
2(1−ζm,n

b )

)2

(92)

for b = 1, . . . , B. Therefore,

lim
snr→∞

Iawgn(ρb) = lim
snr→∞

Iawgn

( 1

MN

M∑
m=1

N∑
n=1

snr
1
2(1−ζm,n

b )

)2
 (93)

=

{
0 if all ζm,n

b > 1

log2 Q at least one ζm,n
b < 1

(94)

= log2 Q (1− 11{ζb � 1}) (95)

where ζb
∆
= (ζ1,1

b , . . . , ζM,N
b ), 11{·} denotes the indicator function, 1

∆
= (1, . . . , 1) is a 1×MN vector of

1’s, and the notation a � b for vectors a, b ∈ Rk means that ai > bi for i = 1, . . . , k.
From the definition of outage probability (37), we have that3

Pout(snr, R) = Pr(Ih(snr) < R) (96)

=

∫
A

f(ζ)dζ (97)

where ζ
∆
= (ζ1, . . . , ζB) is a 1×BMN vector of normalized fading coefficients, f(ζ) denotes their joint

pdf, and

A ∆
=

{
ζ ∈ RBMN :

1

B

B∑
b=1

log2 Q (1− 11{ζb � 1}) < R

}
(98)

=

{
ζ ∈ RBMN :

B∑
b=1

11{ζb � 1} > B

(
1− R

log2 Q

)}
(99)

is the asymptotic outage set. We now compute the asymptotic behaviour of the outage probability, i.e.

− lim
snr→∞

log Pout(snr, R) = − lim
snr→∞

log

∫
A

f(ζ)dζ. (100)

3Note we have dropped the suffix p in (37) since the power is uniformly allocated across all blocks (CSIR case).
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A. Lognormal case
Suppose h̃m,n

b are lognormal distributed with parameters µ = − log(1 + σ2
I ) and σ2 = log(1 + σ2

I ) (see
Sec. III). Hence, from (91) and (15) the pdf of ζm,n

b is

fζm,n
b

(ζ) =
log snr√

8πσ2
exp

(
− 1

8σ2

(
(log snr)2ζ2 + 4µ log snrζ + 4µ2

))
(101)

.
= exp

(
− 1

8σ2
(log snr)2ζ2

)
. (102)

Therefore the joint pdf of ζ is,

f(ζ) =
(log snr)BMN

(8πσ2)
BMN

2

exp

(
− 1

8σ2

B∑
b=1

M∑
m=1

N∑
n=1

(
(log snr)2(ζm,n

b )2 + 4µ log snrζm,n
b + 4µ2

))
(103)

.
= exp

(
−(log snr)2

8σ2

B∑
b=1

M∑
m=1

N∑
n=1

(ζm,n
b )2

)
. (104)

Hence, from (100) we have

− lim
snr→∞

log Pout(snr, R) = − lim
snr→∞

log

∫
A

exp

(
−(log snr)2

8σ2

B∑
b=1

M∑
m=1

N∑
n=1

(ζm,n
b )2

)
dζ, (105)

which using Varadhan’s lemma [52] gives

− lim
snr→∞

log Pout(snr, R) = inf
A

{
(log snr)2

8σ2

B∑
b=1

M∑
m=1

N∑
n=1

(ζm,n
b )2

}
(106)

=
(log snr)2

8σ2
inf
A

{
B∑

b=1

M∑
m=1

N∑
n=1

(ζm,n
b )2

}
(107)

It is not difficult to show that [22]

inf
A

{
B∑

b=1

M∑
m=1

N∑
n=1

(ζm,n
b )2

}
= κMN (108)

where κ is the unique integer satisfying

κ < B

(
1− R

log2 Q

)
≤ κ + 1. (109)

Hence it follows that

− lim
snr→∞

log Pout(snr, R) = (log snr)2 MN

8σ2

(
1 +

⌊
B

(
1− R

log2 Q

)⌋)
, (110)

and the SNR exponent is therefore

d(log snr)2
∆
= − lim

snr→∞

log Pout(snr, R)

(log snr)2
=

MN

8σ2

(
1 +

⌊
B

(
1− R

log2 Q

)⌋)
(111)

