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Abstract

In this report, we consider an automatic-repeat-request (ARQ) retransmission protocol signaling over a block-
fading multiple-input, multiple-output (MIMO) channel. Unlike previous work, we allow for multiple fading blocks
within each transmission (ARQ round), and we constrain the transmitter to fixed rate codes constructed over complex
signal constellations. In particular, we examine the general case of average input-power-constrained constellations
with a fixed signalling alphabet of finite cardinality. This scenario is a suitable model for practical wireless
communications systems employing orthogonal frequency division multiplexing techniques over a MIMO ARQ
channel. Two cases of fading dynamics are considered, namely short-term static fading where channel fading gains
change randomly for each ARQ round, and long-term static fading where channel fading gains remain constant
over all ARQ rounds pertaining to a given message. As our main result, we prove that for the block-fading MIMO
ARQ channel with a fixed signalling alphabet satisfying a short-term power constraint, the optimal signal-to-noise
ratio (SNR) exponent is given by a modified Singleton bound, relating all the system parameters. To demonstrate
the practical significance of the theoretical analysis, we present numerical results showing that practical Singleton-
bound-achieving maximum distance separable codes achieve the optimal SNR exponent.
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I. INTRODUCTION

In 1957 multi-carrier transmission was first proposed by Doelz et al. [1] as a way to increase data
rate by transmitting multiple bits streams in parallel over multiple carriers. Originally, multi-carrier
transmission was implemented using banks of sinusoidal generators. The use of discrete Fourier transforms
for modulation and demodulation was first suggested by Weinstein and Ebert in 1971 [2], significantly
reducing implementation complexity, and leading to what we now know as orthogonal frequency division
multiplexing (OFDM). A review of the development of multi-carrier and OFDM systems can be found in
[3].

Almost fifty years after the invention of multi-carrier transmission [1, 2], the use of OFDM has been
adopted for broadband wireless communications systems as a means to significantly increase transmission
rates [4]. Standards such as IEEE 802.11 (WiFi) [5, 6] and IEEE 802.16 (WiMax) [7, 8] have now been
extended to include OFDM techniques. Further improvements of data rate and reliability are promised
through the use of multiple transmit and receive antennas [9, 10]. Multiple-input, multiple-output (MIMO)
antenna systems are now being introduced into the IEEE 802 standards [6, 8], as well as being integral
parts of fourth-generation mobile cellular communication systems proposals [11, 12]. In addition, adaptive
coding and modulation, combined with automatic-repeat-request (ARQ) retransmission protocols, are
becoming integral parts of data transmission services in the Universal Mobile Telecommunications System
(UMTS) [13], and in WiMax [8].

Practical wireless communication systems will therefore soon feature MIMO OFDM modulation with
overlaying ARQ protocols. It is thus important to obtain a thorough understanding of the fundamental
characteristics of such systems. In this report, we model a practical point-to-point MIMO OFDM ARQ
wireless communication system as a system transmitting signals from a fixed complex signal constellation
over a block-fading MIMO ARQ channel. In the following subsections, we first review prior art and
technical concepts relevant to our work. We then formulate our problem and summarize contributions,
before outlining the organization and defining notation of the report.

A. Prior Art
1) Fundamental Tradeoff: The work of Teletar [14], and Foschini and Gans [15], has inspired a

flurry of research activities in MIMO antenna systems for wireless communications. Previously, multiple-
antenna systems were primarily used for providing receiver diversity, thus combatting random amplitude
fluctuations due to fading [16]. In contrast, the prevailing thesis for MIMO systems is that fading can
increase channel capacity by providing a set of well-behaved parallel channels [14, 15]. In fact, in the
high signal-to-noise (SNR) regime it has been shown that the capacity of a channel with Nt transmit
antennas, Nr receive antennas, and independent, identical distributed (i.i.d.) complex Gaussian channel
gains between each antenna pair is given by

C(SNR) = min{Nt, Nr} log SNR +O(1),

suggesting that capacity increases linearly with the minimum number of transmit and receive antennas.
Therefore, the use of multiple-antenna systems can improve both reliability and data rate, when transmitting
over a quasi-static MIMO channel where channel gains are i.i.d. complex Gaussian and fixed during the
transmission.

Zheng and Tse described the fundamental tradeoff between diversity gain and multiplexing gain1 for
quasi-static MIMO channels in the high SNR regime in [17], assuming Gaussian distributed input signals.

1The diversity gain (or SNR exponent) is defined as

d , − lim
SNR→∞

log Pe(SNR)

log SNR
,

where Pe(SNR) denotes the probability that the transmitted message is decoded incorrectly. The multiplexing gain is defined as

rm , lim
SNR→∞

R(SNR)

log SNR
,
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The fundamental tradeoff developed in [17] has since become a benchmark for the performance evaluation
of space-time coding schemes, and the corresponding framework has become a preferred approach for
characterizing classes of MIMO channels. For example, in [18] the fundamental diversity-multiplexing-
delay tradeoff is characterized for the MIMO ARQ channel, and the fundamental diversity-multiplexing
tradeoff for MIMO channels with resolution-constrained feedback is determined in [19], both under the
assumption that Gaussian distributed input signals are used.

2) OFDM and the Block-Fading Channel: The block-fading channel model was introduced in [20], with
the purpose of modelling slowly varying fading channels where the duration of a block-fading period is
determined by the channel coherence time. Within a block-fading period, the channel fading gain remains
constant, while between periods the channel gains change randomly according to a fading distribution. In
this setting, transmission typically extends over multiple block-fading periods. A thorough treatment of
fading channels is found in [21].

The block-fading channel model is a reasonable model for OFDM transmission over frequency-selective
wireless channels, as an OFDM system is typically designed such that each sub-carrier experiences flat
fading. Despite its simplicity, the model captures important aspects of OFDM modulation over frequency-
selective fading channels and proves useful for developing coding design criteria.

The definition of multiplexing gain, fundamental in the formulation presented in [17, 18], relies on
coding schemes with transmission rates that increase linearly with the logarithm of the SNR. Non-zero
multiplexing gains can only be achieved with continuously varying discrete input constellations or fixed
discrete constellations with cardinalities scaling with the SNR. From a practical perspective, it is desirable
to operate at a fixed code rate and deal with small alphabet sizes. We are therefore interested in the
performance of such practical schemes, which effectively operates at zero multiplexing gain. Under this
scenario, the general diversity-multiplexing tradeoff can only provide a coarse characterization of the
rate-diversity tradeoff. The rate-diversity tradeoff for fixed-rate space-time codes constructed over discrete
signal constellations, and transmitted across a quasi-static MIMO channel, was presented in [22].

Union-bound arguments [23] and error exponent calculations [24] were used to show that the diversity
gain of a block-fading channel with an arbitrary, but fixed number of fading blocks, fixed code rate, and
a discrete input signal constellation, is described by a modified version of the Singleton bound [25]. The
same problem is considered in [26], where outage probability arguments are used to formally prove that
the optimal rate-diversity tradeoff is indeed the modified form of the Singleton bound presented in [24,
25], which is achieved using maximum distance separable (MDS) codes.

The block-fading ARQ channel model has recently been considered in [27, 28] for fixed discrete input
signal constellations. In [27] the Singleton bound is presented as an upper bound to the SNR exponent,
while the optimality of the Singleton bound is formally proven for the ARQ case in [28]. In [28] it is
also demonstrated that asymptotically optimal throughput can be achieved by MDS codes.

B. Problem Formulation and Contributions
In this report, we consider an automatic-repeat-request (ARQ) system signaling over a block-fading

multiple-input multiple-output (MIMO) channel with Nt transmit antennas, Nr receive antennas, a maxi-
mum number of L allowable ARQ rounds, B fading blocks per ARQ round, and subject to a short-term
average power constraint. The corresponding receiver is able to generate L − 1 one-bit repeat-requests,
limited by the maximum number of allowable ARQ rounds, whenever an error is detected in the decoded
message. As in [18], we consider two cases of fading statistics; for the short-term static fading case,
the channel fading gains change randomly for each ARQ round, while for the long-term static fading
case, the channel fading gains remain constant over all ARQ rounds pertaining to a given message, but
change randomly for each message and corresponding suite of ARQ rounds. This transmission scenario

where R(SNR) is the code rate. The multiplexing gain essentially quantifies how close the code rate is to the capacity of a single-input
single-output link at high SNR [17].
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is a suitable model for practical wireless communications systems employing OFDM modulation over a
MIMO ARQ channel.

The block-fading MIMO ARQ channel was considered in [18] for the case of B = 1 (quasi-static
fading), and the corresponding optimal diversity-multiplexing-delay tradeoff was derived for both short-
term static and long-term static channel fading statistics. It was further demonstrated that while the optimal
diversity gain is an increasing function of the maximum number of allowed ARQ rounds L, the throughput
of the system becomes independent of L for sufficiently large SNR, and is determined by the rate of the
first ARQ round R1. In addition, it was proved in [29] that as both L and R1 grow large such that their
ratio remains fixed, vanishing error probability can be achieved provided that R1/L < C, where C denotes
the ergodic capacity of the channel. Furthermore, for any ratio strictly less than C, a finite average delay
(in terms of ARQ rounds) can be achieved.

In [22] the case of L = 1 and B = 1 (fixed delay and quasi-static fading) was considered, enforcing a
more structured class of fixed-rate codes based on concatenated coded modulation schemes constructed
from a given fixed and finite signal constellation with signal-space rotations. The corresponding rate-
diversity tradeoff (zero multiplexing gain) was derived following the approach in [26].

