
Coded Modulation with Rotated
Multidimensional Constellations

in Block-Fading Channels
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Abstract

We study the problem of constructing coded modulation schemes over multidimensional signal sets in Nakagami-
m block-fading channels. In particular, we consider the optimal diversity reliability exponent of the error probability
when the multidimensional constellation is obtained as the rotation of classical complex-plane signal constellations.
We show that multidimensional rotations of full dimension achieve the optimal diversity reliability exponent,
also achieved by Gaussian constellations. Multidimensional rotations of full dimension induce a large decoding
complexity, and in some cases it might be beneficial to use multiple rotations of smaller dimension. We also
study the diversity reliability exponent in this case, which yields the optimal rate-diversity-complexity tradeoff in
block-fading channels with discrete inputs.
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I. INTRODUCTION

Rotated multidimensional constellations in fading channels were proposed in [1], [2] as a way of
achieving high reliability with uncoded modulation in fading channels. Since, rotated constellations have
been extensively studied, and have been shown to be an effective technique to achieve full-rate and full-
diversity transmission in fading channels [3], [4], [5], [6]. Traditionally, rotated constellations have always
been studied uncoded, with the exception of some recent works for the multiple-input multiple-output
(MIMO) channel [7], [8].

In this work, we study the problem of constructing general coded modulation schemes over multidi-
mensional signal sets, obtained by rotating classical complex-plane signal constellations, for block-fading
channels with B fading blocks (or degrees of freedom) per codeword [9]. The block-fading channel is a
useful model for transmission over slowly varying fading channels, such as orthogonal frequency division
multiplexing (OFDM) or slow time-frequency-hopped systems such as GSM or EDGE.

Despite the elegance of full-diversity rotations of dimension B, they induce large decoding complexity
since the set of candidate points for detection at a given time instant is exponential with B. In fact,
when uncoded rotations are used, the sphere decoder [10] is usually employed to avoid exhaustive search
over all candidate points. However, when coded modulation is used, the code itself can help to achieve
full diversity. This means that sometimes rotations of smaller dimension N < B might be sufficient.
Also in the coded case, soft information should be provided to the decoder and this further complicates
the problem. As a matter of fact, despite the recent advances in soft-output sphere decoding techniques
[11], most of the proposed techniques still show performance limitations, which might be undesirable in
practice. Therefore, in practice, one might be interested in using rotations of dimension smaller than B,
in order to establish the tradeoff between diversity, rate, constellation size and complexity induced by the
rotations.

In this report, we study the reliability exponent, namely, the optimal exponent of the error probability of
such schemes with the signal-to-noise ratio (SNR) in a logarithmic scale, and illustrate the rate-diversity-
complexity tradeoff for coded modulation schemes constructed over multidimensional signal sets.

This report is organized as follows. Section II introduces the system model, with particular focus on
coded modulation scheme based on rotated multidimensional constellations. Section III reviews the concept
of outage probability and studies the mutual information of rotated multidimensional constellations. Section
IV presents our main results in term of reliability exponents for multidimensional constellations, and
shows some results on the outage probability of such systems as well as simulations of practical systems
employing convolutional codes. Section V draws some final remarks. The Appendix gives the details of
our proofs.

II. SYSTEM MODEL

We consider a single-input single-output block-fading channel with B fading blocks, whose system
model is given by the following,

yb =
√

SNR hb xb + zb b = 1, . . . , B (1)

where hb ∈ C is the b-th fading coefficient, yb ∈ CL is the received signal vector corresponding to fading
coefficient b, xb ∈ CL is the portion of codeword allocated to block b and zb ∈ CL is the vector of i.i.d.
noise samples ∼ NC(0, 1). We assume that the transmitted signal is normalized in energy, i.e., E[|x|2] = 1.
Hence, SNR is the average received SNR.

We assume that the fading coefficients are i.i.d. from block to block and from codeword to codeword,
and that they are perfectly known at the receiver, i.e, perfect channel state information at the receiver
(CSIR). Since the channel coefficients are perfectly known to the receiver, we assume that the phase of
the fading has been corrected. We also assume that the magnitudes of the channel coefficients follow a
Nakagami-m distribution

p|h|(ξ) =
2mmξ2m−1

Γ(m)
e−mξ2
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for m > 0 1 where Γ(ξ)
∆
=
∫ +∞

0
tξ−1e−tdt is the Gamma function [13]. By analyzing Nakagami-m fading,

we are able to characterize a large class of fading statistics, including Rayleigh fading by setting m = 1
and Rician fading with parameter K by setting m = (K + 1)2/(2K + 1) [14]. For future use we define
γb