=
MN

8 log(1 + σ2
I )

(
1 +

⌊
B

(
1− R

log2 Q

)⌋)
. (112)

which is a channel-related parameter times the Singleton bound [20–22].
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B. Exponential case
The proof of this theorem follows the same arguments outlined in Appendix V-A. However, since we

know the distribution of H explicitly, i.e. (23), our approach is even simpler. We begin by writing the
distribution of ζb = −2 log hb

log snr
using (91) and (23), i.e.

fζb
(ζb) = log snr

(MN(1 + MN))
MN

2

2Γ(MN)
e
−MN

2
ζb log snr−exp

“
− ζb

2

√
MN(1+MN) log snr

”
(113)

.
=

log snr

2

(MN(1 + MN))
MN

2

Γ(MN)
exp

(
−MN

2
ζb log snr

)
, ζb > 0 (114)

for large snr. Hence we obtain joint pdf,

f(ζ) = (log snr)B (MN(1 + MN))
BMN

2

(2Γ(MN))B
e
−(log snr MN

2

PB
b=1 ζb)−

“PB
b=1 exp

“
− ζb

2

√
MN(1+MN) log snr

””
(115)

.
= (log snr)B (MN(1 + MN))

BMN
2

(2Γ(MN))B
exp

(
− log snr

MN

2

B∑
b=1

ζb

)
(116)

Following the same steps in Appendix V-A, i.e. the defining the same asymptotic outage set and
application of Varadhan’s lemma [52], then we find that

− lim
snr→∞

log Pout(snr, R) =
MN

2
log snr

(
1 +

⌊
B

(
1− R

log2 Q

)⌋)
,

and hence the SNR exponent is

d(log snr)
∆
= − lim

snr→∞

log Pout(snr, R)

log snr
=

MN

2

(
1 +

⌊
B

(
1− R

log2 Q

)⌋)
.

as given in the statement of the theorem.

C. Gamma-gamma case
Suppose h̃m,n

b are gamma-gamma distributed with parameters α and β. Let us first assume α > β.
Using the general expression (91) we find that

fζm,n
b

(ζ) = log snr
(αβ)

α+β
2

Γ(α)Γ(β)
exp

(
−α + β

4
ζ log snr

)
Kα−β

(
2
√

αβ exp

(
−1

4
ζ log snr

))
.
= log snr

(αβ)
α+β

2

Γ(α)Γ(β)

Γ(α− β)

2
exp

(
−β

2
ζ log snr

)
, ζ > 0 (117)

for large snr, where we have used the approximation Kν(x) ≈ 1
2
Γ(ν)(1

2
x)−ν for small x and ν > 0 [42,

p. 375]. The extra condition, ζ > 0, is required to ensure the argument of the Bessel function approaches
zero as snr → ∞ so that the aforementioned approximation can be employed. For the case β > α we
need only swap α and β in (118). Hence we have

fζm,n
b

(ζ)
.
= log snr

(αβ)
α+β

2

Γ(α)Γ(β)

Γ(|α− β|)
2

exp

(
−min(α, β)

2
ζ log snr

)
. (118)

For B blocks, M inputs and N outputs we therefore have that the joint pdf,

f(ζ)
.
= exp

(
−min(α, β) log snr

2

B∑
b=1

M∑
m=1

N∑
n=1

ζm,n
b

)
, ζ � 0. (119)
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Now, following the same steps as in the lognormal case, with the additional constraint ζb � 0, we find
that

d(log snr) =
min(α, β)MN

2

(
1 +

⌊
B

(
1− R

log2 Q

)⌋)
,

as given in the statement of the theorem.
Alternatively, the theorem can also be proved without requiring the gamma-gamma pdf explicitly. This

involves considering h̃m,n
b = xm,n

b ym,n
b , where xm,n

b and ym,n
b are independent gamma random variables

distributed according to g(x; α, 1/α) and g(y; β, 1/β) respectively (see (20)). Then defining normalized
coefficients ζm,n

b = −2 log xm,n
b

log snr
and ξm,n

b = −2 log ym,n
b

log snr
and the instantaneous SNR,

ρb =
1

MN

M∑
m=1

N∑
n=1

snr1−
1
2
(ζm,n

b +ξm,n
b ). (120)