The main contribution of our work is to derive the optimal tradeoff between throughput, diversity
gain and delay of the block-fading MIMO ARQ channel, enforcing a fixed signalling constellation of
finite cardinality that does not change with time and/or the transmitted message. This constraint was also
imposed in [22], and is significantly stronger than the constraint applied in [18]. Our main contribution is
therefore an extension of the results in [18], using the approach in [22] as the class of codes considered
has more structure and thus is more suited to practical implementation. Conversely, our main contribution
also generalizes the result of [22] for the quasi-static MIMO channel to the block-fading MIMO ARQ
channel, using the approach developed in [18]. Furthermore, we further generalize the results in [18, 22],
by allowing for multiple fading blocks within each transmission (ARQ round).

The throughput-diversity-delay tradeoff is captured by the SNR exponent (diversity gain) defined as

d , − lim
ρ→∞

logPe(ρ)

log ρ
,

where Pe(ρ) denotes the probability that the transmitted message is decoded incorrectly as a function
of the SNR ρ. As expected from the results in [26], the optimal SNR exponent derived here is given
by a modified version of the Singleton bound [25], relating the cardinality of the signal constellation,
the rate of the first ARQ round R1, the maximum number of ARQ rounds L, and the number of fading
blocks per ARQ round B. The relation to the Singleton bound naturally leads us to investigate the role of
Singleton-bound-achieving MDS codes [26] for the block-fading MIMO ARQ channel. To demonstrate
the practical implications of our results, some examples are presented with corresponding error rate and
throughput performances for practical coding schemes with iterative decoding. Our examples illustrate
that the optimal SNR exponent can be achieved with practical MDS coding schemes.

C. Notation and Organization
The following notation is used in the report. Sets are denoted by calligraphic fonts with the complement

denoted by superscript c. The exponential equality f(z)
.
= zd indicates that limz→∞

log f(z)
log z

= d. The
exponential inequality

.

≤,
.

≥ are similarly defined. � and ≺ denote component-wise inequality of > and
<, respectively. I denotes the identity matrix, vector/matrix transpose is denoted by ′ (e.g. v′) and ‖ · ‖F

is the Frobenius norm. 1{·} is the indicator function, and dxe denotes the smallest integer greater than
x, while bxc denotes the largest integer less than or equal to x.

The report is organized as follows. In Section II we define the system model, and in Section III we review
relevant ARQ performance measures. In Section IV we review the concepts of information accumulation
and outage probability, while the main theorems of the report, detailing the throughput-diversity-delay
tradeoff, are presented in Section V. To demonstrate the practical relevance of the results, numerical



5

examples are included in Section VI, showing that MDS codes achieve the tradeoff. Concluding remarks
are summarized in Section VII, while the details of the proofs have been collected in the appendices.

II. SYSTEM MODEL

In this section we describe the block-fading MIMO ARQ channel model and coded modulation schemes
under consideration.

A. Channel Model
Consider a block-fading MIMO ARQ system with Nt transmit antennas and Nr receive antennas. We

investigate the use of a simple stop-and-wait ARQ protocol where the maximum number of ARQ rounds
is denoted by L. Each ARQ round consists of B independent block-fading periods, each of length T
(coherence time/bandwidth) in channel uses. Hence each ARQ round spans BT channel uses. Figure 1
shows the overall system model. We write the received signal at the bth block and `th ARQ round as

Y`,b =

√
ρ

Nt

H`,bX`,b + W`,b, (1)

where X`,b ∈ CNt×T ,Y`,b,W`,b ∈ CNr×T and H`,b ∈ CNr×Nt denote the transmitted signal matrix,
received signal matrix, the noise matrix and the channel fading gain matrix, respectively. The main
difference with the model in [18] is that each ARQ round is allowed to have B independent fading blocks,
as opposed to a single one as in [18]. We define x`,b,t ∈ CNt as the vectors containing the transmitted
symbols of each antenna at ARQ round `, block b and time t, which are such that X`,b = [x`,b,1, . . . ,x`,b,T ].

Both the elements of the channel fading gain matrix H`,b and the elements of the noise matrix W`,b

are assumed i.i.d. zero mean complex circularly symmetric complex Gaussian with variance σ2 = 0.5
per dimension. We assume perfect receiver-side channel state information (CSI), namely, the channel
coefficients are assumed to be perfectly known to the receiver. The transmitter does not know the channel
realization, but knows the channel statistics.

We obtain the long-term static model of [18] by letting H`,b = H`′,b for all ` 6= `′ in (1), namely, all
ARQ rounds undergo the same MIMO block-fading channel. This models well a slowly varying MIMO
OFDM ARQ system with B sub-carriers or B groups of correlated sub-carriers. On the other hand, when
the matrices H`,b are i.i.d. from block to block and from ARQ round to ARQ round, (1) corresponds to
the short-term static model of [18]. In order to keep the presentation general, and since (1) encompasses
both models, we will index the channel matrices according to ARQ round and block as in the short-term
static model. We will outline the changes for the long-term static model whenever necessary.

Therefore, the channel model corresponding to ARQ round ` becomes

Y` =

√
ρ

Nt

H`X` + W`, (2)

where

Y` =
[
Y′

`,1, . . . ,Y
′
`,B

]′ ∈ CBNr×T

X` =
[
X′

`,1, . . . ,X
′
`,B

]′ ∈ CBNt×T

W` =
[
W′

`,1, . . . ,W
′
`,B

]′ ∈ CBNt×T

H` = diag (H`,1, . . . ,H`,B) ∈ CBNr×BNt .

One channel use of the equivalent model (2) corresponds to BT channel uses. In a similar way to the
previous model, we define the vectors x`,t ∈ CBNt for t = 1, . . . , T as

X` = [x`,1, . . . ,x`,T ] ∈ CBNt×T .
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The receiver attempts to decode following the reception of an ARQ round. If the received codeword can
be decoded, the receiver sends back a one-bit acknowledgement signal to the transmitter via a zero-delay
and error-free feedback link. The transmission of the current codeword ends immediately following the
acknowledgment signal and the transmission of the next message in the queue starts. If an error is detected
in the received codeword before the Lth ARQ round, then the receiver requests another ARQ round by
sending back a one-bit negative acknowledgment along the perfect feedback path. However, a decision
must be made at the end of the Lth ARQ round regardless of whether errors are detected.

In general, the optimal ARQ decoder makes use of all available coded blocks and corresponding
channel state information up to the current ARQ round in the decoding process. This leads to the concept
of information accumulation, where individual ARQ rounds are combined, along with any other side
information. We hence introduce the ARQ channel model up to the `th ARQ round, completely analogous
to (1), but allowing for a more concise notation. In particular, we have that

Ỹ` =

√
ρ

Nt

H̃`X̃` + W̃`, (3)

where

Ỹ` = [Y′
1, . . . ,Y

′
`]
′ ∈ C`BNr×T ,

X̃` = [X′
1, . . . ,X

′
`]
′ ∈ C`BNt×T ,

W̃` = [W′
1, . . . ,W

′
`]
′ ∈ C`BNr×T ,

H̃` = diag (H1, . . . ,H`) ∈ C`BNr×`BNt .

That is, Ỹ`, X̃` and W̃` are simply collections of the received, code and noise matrices, respectively,
available at the end of the `th ARQ round, concatenated into block column matrices. The new channel
matrix H̃` ∈ C`BNr×`BNt is a block diagonal matrix with the diagonal blocks composed of the respective
channel state during each block-fading period up to ARQ round `. In the case of long-term static model,
H̃` = diag (H, . . . ,H)︸ ︷︷ ︸

` times

. Note that a channel use of the equivalent model (3) corresponds to `BT channel

uses of the real channel (1).

B. Encoding
In this section we discuss the specific construction of the space-time ARQ codewords. Consider a set

of uniformly distributed information messages m ∈M. The information message m to be transmitted is
passed through a space-time coded modulation encoder with codebook C ⊂ CLBNt×T and code rate R0,
where R0 , R1

L
and

R1 ,
1

BT
log2 |C|

is the code rate of the first ARQ round. Therefore, |C| = 2R0LBT and m ∈M, whereM ∆
= {1, 2, . . . , 2R0LBT}

is the set of possible information messages. We denote the codeword corresponding to information message
m by X(m). The rate R0 codeword can be partitioned into a sequence of LB space-time coded matrices,
denoted X`,b ∈ CNt×T . According to the previously described model, we have that

X(m) =
[
X′

1(m), . . . ,X′
L(m)

]′
=
[
X′

1,1(m), . . . ,X′
1,B(m), . . . ,X′

L,1(m), . . . ,X′
L,B(m)

]′ ∈ CLBNt×T

We consider a short-term average power constraint, namely, the transmitted codewords are normalized
in energy such that 1

LBT
E[‖X‖2

F ] ≤ Nt, where the average is over all codewords. Therefore, together
with the model assumptions in the previous section, ρ in (1), (2) and (3) represents the average SNR per
receive antenna.
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In this report we analyze space-time coded modulation schemes constructed over fixed discrete signal
sets. In particular, we consider that C is obtained as the concatenation of a classical coded modulation
scheme CQ ⊆ QLBTNt constructed over a complex-plane signal set Q = {q1, . . . , q|Q|} ⊂ C [30] with a
unit rate linear dispersion space-time modulator [31]. Let cQ ∈ CQ denote a codeword of CQ of length
LBTNt and Q = log2 |Q| the number of bits conveyed in one symbol of Q, namely, |Q| = 2Q. Since the
linear dispersion space-time modulator has unit rate we have that 0 ≤ R1 ≤ NtQL.