∆
= |hb|2, b = 1, . . . , B. We can express (1) in matrix form as

Y =
√

SNR H X + Z (2)

where

Y = [y1, . . . ,yB]T ∈ CB×L, (3)

X = [x1, . . . ,xB]T = [X1, . . . ,XL] ∈ CB×L, (4)

Z = [z1, . . . ,zB]T ∈ CB×L, (5)

H
∆
= diag(h1, . . . , hB) ∈ CB×B. (6)

We consider that codewords X form a coded modulation scheme X ⊂ CB×L. In particular, we consider
that X is obtained as the concatenation of a binary code C ∈ Fn

2 of rate r, a modulation over the signal
constellation S ∈ C with M = log2 |S|, and K rotations M k ∈ CN×N with KN = B (see Figure 1). In
particular we have that at channel use ` = 1, . . . , L

x`,k = M ks`,k (7)

where s`,k = (s`,k,1, . . . , s`,k,N)T ∈ SN is the vector of complex-plane signal constellation symbols that is
rotated by the k-th rotation matrix, x`,k = (x`,k,1, . . . , x`,k,N)T is the portion of transmitted signal at the
`-th channel use that has been rotated by the k-th rotation, and

x` = [xT
`,1, . . . ,x

T
`,K ]T

is the transmitted signal at the `-th channel use. The rotation matrices are constrained to be unitary, i.e.,
M kM

†
k = I . We will be interested in full-diversity rotations, namely, rotation matrices M for which

∀s, s′ ∈ SN , s 6= s′

M(s− s′) 6= 0 (8)

componentwise. This implies that, if the vector s−s′ has any number of non-zero components, its rotated
version M(s−s′) will have all non-zero components. In this report we will use some specific full-diversity

1The literature usually considers m ≥ 0.5 [12]. However, the distribution is well defined and reliable communication is possible for
0 < m < 0.5.
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matrices of dimension N = 2 and N = 4. For the sake of completeness, we report the corresponding
matrices in the following. The reader is referred to [4], [5], [6], [15] for information on how these matrices
have been designed. The N = 2 cyclotomic rotation matrix is given by [15]

M =

(
−0.5257311121 −0.8506508083
−0.8506508083 0.5257311121

)
.

The N = 4 Krüskemper rotation matrix is given by [15]

M =


−0.3663925121 −0.2264430248 −0.474464708 −0.7677000246
−0.7677000238 −0.4744647078 0.2264430248 0.3663925106
0.4230815704 −0.6845603618 −0.5049593144 0.3120820189
0.3120820187 −0.5049593142 0.6845603618 −0.4230815707

 .

The N = 4 mixed rotation matrix is given by [15]

M =


0.2011885864868 0.3255299710843 0.284523627604 0.4603689000663
0.3255299710843 −0.2011885864868 0.4603689000663 −0.284523627604
0.4857122140913 0.7858988711506 −0.6869008005781 −1.1114288422349
0.7858988711506 −0.4857122140913 −1.1114288422349 0.6869008005782

 .

Reference [15] reports rotation matrices using the row convention used in [16]. In this report, we use a
column convention for lattice generator matrices, and therefore, matrices from [15] are transposed.

The rate in bits per channel use of this scheme is independent of N , and is given by R = rM . This
general formulation includes the case where only one single rotation of dimension B is used, as well as
the other extreme, with B trivial rotations of dimension N = 1 (the non-rotated case). As we shall seen
in the following, although the rate is independent of N , the reliability exponent does depend on N .

Definition 1: The block-diversity of a coded modulation scheme X ⊂ CB×L is defined as

δ = min
X(i),X(j)∈X

j 6=i

|{b ∈ (1, . . . , B) | xb(i) 6= xb(j)}|. (9)

In words, the block diversity is the minimum number of nonzero rows of X(i) −X(j) for any pair of
codewords X(j) 6= X(i) ∈ X .

Proposition 1: Given a coded modulation scheme X ⊂ CB×L, the block diversity is upperbounded by

δ ≤ N

(
1 +

⌊
B

N

(
1− R

M

)⌋)
. (10)

Proof: The result follows from the straightforward application of the Singleton bound to the coded
modulation X seen as a code of block-length K, over an alphabet of size 2MNL.

We will say that a code is blockwise maximum-distance separable (MDS) if it attains the Singleton
bound of Proposition 1 with equality.