Hence,

lim
snr→∞

Iawgn(ρb) = log2 Q

(
1− 11

{
1

2
(ζb + ξb) � 1

})
. (121)

Therefore,
Pout(snr, R) =

∫
A

f(ζ, ξ) dζ dξ (122)

where

A ∆
=

{
ζ ∈ RBMN , ξ ∈ RBMN :

B∑
b=1

11
{

1

2
(ζb + ξb) � 1

}
> B

(
1− R

log2 Q

)}
(123)

is the asymptotic outage set. From (20) and (91) we find that,

fζm,n
b

(ζ)
.
= exp

(
−α

2
ζ log snr

)
(124)

fξm,n
b

(ξ)
.
= exp

(
−β

2
ξ log snr

)
. (125)

Hence the joint pdf of (ζ, ξ) is

f(ζ, ξ)
.
= exp

(
−1

2
log snr

B∑
b=1

M∑
m=1

N∑
n=1

αζm,n
b + βξm,n

b

)
. (126)

Thus using, Varadhan’s lemma [52]

− lim
snr→∞

log Pout(snr, R) =
1

2
log snr inf

A

{
B∑

b=1

M∑
m=1

N∑
n=1

αζm,n
b + βξm,n

b

}
. (127)

To solve the above infimum, first suppose α > β, then we set ζb = 0 for all b = 1, . . . , B and assign any
κ (where κ is defined in (109)) of the B vectors ξb, b = 1, . . . , B, to be vectors such that 1

2
ξb � 1, and

the remaining B − κ vectors to be 0. For the case when β > α we need only reverse the roles of ζb and
ξb. Thus,

inf
A

{
B∑

b=1

M∑
m=1

N∑
n=1

αζm,n
b + βξm,n

b

}
= min(α, β)MNκ, (128)

and it therefore follows that

d(log snr) =
min(α, β)MN

2

(
1 +

⌊
B

(
1− R

log2 Q

)⌋)
.
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D. Lognormal-Rice Distribution
For this case, H̃ = XY , where X and

√
Y are lognormal and Rice distributed random variables

respectively. To obtain the SNR exponent we follow the steps of the gamma-gamma case and define
normalized fading coefficients, ζm,n

b and ξm,n
b .

From (101) (keeping (log snr)2 and log snr terms),

fζm,n
b

(ζ)
.
= exp

(
− 1

8σ2
(log snr)2ζ2 +

1

2
ζ log snr

)
. (129)

From (34),

fξm,n
b

(ξ) =
r + 1

2
log snr exp

(
−1

2
ξ log snr − r − (r + 1) exp

(
−1

2
ξ log snr

))
· I0

(√
4r(r + 1) exp

(
−1

2
ξ log snr

))
,

and using I0(z) → 1 as z → 0 [42, p. 376] we find that

fξm,n
b

(ξ)
.
= exp

(
−1

2
ξ log snr

)
. (130)

Hence we have,

f(ζ, ξ)
.
= exp

(
− 1

8σ2
(log snr)2

B∑
b=1

M∑
m=1

N∑
n=1

(ζm,n
b )2 − 1

2
log snr

B∑
b=1

M∑
m=1

N∑
n=1

(ξm,n
b − ζm,n

b )

)
, (131)

and using, Varadhan’s lemma [52]

− lim
snr→∞

logPout(snr, R)

=
1

2
log snr inf

A

{
1

4σ2
log snr

B∑
b=1

M∑
m=1

N∑
n=1

(ζm,n
b )2 +

B∑
b=1

M∑
m=1

N∑
n=1

(ξm,n
b − ζm,n

b )

}
, (132)

where A is given by (123). Assuming σ2 < ∞, immediately we see that the above infimum is achieved
by setting ζb = 0 and the ξb vectors as in the gamma-gamma case. Hence the SNR exponent is

d(log snr) =
MN

2

(
1 +

⌊
B

(
1− R

log2 Q

)⌋)
.
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