To allow for a general case, we consider that the linear dispersion space-time modulator spreads the
symbols of cQ over the Nt transmit antennas and the B fading blocks. In particular, we consider that the
codewords cQ of CQ, of length LBTNt are partitioned into L vectors of length BTNt each, denoted by
cQ,` ∈ QBTNt such that cQ =

[
c′Q,1, . . . , c

′
Q,L

]′. For every ` = 1, . . . , L, the vectors cQ,` are multiplied
by the unit rate generator matrix of the linear dispersion space-time modulator R ∈ CBTNt×BTNt to form

x` = RcQ,` (4)

where x` = vec(X`) ∈ CBNtT is the vector representation of the portion of codeword of C ∈ CQ transmitted
at ARQ round `. Without any loss in generality we consider that R is a rotation matrix [32–35], i.e., R
is unitary [36]. Note that introduction of the linear dispersion space-time modulator rotation matrix R
increases the decoding complexity compared to the unrotated case where R = I. This is due to the fact
that now the components of x` depend on each other, since R induces a change of the reference axis for
detection [32–35]. This implies that the detection problem is of dimension BTNt.

To allow for further flexibility, we consider the case where the linear dispersion space-time modulator
spreads the symbols of cQ ∈ CQ over the Nt transmit antennas and a number 1 ≤ M ≤ B of fading
blocks, such that

D
∆
=
B

M

is an integer representing the number of rotations used in an ARQ round. In this case, we have that the
rotation matrix R becomes block-diagonal, namely

R = diag
(
RM , . . . ,RM︸ ︷︷ ︸

D times

)
(5)

where RM ∈ CMNtT×MNtT is the rotation matrix of dimension MNtT ×MNtT . According to (5) we
can define x̂`,d ∈ CMNtT , such that x̂` = [x̂`,1, . . . , x̂`,D]′. We define the multidimensional constellation
XM as

XM
∆
=
{
x ∈ CMNtT : ∀c ∈ QMNtT , x = RM c

}
(6)

Due to the block-diagonal structure of R, the detection problem reduces to D detection problems over
XM each of dimension MTNt. This formulation encompasses many cases of interest, as for example the
unrotated case, for which R = I, the general threaded algebraic space-time (TAST) modulation structure
for MIMO block-fading channels [37], or perfect space-time modulation [38]. As we shall see in Section
V, the parameter M plays a key role in the reliability of the overall system. Intuitively, the larger M ,
the larger the space-time symbol spreading, and hence, the larger the diversity [37]. On the other hand,
using large M implies larger decoding complexity, as the detection problem is exponential in M . Using
the previous discussion, we introduce the following equivalent channel matrix

Ĥ`,d = diag
(
H`,(d−1)M+1, . . . ,H`,(d−1)M+1︸ ︷︷ ︸

T times

, . . . ,H`,dM , . . . ,H`,dM︸ ︷︷ ︸
T times

)
∈ CMNrT×MNtT (7)

for d = 1, . . . , D. These matrices correspond to the channels seen by rotation d within ARQ round `. The
equivalent channel defined by (7) induces the following channel model

ŷ`,d =

√
ρ

Nt

Ĥ`,dx̂`,d + ŵ`,d (8)
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where x̂`,d ∈ CMNtT , ŷ`,d, ŵ`,d ∈ CMNrT are the corresponding input, output and noise vectors. This
model describes the relationship between the output of one of the D rotations of the linear dispersion
space-time modulator and the output of the channel. One use of channel (8) corresponds to MT uses of
the real model (1).

C. Decoding
We will make use of the ARQ decoder proposed in [18], which behaves as a typical set decoder for the

first L− 1 ARQ round and finally performs ML decoding at the last ARQ round. The decoding function
at ARQ round `, for ` = 1, . . . , L− 1, denoted ψ`(Ỹ`, H̃`), gives the following output

ψ`(Ỹ`, H̃`) =

{
m̂ if X̃(m̂) is the unique codeword in C jointly typical with Ỹ` given H̃`

0 otherwise,
(9)

which implies that message index ψ`(Ỹ`, H̃`) = m̂ ∈ M whenever the received matrix can be decoded
and ψ`(Ỹ`, H̃`) = 0 whenever errors are detected.

III. ARQ PERFORMANCE METRICS

Following the approach in [18], we introduce a few performance metrics relevant to ARQ systems,
namely, the error probability, average latency and throughput. For ease of notation, we define three relevant
decoder events as follows. Let,

D` ,
{
ψ1(Ỹ1, H̃1) = 0, . . . , ψ`(Ỹ`, H̃`) = 0

}
denote the event of error detection up to and including ARQ round `, let

A` ,

⋃bm6=0

ψ`(Ỹ`, H̃`) = m̂

 ,

denote the event of decoding a valid message at ARQ round `, and let

E` ,

 ⋃
bm6=m

ψ`(Ỹ`, H̃`) = m̂


denote the event of a decoding error at ARQ round `, given that message m was transmitted.

Based on the events defined above, the probability of error Pe(ρ) is given by

Pe(ρ) = E

Pr (A1, E1) +
L−1∑
`=2

Pr (D`−1,A`, E`)︸ ︷︷ ︸
undetected errors

+ Pr (DL−1, EL)︸ ︷︷ ︸
ML decoding errors

 , (10)

where the expectation is with respect to the joint distribution of the fading gain matrix and received
signal matrix. From the error expression in (10) it is clear that the ARQ decoder suffers from undetected
errors and ML decoding errors. Undetected errors occur during ARQ rounds ` = 1 . . . L− 1 and reflects
the inability of the decoder to identify erroneous frames. ML decoding errors occur at the last ARQ
round and reflects the inability of the decoder to resolve atypical channel and noise realizations. It was
shown in [18] that the probability of undetected errors can be made arbitrarily small using appropriate
codebooks, leaving ML decoding errors to dominate the error probability. In terms of error probability,
the effectiveness of an ideal ARQ decoder is therefore almost exclusively limited by the error probability
at the last ARQ round.
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The expected latency κ of the system is determined by the probability of error detection [18], and it is
given by

κ = 1 +
L−1∑
`=1

Pr (D`) , (11)

where κ is expressed in terms of number of ARQ rounds. The corresponding transmit throughput of the
system in terms of the average effective code rate is simply obtained by

η(R1, L) =
R1

1 +
∑L−1

`=1 Pr(D`)
, (12)

where η(R1, L) is expressed in bits per channel use2.

IV. INFORMATION ACCUMULATION AND OUTAGE PROBABILITY

In this section, we expand on the idea of mutual information accumulation in ARQ systems as well
as introduce the commonly used concept of information outage. This approach was first put forward in
[29], and again used in [18] to prove the converse.

The instantaneous input-output mutual information of the channel (3) up to ARQ round `, for the
channel realization H̃` = G̃` can be written as [18, 29]

I
(
ρ|G̃`

) ∆
=

1

T
I(X̃` ; Ỹ` | H̃` = G̃`). (13)

=
1

T

∑̀
k=1

I(ρ|G`) (14)

where I(ρ|G`) is the instantaneous input-output mutual information corresponding to ARQ round `.
Following (14) we will refer to I

(
ρ|G̃`

)
as the accumulated mutual information up to ARQ round ` [29].

The accumulated mutual information I
(
ρ|G̃`

)
measures the normalized mutual information between the

accumulated received matrix Ỹ` and the coded blocks X̃`, given the instantaneous channel state matrix
G̃`. Since G̃` is a random matrix, I

(
ρ|G̃`

)
is a non-negative random variable. Further, from (14) it is

clear that the accumulated mutual information is an increasing function of the ARQ round index `, for a
given realization of G̃`.

We define information outage as the event that occurs when the accumulated mutual information is
below R1 [18], namely

O` ,
{
G̃` ∈ C`BTNr×`BTNt : I

(
ρ|G̃`

)
< R1

}
. (15)

For any finite B and L, the channel defined in (3) is not information stable and the channel capacity in the
strict Shannon sense is zero [39], since the probability of the outage event is nonzero. The corresponding
outage probability is defined as [20, 21]

Pout(ρ, `, R1)
∆
= Pr (O`) (16)

= Pr
(
I
(
ρ|G̃`

)
< R1

)
. (17)

As shown in the converse proof of Theorem 2 (see Appendix) and also in [18], the occurrence of an
outage event induces a frame error. This implies that the error probability is lower-bounded by the outage
probability.