III. OUTAGE PROBABILITY

Strictly speaking, the channel defined in (1) is not information stable and has zero capacity for any
finite B [17], since there is a non-zero probability that the transmitted message is detected in error even
for codes of infinite length. For sufficiently large L, the word error probability Pe(SNR,X ) of any coding
scheme X ⊂ CB×L is lowerbounded by the information outage probability [9], [18], given by

Pe(SNR,X ) ≥ Pout(SNR, R)
∆
= Pr(I(SNR, H) ≤ R). (11)

where I(SNR, H) is the input-output mutual information of the channel for a given fading realization H .
In this work, we will study the behavior of Pout(SNR, R) for large SNR, for which the optimal power
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allocation when no CSI is available at the transmitter, corresponds to evenly distributing the available
power across all B blocks. In the case of uniform allocation, and for a fixed H , the outage probability
is minimized when the entries of X ∈ X are i.i.d. Gaussian ∼ NC(0, 1). In this case [19]

I(SNR, H) =
1

B

B∑
b=1

log2(1 + SNRγb). (12)

When the coded modulation scheme shown in Figure 1 is used (assuming uniform inputs), we can express
the instantaneous mutual information in bits per channel use for a given channel realization H as

I(SNR, H) =
1

K

K∑
k=1

1

N
Ik(SNR, Hk) (13)

=
1

B

K∑
k=1

Ik(SNR, Hk) (14)

where the mutual information of the N × N MIMO channel induced by the k-th rotation is (see e.g.,
[20], [21] for the derivation of the mutual information of discrete-input MIMO channels)

Ik(SNR, Hk) = MN − 1

2MN

∑
s∈SN

Ez

[
log2

(
1 +

∑
s′ 6=s

e−‖
√

SNR HkMk(s−s′)+z‖2+‖z‖2
)]

(15)

and Hk = diag(h(k−1)N+1, . . . , hkN) ∈ CN×N are the channel coefficients used by rotation k, and z ∈ CN

is a dummy AWGN vector over which the expectation is computed. For small N , the expectation over
the noise vector z in (15) can be efficiently computed using the Gauss-Hermite quadrature rules [13].

Note that concatenating a Gaussian random code with a rotation of dimension B brings no benefit in
terms of exponent nor mutual information. In fact, the output of the rotated Gaussian i.i.d. vector is also
a Gaussian i.i.d. vector with identical distribution, provided that the rotation matrix is unitary. Therefore,
the mutual information

I(SNR, H) =
1

B
log2 det

(
I + SNR HMM †H†) (16)

=
1

B

B∑
b=1

log2(1 + SNRγb). (17)

is the same than without rotation, and so is therefore the corresponding diversity exponent. Rotations
are usually seen as information lossless, when in fact they are simply not needed when combined with
Gaussian inputs.

Figure 2 shows the mutual information with Gaussian inputs, unrotated 16-QAM (identity rotation) and
rotated 16-QAM in a block-fading channel with B = 4 blocks and h1 = 1.5 and h2 = h3 = h4 = 0.1.
This choice of the channel coefficients is particularly interesting since 3 out of the 4 components are in a
deep fade 2. Rotations of dimension N yield vanishing (for large SNR) error probability whenever there
are up to N − 1 deeply faded blocks [3], [4], [5], [6]. The mutual information achieved by the rotated
16-QAM is very close to that attained by the Gaussian distribution for a range of SNR significantly
wider than unrotated 16-QAM. For example, at SNR = 25dB, the Krüskemper rotation gains 1 bit of
information with respect to unrotated 16-QAM. Combining 2 cyclotomic rotations of dimension N = 2
brings also significant information gains with respect to unrotated 16-QAM. As we shall see, this effect
brings substantial exponent benefits with respect to the unrotated case. We also appreciate some difference
between optimal Krüskemper and the mixed (2× 2) rotations, especially at low rates. As a matter of fact,
rotations provide only mutual information advantages at high rates. At low rates, unrotated transmission
performs almost as well with much less decoding complexity.

2Note that in this nonergodic scenario, the ergodic information rate averaged over the channel realizations does not have a practical
relevance. Instead, we are interested in finding out the behavior of the system for bad channels which dominate the outage probability for
large SNR.
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Fig. 2. Instantaneous mutual information I(SNR, H) (bits/channel use) in a block-fading channel with B = 4 blocks and h1 = 1.5 and
h2 = h3 = h4 = 0.1 with Gaussian inputs (thick solid) and rotated 16-QAM inputs with the optimal Krüskemper (thin solid), mixed (thin
dash-dotted), 2 independent 2-dimensional cyclotomic rotations (thin dashed) and no rotations (thick dotted).

IV. OPTIMAL RELIABILITY

We define the diversity reliability exponent of a given coded modulation scheme X as

dX = lim
SNR→+∞

− log Pe(SNR,X )

log SNR
(18)

and the optimal diversity reliability exponent is

d? ∆
= sup

X
dX = sup

X
lim

SNR→+∞
− log Pe(SNR,X )

log SNR
. (19)

When no particular structure is imposed on the coded modulation scheme X , we have the following
result.

Lemma 1: The diversity reliability exponent dX of any coded modulation scheme X subject to the
power constraint 1

BL
E[‖X‖2] ≤ 1 is upperbounded by

dX ≤ d? = mB. (20)

The optimal diversity reliability exponent can be achieved by random Gaussian codes of rate R > 0 with
entries ∼ NC(0, 1). The optimal exponent d? can also be achieved by random coded modulation schemes
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X of rate R consisting of a random coded modulation scheme over a discrete signal constellation S of
size |S| = 2M concatenated with a full-diversity rotation of dimension B, whenever 0 ≤ R

M
< 1.

Proof: The converse is proved in [22], [23]. Furthermore, [22], [23] also show that the random
Gaussian ensemble achieves the optimal exponent. What is left to prove is that the random coded
modulation scheme over a single full-diversity rotation of dimension B achieves the same exponent.
This is proved in Appendix III, by letting N = B.

We have included the achievability with the random coded modulation ensemble over the B-dimensional
rotated constellation to illustrate that a coding scheme with discrete inputs can also achieve the optimal
exponent. This result which is based on a divide and conquer approach, should be rather intuitive: the
rotation of dimension B takes care of achieving full diversity while the coding gain is then left to the outer
coded modulation scheme over S. When no rotations are used, the optimal diversity reliability exponent
is given by the Singleton bound [23]

d? = m

(
1 +

⌊
B

(
1− R

M

)⌋)
. (21)

As shown in Figure 3 the advantage of rotations is clear: they can achieve the optimal diversity reliability
exponent for the whole range of rates. Instead, when no rotations are used, the largest rate such that optimal
diversity reliability exponent is achieved is R = M

B
.
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Fig. 3. Diversity reliability exponents for B = 8 and m = 1. Optimal exponent (19) and Singleton bound (20).

As outlined in the Introduction, full-diversity rotations induce large decoding complexity, since the size
of the set of candidate points at a given time instant is 2MB. We are therefore interested in characterizing
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the optimal diversity reliability exponent when rotations of smaller size N < B are employed. We have
the following results

Proposition 2: The diversity reliability exponent for the coded modulation schemes based on K rota-
tions of dimension N , in a Nakagami-m block-fading channel with B = KN blocks is upperbounded
by

dX ≤ mN

(
1 +

⌊
B

N

(
1− R

M

)⌋)
. (22)

Proof: See Appendix II.
Proposition 3: The diversity reliability exponent in a Nakagami-m block-fading channel with B = KN

of random coded modulation schemes based on K rotations of dimension N of length L satisfying
limSNR→∞

L
SNR

= λ, is lowerbounded by

dX ≥



λBM log 2
(
1− R

M

)
if 0 ≤ λNM log 2 < m

min

{
mN

⌈
B
N

(
1− R

M

)⌉
, mN

⌊
B
N

(
1− R

M

)⌋
+λM log 2

(
B
(
1− R

M

)
−N

⌊
B
N

(
1− R

M

)⌋)}
otherwise.

(23)

Proof: See Appendix III.
The proof of the last two Propositions closely follows the reasoning of [22], [23]. Although the basic

steps of the proofs are the same, the inclusion of the rotation matrix of dimension N is nontrivial, and
a detailed proof is needed to track the impact of the rotation dimension N in the final expression of the
resulting exponent.

The preceding results lead to the following Theorem.
Theorem 1: The optimal diversity reliability exponent for the coded modulation schemes based on K

rotations of dimension N , in a Nakagami-m block-fading channel with B = KN blocks is given by

d?
X = mN

(
1 +

⌊
B

N

(
1− R

M

)⌋)
(24)

whenever B
N

(
1− R

M

)
is not an integer.