The accumulated mutual information I
(
ρ|G̃`

)
, and hence the corresponding outage probability, depends

on the SNR ρ and the input distribution PX(X) with the constraint that 1
LBT

E[‖X‖2
F ] = Nt. When no

2Note that our definition of transmit throughput here is purely a measure of the average code rate at the sender’s side, as it does not take
into account whether or not messages are correctly decoded at the receiver’s side.
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other constraints are imposed on the input distribution, the input distribution that maximizes I
(
ρ|G̃`

)
and

therefore minimizes Pout(ρ, `, R1) is the Gaussian distribution, namely, the entries of X are i.i.d. complex
circularly symmetric random variables with zero mean and unit variance. This leads to [18],

I(ρ|G`) =
1

B
log2 det

(
I +

ρ

Nt

G`G
†
`

)
(18)

=
1

B

B∑
b=1

log2 det

(
I +

ρ

Nt

G`,bG
†
`,b

)
. (19)

In practice, Gaussian codebooks are not feasible, and we will resort to signal constellations with a
fixed signalling alphabet that does not change with time and/or the transmitted message. In this work, we
are mostly interested in studying the role of the fixed discrete nature of practical constellations, and the
impact this further system constraint has on the outage probability. In particular, we can write the mutual
information for the scheme described in Section II-B as,

I(ρ|G`) =
1

D

D∑
d=1

I(ρ|Ĝ`,d) (20)

where

I(ρ|Ĝ`,d) =
log2 |XM |
MT

− 1

MT
Ex,w

[
log2

( ∑
x′∈XM

e
−

‚‚‚√ ρ
Nt

bG`,d(x−x′)+w
‚‚‚2

+‖w‖2
)]

(21)

= QNt −
1

(MT )2QNt

∑
x∈XM

Ew

[
log2

(
1 +

∑
x′ 6=x

e
−

‚‚‚√ ρ
Nt

bG`,d(x−x′)+w
‚‚‚2

+‖w‖2
)]

(22)

is the input-output mutual information corresponding to the realization Ĥ`,d = Ĝ`,d given in (7) of the
channel described in (8), assuming a uniform distribution over the MNtT multidimensional constellation
XM defined in (6). Since 0 ≤ I(ρ|Ĝ`,d) ≤ QNt, it is not difficult to show that (20) can be bounded as
follows

I(ρ|G`) ≤
1

D

D∑
d=1

min

{
QNt,

1

M

M∑
m=1

log2 det

(
I +

ρ

Nt

G`,(d−1)M+mG†
`,(d−1)M+m

)}
. (23)

This relationship will prove useful in proving our main results.

V. THROUGHPUT-DIVERSITY-DELAY TRADEOFF

In this section, we derive the optimal tradeoff between throughput, diversity gain and delay of ARQ
schemes signaling over MIMO block-fading channels. In particular, we show that the tradeoff highlights
the roles of the complex-plane signal constellation through Q, the rate of the first ARQ round R1, the
maximum number of ARQ rounds L and the number of fading blocks per ARQ round B. As we shall
see, for large SNR, the tradeoff expression highlights the role of the asymptotic throughput through R1.
Furthermore, the optimal tradeoff expression includes the effect of the space-time spreading dimension
of the linear dispersion modulator, providing also a reference of decoding complexity.

We now present the main results of this report concerning the optimal SNR exponent of ARQ systems.
Theorem 1: Consider the channel model (3) with input constellation satisfying the short-term average

power constraint 1
LBT

E[‖X‖2
F ] ≤ Nt. The optimal SNR exponent d?(R1) is given by

d?(R1) =

{
NtNrLB for short-term static fading
NtNrB for long-term static fading.

(24)
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Proof: Theorem 1 follows immediately as a corollary of [18, Theorem 2] after taking into account
the introduction of B in the system.

Theorem 1 states that Gaussian codes achieve maximal diversity gain for any positive rate. As we show
in the following, this is not the case with discrete signal constellations XM . In particular, full diversity
is achievable by discrete signal sets provided the rates satisfy 0 ≤ R1 ≤ QNtL. However, in order to
attain full diversity we must restrict the signal constellations to certain properties. In general, due to the
discrete nature of these signal sets, a tradeoff between rate, diversity and delay arises. This relationship
is expressed in the next theorem.

Theorem 2: Consider the channel model (3) satisfying the short-term average power constraint 1
LBT

E[‖X‖2
F ] ≤

Nt, with the fixed discrete inputs described in Section II-B, using an underlying complex-plane constel-
lation Q, with |Q| = 2Q. The optimal SNR exponent is then given by

d?
D(R1) =


MNtNr

(
1 +

⌊
LB

M

(
1− R1

LQNt

)⌋)
for short-term static fading

MNtNr

(
1 +

⌊
B

M

(
1− R1

LQNt

)⌋)
for long-term static fading.

(25)

Proof (Sketch): A sketch of the proof is provided here, with the technical details left to Appendix.
We first prove the converse and show that the diversity gain d?

D(R1) is upper-bounded by (25). We can
use Fano’s inequality to show that the outage probability Pout(ρ, `, R1) lower-bounds the error probability
Pe(ρ) for a sufficiently large block length. Then we bound the maximum SNR exponent by considering
the diversity gain of the outage probability. For large SNR, the instantaneous mutual information is either
zero or QNt bits per channel use, corresponding to when the channel is in deep fade and when the
channel is not in deep fade, respectively [26]. Achievability is proved by bounding the error probability
of the typical set decoder [18] for ARQ rounds ` = 1, . . . , L− 1, and that of the ML decoder at round L,
using the union Bhattacharyya bound [40] on a random coded modulation scheme over Q concatenated
with linear dispersion space-time modulation. For finite T , such that limρ→∞

T (ρ)
log ρ

= τ , we obtain similar
conditions to those in [26]. Finally, as T →∞, we show that the SNR exponent of random codes is given
by the Singleton bound for all values of R1 where (25) is continuous.

Theorem 2 states that optimal diversity gain of NtNrLB and NtNrB for short- and long-term models,
respectively, can also be achieved by discrete signal sets coupled with linear dispersion space-time
modulators with constellation XB (D = 1), namely, space-time modulators that spread the symbols of Q
over the B fading blocks at each ARQ round. Under this scenario3, full diversity is maintained for all
rates 0 ≤ R1 ≤ QNt. However, as anticipated in Section II-B, there is one drawback of practical concern,
namely, complexity. In order to achieve full diversity, the linear dispersion space-time modulator needs to
spread the symbols of Q over the B blocks, which implies that the size of the constellation of each ARQ
round is |XB| = QNtBT . We may, however, choose a modulator that spreads symbols over M blocks
where M < B in order to reduce the complexity of the ML decoder. In this case, there is a tradeoff
between the parameters of (25). This can be seen as a manifestation of the discrete nature of the input
constellation, which limits the performance of the outage probability at high SNR. Theorem 2 generalizes
the result of [22] for the quasi-static MIMO channel to the ARQ block-fading case.

3Within our framework, it would also be possible to modulate over 1 ≤ M ≤ BL periods in the short-term case, namely, spreading the
modulation symbols also across ARQ rounds and (25) would remain valid. In particular, letting M = LB, we could achieve full diversity
over the full range of R1, namely, 0 < R1 < QNtL, which is the same exponent of the Gaussian input. However, generalizing our model to
this case, would compress key concepts such as information accumulation in a single formula, rather than the more natural sum expression
in (14). In particular, one could define the equivalent channel model up to round ` aseH` = diag (H1, . . . ,H`,0, . . . ,0) ∈ CLBNr×LBNt .

where 0 is the zero matrix, and obtain the result.
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The upper bound (25) is also applicable to any systems using block codes over LB independent block-
fading periods. The significance of the ARQ framework is that it provides a way of achieving the optimal
SNR exponent attained by a block code with LB coded blocks, without always having to transmit all LB
code blocks. Indeed, following [18], observe that

Pr(D`) , Pr(Ac
1, . . . ,Ac

`)

≤ Pr(Ac
`)

= Pr(ψ`(ỹ`, H̃`) = 0)

≤ Pout(ρ, `, R1) + ε
.
= ρ−d?

D(R1). (26)

On substitution of (26) into (12), we find

η(R1, L)
.

≥ R1

1 +
∑L−1

`=1 ρ
−d?

D(R1)

.
= R1, (27)

which shows that the transmit throughput is asymptotically equal to R1 (since R1 ≥ η(R1, L)), the rate of
a single ARQ round. In other words, provided the SNR is sufficiently high, ARQ systems which send on
average B coded blocks can achieve the same diversity gain as that achieved by a block code system which
sends LB coded blocks every time. This is because in the high SNR regime, most frames can be decoded
correctly with high probability based only on the first transmitted code block. ARQ retransmissions are
used to correct the rare errors which occur almost exclusively whenever the channel is in outage. While
the throughput η(R1, L) is a function of L at mid to low SNR, it converges towards R1 independent of
L at sufficiently high SNR. Since the optimal diversity gain is an increasing function of L, this behavior
can be exploited to increase reliability without suffering code rate losses. However, as noted in [18],
this behavior is exhibited only by decoders capable of near perfect error detection (PED). Therefore, the
performance of practical error detection schemes can be expected to significantly influence the throughput
of ARQ systems.

Since equation (27) relates the asymptotic throughput with the coding parameter R1, the optimal SNR
exponent given in (25) gives the optimal throughput-diversity-delay tradeoff of MIMO ARQ block-fading
channels4. Examining the optimal throughput-diversity-delay tradeoff (25) in more detail, we first note
that

R1

NtLQ
=

R0

QNt

= r

is the code rate of a binary code. i.e. 0 ≤ r ≤ 1, as if the coded modulation scheme CQ was obtained itself
as the concatenation of a binary code of rate r and length NtLQBT . Expression (25) implies that the
higher we set the target rate R1 (equivalently, R0), the lower the achievable diversity order. In particular,
uncoded sequences (i.e. R1 = QNtL) such as the full diversity modulations [38, 41], achieve optimal
diversity gain of MNtNr, while any code with non-zero R1 ≤ QNtL will achieve optimal diversity less
than or equal to MNtNrLB or MNtNrB in the short- and long-term static models, respectively. This is
an intuitively satisfying result as LB and B are precisely the number of independent fading periods in
the short- and long-term static models, respectively, each with inherent diversity MNtNr.

Considering the tradeoff function in (25) with varying Q, B, L and M plotted against the rate of a
single ARQ round R1, the impact of the system parameters can be visualized for both short- and long-term
static fading models, respectively.