Proof: Proposition 2 shows that

dX ≤ mN

(
1 +

⌊
B

N

(
1− R

M

)⌋)
. (25)

Letting λ →∞ in Proposition 3 shows that

dX ≥ mN

⌈
B

N

(
1− R

M

)⌉
. (26)

Noting that dxe = bxc+ 1 whenever x is not an integer leads the desired result.
As we observe, Theorem 1 gives a dual result to that of [23] and shows that the optimal exponent

is given by m times the Singleton bound of (10), proving its optimality and separating the roles of the
channel distribution (through m) and of the code construction. The optimal codes are blockwise MDS
in a channel with B blocks. For N > 1, Theorem 1 suggests that the optimal coding scheme is to use
a coded modulation scheme constructed over S which is MDS in a block-fading channel with K = B

N
blocks concatenated with rotations of dimension N . In this case the MDS constraint on the code is
relaxed, since it has to be MDS for a smaller number of blocks, at an expense of a decoding complexity
increase. Theorem 1 implicitly introduces an equivalent channel model, namely, a block-fading channel
with K = B

N
, where each block has diversity mN . When K = 1, N = B, there is only one single rotation

of full dimension, Theorem 1 generalizes Lemma 1. The optimal coding scheme here does not need to
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be MDS. Therefore, Theorem 1 generalizes and proves the optimality of the modified Singleton bound
introduced in [7].

Figure 4 shows the reliability exponents in the case of B = 8, m = 0.5 and N = 1, 2, 4. The figure
confirms the intuition behind such designs that the rotations should increase the reliability exponent. For
example, for R

M
= 1

2
, we have that with classical complex-plane inputs the reliability exponent is d?

X = m5,
while for rotations with N = 2 the exponent is d?

X = m6 and for N = 4 the exponent is d?
X = m8,

full diversity. This approach can be seen as a divide-and-conquer approach, namely, the task of achieving
diversity is split between both, the code C and the rotations. Figure 5 shows the diversity upper bound as
well as the random coding lower bounds given in Propositions 2 and 3, respectively. As we see, if λ is
increased, both bounds coincide in a larger support. Eventually, for λ →∞ they coincide wherever they
are continuous.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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3.5

4

R

M

d
⋆ X

Fig. 4. Reliability exponents for B = 8, m = 0.5 and rotations of dimensions N = 1 (dash-dotted), N = 2 (dashed) and N = 4 (solid).

To illustrate the performance benefits of rotations, Figures 6 and 7 show Pout(SNR, R) as a function
of Eb

N0
in a block-fading channel with m = 1 and B = 4 for R = 2, with Gaussian inputs (solid), discrete

inputs (dotted), rotated discrete inputs with two cyclotomic rotations with N = 2 (dash-dotted) and rotated
discrete inputs with one Krüskemper rotation with N = 4 (dashed). Gaussian inputs achieve the optimal
exponent, namely d? = B = 4, while unrotated inputs have d?

X = 3 [22]. As we observe from the curves,
using two rotations of dimension N = 2, not only allows to recover the largest possible exponent (in
agreement with Theorem 1) but also brings a large gain. Using a rotation of dimension N = 4 incurs
much larger complexity and does not bring any exponent or gain improvements.

To illustrate that the above theoretical results are approachable with practical coding schemes, Figure
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Fig. 5. Reliability exponents for B = 8, m = 1 and rotations of dimensions N = 2. The random coding exponents for λM log 2 = m
2N

(lower dash-dotted curve) and λM log 2 = 4m
N

(upper dash-dotted curve) are also shown.

8 shows the error probability of rotated and unrotated systems with QPSK modulation using the (5, 7)8

convolutional code with 128 information bits per frame. The outage probabilities with Gaussian inputs
(thick solid line), rotated QPSK inputs with one Krüskemper rotation of dimension N = 4 (dashed line),
rotated QPSK inputs with two cyclotomic rotations of dimension N = 2 (dash-dotted) are shown for
reference, as well as the performance of the unrotated scheme, whose corresponding outage probability
has been removed for the sake of clarity. In the case of two rotations of dimension N = 2, we separately use
bit-interleaved coded modulation (BICM) [24] followed by a rotation on the outputs generated by generator
polynoimial 58 and 78. Since the (5, 7)8 convolutional code has full-diversity in a block-fading channel
with K = 2 blocks, this blockwise operation allows the overall coding scheme to achieve full-diversity. A
similar construction can be obtained using blockwise concatenated codes [22] or multiplexed turbo-codes
[25]. These coded modulation schemes will closely approach the outage probability of the channel for
any (sufficiently large) block length. Rotated systems use exhaustive iterative decoders, i.e., we compute
the metrics or all the candidate points [20]. Again, as we observe, the gain obtained by using rotations is
significant. As a matter of fact, all systems using rotations show a steeper slope to that of the unrotated
case. Furthermore, we observe that using a rotation of full dimension N = 4 yields once more a small
gain with respect to using two rotations of dimension N = 2, while significantly increasing the decoding
complexity. We also observe that, set-partitioning labeling yields some performance advantage over Gray
labeling. From results not shown here, both Gray and set-partitioning show improved performance with
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Fig. 6. Outage probability for R = 1 bits per channel use in a block-fading channel with B = 4, m = 1, with Gaussian (solid line),
rotated QPSK inputs with one Krüskemper rotation of dimension N = 4 (dashed line), rotated QPSK inputs with two cyclotomic rotations
of dimension N = 2 (dash-dotted) and unrotated QPSK inputs (dotted).

the iterations. This is due to the the fact that rotations induce an equivalent MIMO channel, and the
iterative decoder assists in iteratively removing the self-interference introduced by the rotation.

V. CONCLUSIONS

We have studied coded modulation schemes over Nakagami-m block-fading channels with discrete
input signal constellations. In particular, we have derived the optimal diversity reliability exponent for
multidimensional signal constellations obtained from the rotation of classical complex-plane constellations,
and we have shown that there is a tradeoff between the transmission rate, optimal achievable diversity,
dimension of the rotations and size of the complex-plane signal constellation given by a modified form of
the Singleton bound. Since using rotated constellations induces an increase in decoding complexity, the
Singleton bound establishes the optimal rate-diversiy-complexity tradeoff. We have shown that practical
coding schemes can achieve the optimal rate-diversity-complexity tradeoff.
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Fig. 7. Outage probability for R = 2 bits per channel use in a block-fading channel with B = 4, m = 1, with Gaussian(solid line), rotated
16-QAM inputs with one Krüskemper rotation of dimension N = 4 (dashed line), rotated 16-QAM inputs with two cyclotomic rotations of
dimension N = 2 (dash-dotted) and unrotated 16-QAM inputs (dotted).

APPENDIX I
NOTATION

In this appendix we introduce the main notation that will be used throughout the proofs of the various
results. We will also state without proof some of the basic results that are needed for our proofs. The
exponential equality .

= and inequalities ≥̇ and ≤̇ were introduced in [26]. We write

f(z)
.
= zd

to indicate that
lim
z→∞

log f(z)

log z
= d.

The exponential inequalities ≥̇ and ≤̇ are defined similarly. For vectors x, y ∈ Rn, the notation x ≺ y is
used to denote componentwise vector inequality, namely xi < yi, i = 1, . . . , n. The inequalities �,�,�
are used similarly. The function 11{E} is the indicator function of the event E , namely, 11{E} = 1 when
the event E is true, and zero otherwise. Sets are denoted with calligraphic font and the corresponding
complements are denoted with a superscript c. Similarly to [26] we have the following.

Definition 2: The normalized fading coefficients are defined as

αb
∆
= − log γb

log SNR
b = 1, . . . , B.
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Fig. 8. Error probability for R = 1 bits per channel use in a block-fading channel with B = 4, m = 1 using the (5, 7)8 convolutional code
and QPSK modulation with Gray (GR) and set-partitioning (SP) labeling. The outage probabilities with Gaussian inputs (thick solid line),
rotated QPSK inputs with one Krüskemper rotation of dimension N = 4 (dashed line), rotated QPSK inputs with two cyclotomic rotations
of dimension N = 2 (dash-dotted) are shown for reference.

Then, from [23] we have that
Proposition 4: The joint distribution of the vector α = (α1, . . . , αB) is given by

p(α) =

(
mm log SNR

Γ(m)

)B

e−m
PB

b=1 SNR−αb SNR−m
PB

b=1 αb (27)

and in the limit for large SNR, behaves as

p(α)
.
= SNR−m

PB
b=1 αb (28)

for α ∈ RB
+.

Definition 3: The k-th vector of normalized fading coefficients is defined as

αk
∆
= (αN(k−1)+1, . . . , αNk) k = 1, . . . , K.
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APPENDIX II
PROOF OF PROPOSITION 2

An upper bound to the mutual information yields a lower bound on the outage probability, and thus,
an upper bound to the reliability exponent. Since all rotations induce an N × N MIMO channel, from
(15) we obtain,

I(SNR, H) ≤ 1

K

K∑
k=1

1

N
min

{
NM, log det(I + SNR HkM kM

†
kH

†
k)
}

(29)

=
1

K

K∑
k=1

min

{
M,

1

N

N∑
n=1

log(1 + SNRγN(k−1)+n)

}
. (30)

Now, we can express the outage probability as

Pout(SNR, R) = Pr(I(SNR, H) < R) (31)