First we examine the effect of the constellation size Q on the optimal diversity tradeoff function. Figure
2 shows the tradeoff curve for three different values of Q. We can see from the plot that the tradeoff

4We stress the fact that the coded modulation schemes considered in this report have a fixed rate, and therefore zero multiplexing gain as
defined in [17, 18]. However, it is not difficult to show that allowing Q = ξ log ρ would imply the achievability of the diversity-multiplexing-
delay tradeoff of [18].
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curves for higher Q are strictly better than lower Q in terms of achievable diversity gain. This implies
that a high order modulation scheme always outperform lower order modulation schemes in the limit of
high SNR in terms of error rate performance, for any code rate. Alternatively, a system with high Q can
choose to operate at higher code rates than a low Q system and still maintain the same diversity gain.

Figure 3 shows the diversity tradeoff curve for different values of B. Similar to the previous tradeoff
curve with constellation size Q, we observe that systems with high values of B are strictly better than
systems with low B (in terms of diversity gain). In addition, we notice that B corresponds to the number
of “steps” in the tradeoff function of (25). Systems with low values of B maintain the same diversity
gain over wider intervals of rates than systems with high B. Relatively, the penalty for using codes with
high spectral efficiency is much higher for systems with large B (although these systems will still achieve
higher diversity gains than systems with low B).

Figure 4 illustrates the effect of the maximum number of allowed ARQ rounds L on the diversity of the
system. It is clear from the plot that in the short-term static case the effect of L is to simply shift tradeoff
curves upwards. This is intuitively satisfying, since each additional ARQ round represents incremental
redundancy, which can be considered as a form of advanced repetition coding. Each additional ARQ
round contains B additional independent fading blocks and hence the diversity gain with L ARQ rounds
is simply the diversity gain with L− 1 rounds plus B. On the other hand, in the case of long-term static
fading, since the different ARQ rounds use the same channel realization, larger L implies a broader range
of R1 for which maximum diversity can be achieved.

Figure 5 shows the impact of M on the tradeoff curve. As anticipated in Section II-B, we observe that
the larger M , the larger the optimal SNR exponent. As M increases, larger diversity is maintained over a
larger range of R1. A careful look to (25) reveals that for M > 1, each ARQ round behaves as a MIMO
block-fading channel with B

M
= D blocks, each with inherent diversity MNtNr, reducing the number of

steps of the tradeoff curve. Unfortunately, however, increasing M implies an exponential (in M ) increase
in the overall decoding complexity.

Remark 1: In [37, 42], the authors examined the performance of codes over MIMO block-fading chan-
nels without ARQ. Using the notation in this report, the diversity gain based on the worst pairwise error
rate performance was shown to be upper-bounded by

dPEP(R) ≤ Nr

(
1 +

⌊
B

(
Nt −

R

Q

)⌋)
. (28)

The bound in (28) is based on the fact that the rank of a the codeword difference matrix of a given pairwise
error event cannot be larger than the minimum number of non-zero rows. The application of the Singleton
bound [25] to the minimum number of non-zero rows (interpreted as the Hamming distance of the code)
leads the result shown in (28) [37, 42–44]. Since the bound (28) was derived for the non-ARQ case, we
will compare it with our results by letting L = 1 in (25). An important assumption made in the derivation
of (28) is that a signal constellation of cardinality 2Q is used for signaling at each transmit antenna. Under
this assumption, the Singleton bound and the rank criterion give rise to the PEP diversity bound (28). In
our case, we do not restrict the signals out of each transmit antenna to belong to a constellation of size
2Q, but rather, allow for more freedom in the system by linearly modulating (combining) MNtT 2Q-ary
symbols of the fixed signal constellation Q to be transmitted over MT channel uses, as shown in Section
II-B. Figure 6 compares the Singleton bound (28) with our main result (25). As we see, even in the case
of M = 1 our bound yields a larger exponent. This effect was also observed in [22] for the quasi-static
MIMO channel.

VI. MAXIMUM DISTANCE SEPARABLE SPACE-TIME CODES

Having established the main effects of each parameter in (25), we now consider the practical coding
aspects of Theorem 2. The diversity tradeoff function (25) can be viewed as a modified version of the
Singleton bound [25] with the diversity gain corresponding to the Hamming distance of our code C,
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(b) Long-term static fading.

Fig. 2. Optimal diversity tradeoff curve corresponding to L = 2, B = 4, M = 1 for a 2× 2 MIMO channel.
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Fig. 3. Optimal diversity tradeoff curve corresponding to L = 2, Q = 2, M = 1 for a 2× 2 MIMO channel.
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Fig. 4. Optimal diversity tradeoff curve corresponding to B = 2, Q = 2, M = 1 for a 2× 2 MIMO channel.
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Fig. 5. Optimal diversity tradeoff curve corresponding to B = 4, Q = 2, L = 2 for a 2 × 2 MIMO channel. The curves with 8 steps
correspond to M = 1, those with 4 to M = 2 and those with 2 to M = B = 2.
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Fig. 6. Comparison of the optimal diversity tradeoff curve for with (28) (dashed steps) for B = 4, Q = 2, L = 1 and M = 1, 4 in a 2× 2
MIMO channel.

viewed as a code of length LB
M

= LD constructed over an alphabet of size 2QMNtT . This is a useful
interpretation and naturally leads us to investigate the role of Singleton-bound-achieving MDS codes. The
role of MDS codes as block codes in block-fading channel has been examined extensively in [23, 24, 26,
45].

In this section, we illustrate that the optimal SNR exponent shown in (25) can be achieved with practical
MDS coding schemes. The block diagram of the concatenated MIMO ARQ transmitter structure considered
in the numerical examples is shown in Figure 7. A codeword of the MDS outer encoder is partitioned into
LB blocks. Each such block is then passed through a pseudo-random interleaver, subsequently mapped
onto a block of complex symbols according to the signal constellation, and passed through a linear
dispersive modulator. In the ARQ transmitter, B blocks of T channel uses are transmitted in each ARQ
round. For simplicity, we make use of the MDS convolutional codes presented in [23] to illustrate the
practical meaning and importance of the diversity tradeoff curve5. The ARQ decoder defined in Section
II-C is impractical due to the complexity of the typical set decoder. Instead we develop a bounded-distance
ARQ decoder and a sub-optimal iterative a posteriori probability (APP) based ARQ decoder, respectively,
approximating the behavior of the typical set decoder.

For the numerical examples, we consider two systems. The first system has a maximum number of
ARQ rounds of L = 2, B = 1, and is using the 4-state [5, 7]8 outer convolutional code, while the second
system has a maximum number of ARQ rounds of L = 4, B = 1, and is using the 4-state [5, 5, 7, 7]8
outer convolutional code. The rate of the first ARQ round, R1, is the same for both systems. The two
systems are investigated for both single-input, single-output (SISO) and MIMO block-fading channels,
subject to short-term static fading and long-term static fading, respectively.

5The main goal of these examples is not to approach the outage probability of the channel, but rather to illustrate the meaning and
significance of the results presented in the previous section. If one wants to approach the outage probability, more powerful codes should
be employed. For details on outage approaching code ensembles for SISO and MIMO channels the reader is referred to [26, 46–48].
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Fig. 7. Block diagram of the concatenated MIMO ARQ architecture. The interleaver corresponding to ARQ round ` and fading block b is
denoted by π`,b.

We first consider the use of a bounded-distance ARQ decoder. Define the set of messages V` ⊆ M,
where the corresponding received codeword hypotheses H̃`X̃`(m), m ∈M are within a bounded distance
from the received matrix Ỹ`,

V` ,

{
m ∈M :

∣∣∣Ỹ` − H̃`X̃`(m)
∣∣∣2
F
≤ `BTNr(1 + δ)

}
, (29)

where δ > 0. For 1 ≤ ` ≤ L− 1, the output of the bounded-distance ARQ decoder is then given by

ψ`(Ỹ`, H̃`) =

{
m̃ if V` = {m̃}
0 otherwise

. (30)

Denoting the true message m̂, the undetected error probability is bounded as

Pr(A`, E`) = Pr

( ⋃
m̃6=m̂

(V` = {m̃})

)
(31)

≤ Pr
(
|W̃`|2F ≥ `BTNr(1 + δ)

)
(32)

(a)

≤ (1 + δ)`BTNr exp(−`BTNrδ), (33)

where (a) follows from bounding the chi-squared distribution of |W̃`|2F with the Chernoff bound. Finally,
letting δ = β log ρ for β > 0, we have

Pr(A`, E`)
.

≤ ρ−BTNrβ. (34)

This result implies that arbitrarily low undetected error probability can be achieved by the new decoder,
at the cost of additional delay. In particular, β should be chosen such that BTNrβ ≥ d?(R1) in order to
achieve the optimal ML exponent d?(R1).

Figure 8 illustrates the performance of the two ARQ systems in the short-term SISO static channel. We
choose the pseudo-random interleaver to be the trivial identity interleaver, i.e. no interleaving is applied
between the outer encoder and the inner modulator. The mapper over Q is set to be BPSK, the space-time
modulation rotation matrix R = I, and T = 100 channel uses. We apply the list Viterbi decoder proposed
in [49] to implement the ARQ decoder outlined in (29) and (30). In particular, we choose β = d?(R1)

BTNr
to

minimize the number of retransmissions.
Considering the L = 2 system, the top three curves in Figure 8 show the corresponding outage

probability, FER with list decoding and FER with PED. The FER curves are parallel to the outage
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Fig. 8. FER with MDS convolutional code over a short-term static SISO channel corresponding to B = 1, Q = 1 and T = 100.

curve at high SNR, which show that the convolutional MDS codes indeed achieve the optimal diversity
gain. The L = 4 system corresponds to the bottom three curves of Fig. 8, where again we see that the
optimal diversity gain is achieved by the MDS convolutional code.