≥ Pr

(
1

K

K∑
k=1

min

{
M,

1

N

N∑
n=1

log(1 + SNRγN(k−1)+n)

}
< R

)
(32)

.
= Pr

(
1

K

K∑
k=1

min

{
M,

log SNR

N

N∑
n=1

[1− αN(k−1)+n]+

}
< R

)
(33)

≥̇
∫
Oε∩RB

+

SNR−m
PB

b=1 αbdα (34)

where (32) follows from (1 + SNRγN(k−1)+n)
.
= [1− αN(k−1)+n]+, [x]+ = max(0, x) denotes the positive

part of x ∈ R, and

Oε
∆
=

{
α ∈ RB :

1

K

K∑
k=1

11{αk � 1 + ε} > 1− R

M

}
(35)

denotes the large SNR outage event, and where 1 = (1, . . . , 1) and ε = (ε, . . . , ε) both of dimension N .
Note that (33) is valid for any ε > 0 and in particular for ε → 0. Using Varadhan’s integral lemma [27],
we obtain,

dX ≤ dout = − lim
SNR→∞

1

log SNR
log

(∫
Oε∩RB

+

SNR−m
PB

b=1 αbdα

)
(36)

= − lim
SNR→∞

1

log SNR
log

(∫
Oε∩RB

+

log SNR exp

(
−m

B∑
b=1

αb

)
dα

)
(37)

= inf
Oε∩RB

+

{
m

B∑
b=1

αb

}
(38)

It is not difficult to show that dout = m κN , where κ is the unique integer such that

κ < K

(
1− R

M

)
≤ κ + 1. (39)

Hence we get that

dX ≤ dout = m N

(
1 +

⌊
B

N

(
1− R

M

)⌋)
(40)

which is precisely the desired result.
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APPENDIX III
PROOF OF PROPOSITION 3

For any two codewords X(0), X(1) ∈ X , we can write that the pairwise error probability

P (X(0) → X(1)|H) ≤ exp

(
−SNR

4
‖H(X(0)−X(1))‖2

)
(41)

=
K∏

k=1

exp

(
−SNR

4
‖HkM k(Sk(0)− Sk(1))‖2

)
(42)

where Sk(i) is such that the portion of codeword rotated by the k-th matrix is Xk(i) = M kSk(i), and
H = diag(H1, . . . ,HK). Assuming that the entries of Sk(0) and Sk(1) are chosen i.i.d. with uniform
distribution over S, we have that the ensemble pairwise error probability can be expressed as

P (X(0) → X(1)|H) ≤
K∏

k=1

[
1

22MN

∑
s∈SN

∑
s′∈SN

exp

(
−SNR

4
‖HkM k(s− s′)‖2

)]L

. (43)

Similarly to [22], summing over the 2LBR − 1 codewords different from the 0 message we have that

Pe(SNR|H) ≤ 2LBR

K∏
k=1

[
1

22MN

∑
s∈SN

∑
s′∈SN

exp

(
−SNR

4
‖HkM k(s− s′)‖2

)]L

(44)

= exp (−BLM log 2 E(SNR, α)) (45)

where the exponent E(SNR, α) is given by

E(SNR, α) = 1− R

M
− 1

BM

K∑
k=1

log2

(
1 +

1

2MN

∑
s′ 6=s

e−
1
4

PN
n=1 SNR

1−αN(k−1)+n |x̃k,n|2
)

(46)

and x̃k = M k(s − s′) = (x̃k,1, . . . , x̃k,N)T is the rotated difference vector. We now assume that the
rotation matrices have full diversity. That implies that all the components of the rotated difference vector
x̃k are different from zero. Then, for full diversity rotations we have that

log2

(
1 +

1

2MN

∑
s′ 6=s

e−
maxk{|x̃k|

2}
4

PN
n=1 SNR

1−αN(k−1)+n

)
(47)

≤ log2

(
1 +

1

2MN

∑
s′ 6=s

e−
1
4

PN
n=1 SNR

1−αN(k−1)+n |x̃k,n|2
)

(48)

≤ log2

(
1 +

1

2MN

∑
s′ 6=s

e−
mink{|x̃k|

2}
4

PN
n=1 SNR

1−αN(k−1)+n

)
. (49)

For large SNR both bounds have the same behavior, and thus we have that

lim
SNR→∞

log2

(
1 +

1

2MN

∑
s′ 6=s

e−
1
4

PN
n=1 SNR

1−αN(k−1)+n |x̃k,n|2
)