Comparing the two ARQ systems, it is clear that significant performance gains can be obtained at the
expense of higher delays. At FER of 10−2, the gain of the L = 4 system over the L = 2 system is already
5 dB. The performance gap increases even more dramatically at higher SNR.

Figure 9 shows the average number of ARQ rounds of the two ARQ systems considered above. For
each system, we plot the average number of ARQ rounds with PED, with the list decoder and the lower
bound given by (11), respectively. It is clear from the plot that at medium to low SNR, significant loss in
throughput is incurred by codes that do not approach the outage probability limit, like convolutional code.
Even more loss in throughput is observed when list decoding is used as the error detection mechanism.

Finally, note that the average ARQ round curves converge towards one at high SNR. This agrees
with (27) and shows that regardless of the maximum number of allowed ARQ rounds L, no spectral
efficiency penalties are incurred at sufficiently high SNR. In the limit of high SNR, the transmit throughput
η(R1, L) = R1.

Figure 10 and Figure 11 correspond to the error rate and average latency of the same two ARQ systems,
under long-term static fading. As predicted by the theoretical results of the previous section, under long-
term static fading both schemes have the same SNR exponent. As a matter of fact, despite a 1 dB difference
in outage probability, both schemes show virtually the same error probability. As already mentioned in the
previous section, in the long-term static case, the ARQ gain translates in a larger range of R1 supported
with optimal SNR exponent.
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Fig. 9. Average number of ARQ rounds for MDS convolutional codes over a short-term static SISO channel corresponding to B = 1,
Q = 1 and T = 100.

We now consider 2× 2 MIMO systems with L = 2 and L = 4 using the 4-state [5, 7]8 and [5, 5, 7, 7]8
convolutional codes, concatenated with the optimal 2×2 linear dispersive modulator suggested in [37]. In
this example, the channel coherence time is T = 32 channel uses and the mapper over Q is set to 4QAM.
In this case, the bounded-distance ARQ decoder in (30) also becomes impractical, and we therefore resort
to sub-optimal iterative error detection and decoding schemes. As a benchmark, we consider an iterative
scheme based on the full-complexity APP detector, recursively exchanging code symbol extrinsics with
an outer APP decoder, thus generating estimates of the information sequence. Applying the max-log
APP detector in place of the full-complexity APP detector provides a low-complexity alternative. For
the examples considered here, the full-complexity iterative decoder is roughly twice as complex as the
max-log APP alternative. For the full-complexity iterative decoder, we only consider PED as the target
benchmark, while for the max-log APP based iterative decoder we consider PED, as well as a non-ideal
error detection scheme. At each ARQ round, we run the accumulated received signal through six iterations
of the respective iterative detection and decoding algorithms before examining the decoder output.

In the non-ideal error-detection case, errors are detected by examining the soft output of the decoder at
each ARQ round. Specifically, we use the minimum bit-reliability criterion [50], checking at the end of
each ARQ decoding round whether the minimum bit-wise log-likelihood ratio (LLR) of the information
sequence exceeds a threshold, i.e.,

min
0<i≤K

{|L`
d,i|} ≥ θ, (35)

where L`
d,i denotes the ith element of the information LLR sequence at the `th ARQ round and K denotes

the length of the LLR vector. If (35) holds, decoding is considered successful, and the information sequence
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Fig. 10. FER with MDS convolutional code over a long-term static SISO channel corresponding to B = 1, Q = 1 and T = 100.

corresponding to the LLR vector is delivered to the sink. The choice of θ affects both the average latency
as well as the error rate of the system. In general, choosing a high θ encourages the receiver to request
additional retransmissions, which in turn reduces the error rate. However, if θ is set too high, the system
behaves as a block coded system and the spectral efficiency advantage of ARQ systems is not realized.
Further, it is necessary to increase θ as a function of SNR in order to achieve error rate performance
comparable to that of perfect error detection. To this end, we adjust the threshold as

θ = max{1, β log ρ}, (36)

where we have lower bounded θ in order to encourage retransmissions at low SNR. This choice of θ was
found to perform well when the growth parameter β is carefully selected. In the examples shown here, β
is determined experimentally.

Figure 12 compares the error rate performance of the L = 2 system and L = 4 system under the short-
term fading dynamics. For each system, we plot four curves, corresponding to the lower outage probability
bound, obtained by using (23), the PED performance for the two iterative decoders, as well as the minimum
bit-reliability criterion (MinLLR) performance for the max-log APP based iterative decoder. In this case
we have β = 16 and β = 32 for the MinLLR scheme when L = 2 and L = 4, respectively. We notice
that additional retransmissions lead to an appreciable decrease in error rates, and, equally important, the
MinLLR criterion performs virtually as good as perfect error detection. Also, we observe no appreciable
loss in performance of the max-log APP based iterative decoder as compared to the full-complexity case,
confirming the use of the max-log APP approximation is well justified.

Figure 13 compares the average latency (measured in number of ARQ rounds) of the two ARQ systems
under the short-term fading scenario. Again, we plot four curves per system, corresponding to the lower
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Fig. 11. Average number of ARQ rounds for MDS convolutional codes over a long-term static SISO channel corresponding to B = 1,
Q = 1 and T = 100.

bound of expected latency, using (23) and (11), as well as the PED and MinLLR performances. In this
case, we observe that the cost of using the MinLLR criterion is mainly an increase in latency, caused by
requesting superfluous retransmissions, and again there is no appreciable loss in performance by applying
the max-log APP approximation.

Figure 14 and Figure 15 correspond to the error rate and average latency of the same two ARQ systems,
under long-term static fading. In this case we have β = 12 and β = 24 for the MinLLR scheme when
L = 2 and L = 4, respectively. Once again, as predicted by the theoretical results of the previous
section, the error rate curves have the same exponent and, moreover, have very similar gains. Similarly,
the advantage of ARQ in this case is that larger throughput can be supported with optimal SNR exponent.

VII. CONCLUSIONS

The focus of this report is to derive the optimal tradeoff between throughput, diversity gain, and delay
for the block-fading MIMO ARQ channel. We prove that for the block-fading MIMO ARQ channel
with input constellation satisfying a short-term power constraint, the optimal SNR exponent is given
by NtNrLB for short-term static fading and NtNrB for long-term static fading, which is achieved by
Gaussian codes of any positive rate.

When the input signal constellations are constrained to be discrete, this is no longer the case. Due to
the discrete nature of these signal sets, a tradeoff between rate, diversity and delay arises. As our main
result, we prove that for the block-fading MIMO ARQ channel with discrete input signal constellation of
cardinality 2QNt satisfying a short-term power constraint, the optimal SNR exponent is given by a modified
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Fig. 12. FER with MDS convolutional code over a short-term static 2× 2 MIMO channel corresponding to B = 1, Q = 2 and T = 32.
The thick solid lines are the lower outage probability bounds. For L = 2, diamonds correspond to full-complexity APP detection with PED,
while squares and crosses correspond to max-log APP detection with PED and MinLLR, respectively. For L = 4, pentagrams correspond
to full-complexity APP detection with PED, while circles and asterisks correspond to max-log APP detection with PED and MinLLR,
respectively.

Singleton bound, relating all the system parameters. In particular, we show that the tradeoff highlights
the roles of the complex-plane signal constellation through Q, the rate of the first ARQ round R1, the
maximum number of ARQ rounds L, and the number of fading blocks per ARQ round B. Furthermore,
the optimal tradeoff expression includes the effect of the space-time spreading dimension M of the linear
dispersion modulator, providing also a reference of decoding complexity.

Finally, we present numerical results demonstrating the practical significance of the theoretical analysis,
showing that practical MDS codes achieve the optimal throughput-diversity-delay tradeoff.
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Fig. 13. Average number of ARQ rounds for MDS convolutional codes over a short-term static 2 × 2 MIMO channel corresponding to
B = 1, Q = 2 and T = 32. The thick solid lines are the lower bounds on expected latency. For L = 2, diamonds correspond to full-
complexity APP detection with PED, while squares and crosses correspond to max-log APP detection with PED and MinLLR, respectively.
For L = 4, pentagrams correspond to full-complexity APP detection with PED, while circles and asterisks correspond to max-log APP
detection with PED and MinLLR, respectively.

APPENDIX

In this Appendix, we show the details of the proof of Theorem 2. In particular, we detail the proof for
the short-term static model. The proof corresponding to the long-term static model follows exactly the
same steps, and it is thus omitted.

PROOF OF THEOREM 2: CONVERSE

To prove Theorem 2, we first establish the converse and show that the diversity gain is upper-bounded
by (25). We assume Nt ≥ Nr throughout the analysis with no loss in generality6.

We start following the arguments in [18, Appendix I] and conclude that by Fano’s inequality we can
obtain a lower bound to the error probability of the ARQ decoder at any ARQ round ` by using an ML
decoder that operates over the L ARQ rounds. Therefore,

Pe (ρ) ≥ E

[∣∣∣∣∣1− I(ρ|G̃L)

R0L
− 1

R0LBT

∣∣∣∣∣
+

]
(37)

6If Nt < Nr , it suffices to replace det
“
I + G`,bG

†
`,b

”
by det

“
I + G†

`,bG`,b

”
in the computation of the input-output mutual information

with Gaussian inputs and all the arguments still follow.
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where |x|+ = max{0, x}. Hence, for sufficiently large T , we have that [17, 18]

Pe(ρ)≥̇Pout(ρ, L,R1). (38)

Therefore, it follows that we can upper-bound the SNR exponent of the ARQ system by considering the
outage probability up to ARQ round L.

Now, we study in more detail the properties of Pout(ρ, L,R1) when discrete signal constellations are
used. In particular, we recall that (23) states that

I(ρ|G`) ≤
1

D

D∑
d=1

min

{
QNt,

1

M

M∑
m=1

log2 det

(
I +

ρ

Nt

G`,(d−1)M+mG†
`,(d−1)M+m

)}
(39)

and therefore,

Pout(ρ, L,R1)

≥ Pr

(
L∑

`=1

1

D

D∑
d=1

min

{
QNt,

1

M

M∑
m=1

log2 det

(
I +

ρ

Nt

G`,(d−1)M+mG†
`,(d−1)M+m

)}
< R1

)
(40)

= Pr

(
L∑

`=1

D∑
d=1

min

{
QNt,

1

M

M∑
m=1

Nr∑
i=1

log2

(
1 +

ρ

Nt

λ`,(d−1)M+m,i

)}
< DR1

)
(41)
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where λ`,(d−1)M+m,1 ≤ . . . ≤ λ`,(d−1)M+m,Nr are the ordered Nr eigenvalues of the Nr × Nr matrix
G`,(d−1)M+mG†

`,(d−1)M+m corresponding to ARQ round ` and fading block (d− 1)M +m.
We now characterize the behavior of the outage probability at high SNR. Following [17] we define the

SNR normalized eigenvalues as

α`,b,i , − log λ`,b,i

log ρ
. (42)

The joint probability distribution of α`,b = (α`,b,1, . . . , α`,b,M), can be described using a result in [17,
Lemma 3]

f(α`,b) = K−1
Nt,Nr

(log ρ)Nr

Nr∏
i=1

ρ−(Nt−Nr+1)α`,b,i

∏
i<j

(
ρ−α`,b,i − ρ−α`,b,j

)2
exp

(
−

Nr∑
i=1

ρ−α`,b,i

)
, (43)
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where KNt,Nr is a normalizing constant. Then it follows that

Pout(ρ, L,R1)

≥ Pr

(
L∑

`=1

D∑
d=1

min

{
QNt,

1

M

M∑
m=1

Nr∑
i=1

log2

(
1 +

ρ

Nt

λ`,(d−1)M+m,i

)}
< DR1

)
(44)

.
= Pr

(
L∑

`=1

D∑
d=1

min

{
QNt,

1

M

M∑
m=1

Nr∑
i=1

log2 ρ
|1−α`,(d−1)M+m,i|+

}
< DR1

)
(45)

.
= Pr

(
L∑

`=1

D∑
d=1

min

{
QNt,

log2 ρ

M

M∑
m=1

Nr∑
i=1

∣∣1− α`,(d−1)M+m,i

∣∣
+

}
< DR1

)
. (46)

If we now define

α̃`,d
∆
=
(
α′

`,(d−1)M+1, . . . ,α
′
`,dM

)′ ∈ RMNr (47)

=
(
α`,(d−1)M+1,1, . . . , α`,(d−1)M+1,Nr , . . . , α`,dM,1, . . . , α`,dM,Nr

)′ (48)

equation (46) becomes

Pout(ρ, L,R1)≥̇Pr

(
L∑

`=1

D∑
d=1

(1− 11{α̃`,d � 1}) < DR1

QNt

)
(49)

where a � b denotes componentwise inequality, i.e., ai ≥ bi,∀i = 1, . . . , n for some a,b ∈ Rn and 1 is
the all-one vector, since

min

{
QNt,

log2 ρ

M

M∑
m=1

Nr∑
i=1

∣∣1− α`,(d−1)M+m,i

∣∣
+

}
.
=

{
0 when α`,d � 1

QNt otherwise.
(50)

This means that asymptotically for large SNR, when all the components of α̃k,d are larger or equal than
one (deep fades) the mutual information tends to 0, and to QNt otherwise. Following similar steps as in
[17] we can write that

Pout(ρ, L,R1)≥̇
∫
α∈ eOL∩RLDMNr

+

exp

(
− log ρ

L∑
`=1

D∑
d=1

M∑
m=1

Nr∑
i=1

(2i− 1 +Nt −Nr)α`,(d−1)M+m,i

)
dα

(51)
where the large SNR outage event is given by

ÕL =

{
α ∈ RLDMNr :

L∑
`=1

D∑
d=1

(1− 11{α̃`,d � 1}) < DR1

QNt

}
(52)

=

{
α ∈ RLDMNr :

L∑
`=1

D∑
d=1

11{α̃`,d � 1} > D

(
L− R1

QNt

)}
(53)

and α
∆
=
(
α̃′

1,1, . . . , α̃
′
L,D

)′ ∈ RLDMNr . Applying Varadhan’s lemma [51] we have that

d?
D(R1) ≤ inf

α∈ eOL∩RLDMNr
+

{
L∑

`=1

D∑
d=1

M∑
m=1

Nr∑
i=1

(2i− 1 +Nt −Nr)α`,(d−1)M+m,i

}
. (54)

The infimum (54) is solved by considering two cases. If R1 > LQNt, then the infimum is satisfied by
α̃`,d = 0 for all ` and d, hence the diversity gain is zero. Alternatively, if R1 ≤ LQNt, then among all
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possible vectors α̃`,d, for ` = 1, . . . , L and d = 1, . . . , D, we need to have k vectors equal to the all-ones
vector (α̃`,d = 1), for some k ∈ Z in order to satisfy the infimum. The condition to be met is written

k > D

(
L− R1

QNt

)
, (55)

which implies that in order to achieve the infimum k should be

k = 1 +

⌊
D

(
L− R1

QNt

)⌋
. (56)

Since
∑M

m=1

∑Nr

i=1 2i− 1 +Nt −Nr = MNtNr, we upper-bound the optimal SNR exponent as

d?
D(R1) ≤MNtNr

(
1 +

⌊
LB

M

(
1− R1

LQNt

)⌋)
, (57)

which proves the desired converse result.
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PROOF OF THEOREM 2: ACHIEVABILITY

To prove the achievability of the upper-bound on the SNR exponent in (57), we examine the average
frame error rate obtained using random codes and the ARQ decoder described in Section II-C. This
decoder behaves like a typical set decoder for ARQ rounds ` = 1, . . . , L − 1, and as an ML decoder at
round L [29]. Since the channel matrix H̃L encompasses the channel realizations of all ARQ rounds, with
a slight abuse of notation we can express the error probability conditioned on the fading realization as

Pe(ρ|H̃L) =
L−1∑
`=1

Pr

D`−1,
⋃

m̂6=m
m̂6=0

ψ`(Ỹ`, H̃`) = m̂

+ Pr

(
DL−1,

⋃
m̂6=m

ψL(ỸL, H̃L) = m̂

)
(58)

where all parameters are defined in Section III. As shown in [18, 29, Appendix I], ∀δ > 0 and sufficiently
large T , there exists a code for which the error probability corresponding to the first L − 1 rounds can
be bounded as

L−1∑
`=1

Pr

D`−1,
⋃

m̂6=m
m̂6=0

ψ`(Ỹ`, H̃`) = m̂

 < δ. (59)

Therefore,
Pe(ρ|HL) ≤ (L− 1)δ + Pml

e (ρ|HL) (60)

where

Pml
e (ρ|HL)

∆
= Pr

(
DL−1,

⋃
m̂6=m

ψL(ỸL, H̃L) = m̂

)
(61)

is the error probability of an ML decoding error at the Lth ARQ round. We could simply conclude the
proof by following the same arguments of the proof in [18, Appendix I], namely, using

Pml
e (ρ|HL) < δ + 11{HL ∈ OL}

to argue that Pe(ρ)≤̇ρd?
D(R1) (see [18, Appendix I] for details). However, the specific analysis of the

ML decoding error probability for round L using random codes encompasses the standard quasi-static
and block-fading MIMO channels with no ARQ as special cases, and therefore is of broader interest.
Furthermore, conditions on the block length of optimal random codes are given.

We now characterize the behavior of Pml
e (ρ|HL) for random codes constructed over Q, concatenated

with random linear dispersion space-time modulators described in Section II-B.
Following the steps of [22] we consider that the 2R0LBT codewords of CQ are generated with the uniform

probability distribution over Q, namely, ∀cQ ∈ CQ,

p(cQ) =
LBTNt∏

k=1

1

|Q|
=

1

2QLBTNt
. (62)

Each codeword cQ ∈ CQ is partitioned into LD vectors, denoted cQ,`,d ∈ QMTNt , where ` = 1, . . . , L and
d = 1, . . . , D, such that cQ = [cQ,1,1, . . . , cQ,L,D]′. Now let

R =
{
R ∈ RMTNt×MTNt : RR′ = R′R = I

}
(63)

denote the set of orthogonal matrices of dimension MTNt ×MTNt. As outlined in Section II-B, the
modulated signals are given by

x̂`,d = RcQ,`,d. (64)
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Then, if we define
X̂`,d

∆
= matMNt×T (x̂`,d) (65)

where the operator A = matn×m(a) formats vector a ∈ Cnm into an n × m matrix, we have that the
portion of codeword transmitted over ARQ round ` can be written as

X` =
[
X̂′

`,1, . . . , X̂
′
`,D

]′
. (66)

Then we have that the conditional pairwise error probability is given by

P
(
X(n) → X(k) | H̃L = G̃L

)
= Q

(√
ρ

2Nt

∥∥∥G̃L(X(n)−X(k))
∥∥∥2

F

)
(67)

≤ exp

(
− ρ

4Nt

∥∥∥G̃L(X(n)−X(k))
∥∥∥2

F

)
. (68)