=

{
MN if αk � 1

0 otherwise
(50)

where αk = (αN(k−1)+1, . . . , αNk)
T and hence

Pe(SNR|H)≤̇ exp (−BLM log 2 Eδ(α)) (51)
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where

Eδ(α)
∆
= 1− R

M
− N

B

K∑
k=1

11{αk � 1− δ} = 1− R

M
− 1

K

K∑
k=1

11{αk � 1− δ} (52)

and δ = (δ, . . . , δ) ∈ RN
+ . We now define the large SNR error event as

Eδ =
{
α ∈ RB : Eδ(α) ≤ 0

}
(53)

=

{
α ∈ RB :

K∑
k=1

11{αk � 1− δ} ≥ K

(
1− R

M

)}
. (54)

Using the previous results we write that,

Pe(SNR) ≤̇
∫

α∈RB
+

SNR−m
PB

b=1 αb min {1, exp (−BLM log 2 Eδ(α))} dα (55)

=

∫
α∈Eδ∩RB

+

SNR−m
PB

b=1 αbdα (56)

+

∫
α∈Ec

δ∩RB
+

SNR−m
PB

b=1 αb exp (−BLM log 2 Eδ(α)) dα (57)

In a similar way to the proof of Lemma 1 the probability of two randomly chosen codewords over S
being the same is strictly greater than zero, and goes to zero only for L →∞. We now study how large
L has to be in order for this event not to dominate the overall error probability. If we let

λ = lim
SNR→∞

L

log SNR
(58)

we can write

Pe(SNR)≤̇
∫

α∈Eδ∩RB
+

SNR−m
PB

b=1 αbdα (59)

+

∫
α∈Ec

δ∩RB
+

exp

(
− log SNR

[
m

B∑
b=1

αb + λBM log 2 Eδ(α)

])
dα (60)

Therefore, the overall random coding exponent is given by the minimum of the exponents of (58) and
(59),

dX (R) ≥ d
(r)
X (R) = sup

δ>0
min

{
d

(r),∞
X (R), d

(r),λ
X (R)

}
(61)

where

d
(r),∞
X (R) = inf

α∈Eδ∩RB
+

m

{
B∑

b=1

αb

}
(62)

is the exponent corresponding to (58) and

d
(r),λ
X (R) = inf

α∈Ec
δ∩RB

+

{
m

B∑
b=1

αb + λBM log 2 Eδ(α)

}
(63)

is the exponent that characterizes the effect of finite length (59). It is not difficult to show that the first
infimum is achieved by κ vectors αk � 1− δ, where κ is the unique integer such that

κ− 1 <

⌈
K

(
1− R

M

)⌉
≤ κ (64)
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resulting in the exponent being

d
(r),∞
X (R) = (1− δ) m N

⌈
B

N

(
1− R

M

)⌉
. (65)

As for the second exponent (62), we can rewrite it as follows

d
(r),λ
X (R) = λBM log 2

(
1− R

M

)
(66)

+ inf
α∈Ec

δ∩RB
+

{
m

B∑
b=1

αb − λBM log 2
1

K

K∑
k=1

11{αk � 1− δ}

}
(67)

= λBM log 2

(
1− R

M

)
(68)

+ m inf
α∈Ec

δ∩RB
+

{
K∑

k=1

(
N∑

n=1

αk,n −
λNM log 2

m
11{αk � 1− δ}

)}
(69)

The constraint set Ec
δ is defined as follows

Ec
δ

∆
=

{
α ∈ RB :

K∑
k=1

11{αk � 1− δ} < K

(
1− R

M

)}
. (70)

We distinguish two cases. When 0 ≤ λNM log 2 < m then the terms
N∑

n=1

αk,n −
λNM log 2

m
11{αk � 1− δ} (71)

attain its minimum value for αk = 0. On the other hand, when λNM log 2 ≥ m, the constraint set dictates
that there should be

κ =

⌊
K

(
1− R

M

)⌋
(72)

vectors αk � 1− δ, and the infimum becomes

λBM log 2

(
1− R

M

)
+ m

⌊
K

(
1− R

M

)⌋(
N(1− δ)− λNM log 2

m

)
. (73)

Combining the previous results and noting that the supremum in (60) is achieved for δ → 0, we find the
desired result.
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[23] K. D. Nguyen, A. Guillén i Fàbregas and L. K. Rasmussen, “A Tight Lower Bound to the Outage Probability of Block-Fading

Channels,” submitted to IEEE Trans. Inf. Theory, 2007.
[24] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 927–946, May

1998.
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