It follows from the structure of G̃L that

P
(
X(n) → X(k) | H̃L = G̃L

)
≤

L∏
`=1

D∏
d=1

exp

(
− ρ

4Nt

∥∥∥Ĝ`,d(x̂`,d(n)− x̂`,d(k))
∥∥∥2
)

(69)

=
L∏

`=1

D∏
d=1

exp

(
− ρ

4Nt

M∑
m=1

∥∥G`,(d−1)M+m(X`,(d−1)M+m(n)−X`,(d−1)M+m(k))
∥∥2

F

)
. (70)

If the elements of R are drawn with the uniform probability distribution, it follows from [52, Theorem 1]
that R has full diversity with probability one, namely, the matrices X`,(d−1)M+m(n)−X`,(d−1)M+m(k) have
full rank7. We now apply the singular value decomposition (SVD) [36] to both channel and difference
matrices

G`,(d−1)M+m = UΛ
1
2

`,(d−1)M+mV† (71)

and
X`,(d−1)M+m(n)−X`,(d−1)M+m(k) = AD

1
2

`,(d−1)M+mB† (72)

and get that

P
(
X(n) → X(k) | H̃L = G̃L

)
≤

L∏
`=1

D∏
d=1

exp

(
− ρ

4Nt

M∑
m=1

∥∥G`,(d−1)M+m(X`,(d−1)M+m(n)−X`,(d−1)M+m(k))
∥∥2

F

)
(73)

=
L∏

`=1

D∏
d=1

exp

(
− ρ

4Nt

M∑
m=1

∥∥∥UΛ
1
2

`,(d−1)M+mV†AD
1
2

`,(d−1)M+mB†
∥∥∥2

F

)
(74)

=
L∏

`=1

D∏
d=1

exp

(
− ρ

4Nt

M∑
m=1

∥∥∥Λ 1
2

`,(d−1)M+mPD
1
2

`,(d−1)M+m

∥∥∥2

F

)
, (75)

where P = V†A is unitary. The diagonal matrices Λ
1
2

`,(d−1)M+m and D
1
2

`,(d−1)M+m are composed of the
singular values of the channel matrix G`,(d−1)M+m and codeword difference matrix X`,(d−1)M+m(n) −
X`,(d−1)M+m(k), respectively. As mentioned earlier, the matrices X`,(d−1)M+m(n)−X`,(d−1)M+m(k) have

7As it will be clear in the following, random rotations are not essential in the proof. It is sufficient to rely on the existence of a particular
R with full diversity [32–35, 37, 38, 41].
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full rank with probability one, which implies that the the MNr singular values in D
1
2

`,(d−1)M+m are all
non-zero for m = 1, . . . ,M , d = 1, . . . , D and ` = 1, . . . , L. If we now define

Γ`,(d−1)M+m
∆
= PD`,(d−1)M+mP† (76)

and

γ`,(d−1)M+m
∆
= diag

(
Γ`,(d−1)M+m

)
(77)

= (γ`,(d−1)M+m,1, . . . , γ`,(d−1)M+m,Nr), (78)

we can rewrite (75) as

P
(
X(n) → X(k) | H̃L = G̃L

)
≤

L∏
`=1

D∏
d=1

exp

(
−

M∑
m=1

Nr∑
i=1

γ`,(d−1)M+m,i

4Nt

ρ1−α`,(d−1)M+m,i

)
. (79)

Averaging (79) over the code ensemble, namely X(n),X(k) and R, we get that

P (X(n) → X(k)|α) =
L∏

`=1

D∏
d=1

1

2QMTNt

[
1

+
1

2QMTNt

∑
cQ,`,d(n) 6=cQ,`,d(k)

ER

[
exp

(
−

M∑
m=1

Nr∑
i=1

γ`,(d−1)M+m,i

4Nt

ρ1−α`,(d−1)M+m,i

)]]
. (80)

If we now sum over the 2R0BLT codewords, we have the union bound

Pe(ρ|α) ≤ 2R0BLT

L∏
`=1

D∏
d=1

1

2QMTNt

[
1

+
1

2QMTNt

∑
cQ,`,d(n) 6=cQ,`,d(k)

ER

[
exp

(
−

M∑
m=1

Nr∑
i=1

γ`,(d−1)M+m,i

4Nt

ρ1−α`,(d−1)M+m,i

)]]
(81)

= exp

(
−LDMTQNt log(2)

[
1− R0

QNt

− 1

LDMTQNt

L∑
`=1

D∑
d=1

log2

(
1 (82)

+
1

2QMTNt

∑
cQ,`,d(n) 6=cQ,`,d(k)

ER

[
exp

(
−

M∑
m=1

Nr∑
i=1

γ`,(d−1)M+m,i

4Nt

ρ1−α`,(d−1)M+m,i

)])])
(83)

= exp (−LDMTQNt log(2)E(ρ,α)) (84)

where we have defined the union bound exponent as

E(ρ,α)
∆
= 1− R0

QNt

− 1

LDMTQNt

L∑
`=1

D∑
d=1

log2

(
1 (85)

+
1

2QMTNt

∑
cQ,`,d(n) 6=cQ,`,d(k)

ER

[
exp

(
−

M∑
m=1

Nr∑
i=1

γ`,(d−1)M+m,i

4Nt

ρ1−α`,(d−1)M+m,i

)])
. (86)

Following similar arguments to those in [22, 26], we use the dominated convergence theorem [53] to
obtain that

lim
ρ→∞

ER

[
exp

(
−

M∑
m=1

Nr∑
i=1

γ`,(d−1)M+m,i

4Nt

ρ1−α`,(d−1)M+m,i

)]

= ER

[
lim
ρ→∞

exp

(
−

M∑
m=1

Nr∑
i=1

γ`,(d−1)M+m,i

4Nt

ρ1−α`,(d−1)M+m,i

)]
(87)

= 1− 11{α̃`,d � 1}, (88)



34

since γ`,(d−1)M+m,i > 0 with probability one. For ε > 0 and large SNR, the union bound exponent E(ρ,α)
can be lower-bounded by

Eε(ρ,α)
∆
= 1− R0

QNt

− 1

LD

L∑
`=1

D∑
d=1

11{α̃`,d � 1− ε}. (89)

Let now

Eε =
{
α ∈ RLDMNr : Eε(ρ,α) ≤ 0

}
(90)

=

{
α ∈ RLDMNr :

L∑
`=1

D∑
d=1

11{α̃`,d � 1− ε} ≥ LD

(
1− R0

QNt

)}
. (91)

Then we can bound the overall error probability as

Pe(ρ)≤̇
∫
α∈RLDMNr

min {1, exp (−LDMTQNt log(2)Eε(ρ,α))} p(α)dα. (92)

In a similar way to what it is done in [26], we consider codes with block length T (ρ) such that

τ
∆
= lim

ρ→∞

T (ρ)

log ρ
. (93)

That is, we consider sufficiently long codewords at large SNR such that the error probability is never
dominated by the event when two codewords coincide. Thus, we can write that,

Pe(ρ)≤̇
∫
α∈Eε∩RLDMNr

+

exp

(
− log ρ

L∑
`=1

D∑
d=1

M∑
m=1

Nr∑
i=1

(2i− 1 +Nt −Nr)α`,(d−1)M+m,i

)
dα

+

∫
α∈Ec

ε∩RLDMNr
+

exp

(
− log ρ

L∑
`=1

D∑
d=1

M∑
m=1

Nr∑
i=1

(2i− 1 +Nt −Nr)α`,(d−1)M+m,i

+ τLDMQNt log(2)Eε(ρ,α)

)
dα (94)

and therefore, the random coding exponent is lower-bounded by

d(r)(R1) ≥ sup
ε>0

min{d1, d2} (95)

where

d1 = inf
α∈Eε∩RLDMNr

+

{
L∑

`=1

D∑
d=1

M∑
m=1

Nr∑
i=1

(2i− 1 +Nt −Nr)α`,(d−1)M+m,i

}
(96)

is the exponent for large enough codewords and

d2 = inf
α∈Ec

ε∩RLDMNr
+

{
L∑

`=1

D∑
d=1

M∑
m=1

Nr∑
i=1

(2i− 1 +Nt −Nr)α`,(d−1)M+m,i

+ τLDMQNt log(2)Eε(ρ,α)

}
(97)

= inf
α∈Ec

ε∩RLDMNr
+

{
τLDMQNt log(2)

(
1− R0

QNt

)

+M(NtNr − τQNt log(2))
L∑

`=1

D∑
d=1

1{α`,d � 1− ε}

}
(98)
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is the exponent that characterizes the finite block length.
Following similar steps to those in the converse, the SNR exponent of the first component d1 can be

written
d1 ≥ (1− ε)MNtNr

⌈
LB

M

(
1− R1

LQNt

)⌉
. (99)

Following similar arguments as in [26], we see that if 0 ≤ τQNt log(2) < NtNr then the infimum (98)
is given by

LDMτQNt log(2)

(
1− R0

QNt

)
. (100)

Otherwise, if τQNt log(2) ≥ NtNr, then the infimum is

τLDMQNt log(2)

(
1− R0

QNt

)
+M(NtNr(1− ε)− τQNt log(2))

(⌈
LD

(
1− R0

QNt

)⌉
− 1

)
. (101)

The random coding SNR exponent lower-bound can be tightened by letting ε → 0. By collecting the
results together, we see that for sufficiently large τ , d2 coincides with d1. In fact, one observes that for
T →∞, the overall error probability is given by the probability of the event Eε, since the second integral
in (94) vanishes. Hence the diversity lower-bound coincides with the diversity upper-bound (25) for all
rates except at the discontinuities.
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