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Abstract

We consider power allocation algorithms for fixed-rate transmission over Nakagami-
m non-ergodic block-fading channels with perfect transmitter and receiver channel state
information and discrete input signal constellations, under both short- and long-term power
constraints. Optimal power allocation schemes are shown to be direct applications of previous
results in the literature. We show that the SNR exponent of the optimal short-term scheme
is given by m times the Singleton bound. We also illustrate the significant gains available
by employing long-term power constraints. In particular, we analyze the optimal long-term
solution, showing that zero outage can be achieved provided that the corresponding short-
term SNR exponent with the same system parameters is strictly greater than one. Conversely,
if the short-term SNR exponent is smaller than one, we show that zero outage cannot be
achieved. In this case, we derive the corresponding long-term SNR exponent as a function of
the Singleton bound. Due to the nature of the expressions involved, the complexity of optimal
schemes may be prohibitive for system implementation. We therefore propose simple sub-
optimal power allocation schemes whose outage probability performance is very close to the
minimum outage probability obtained by optimal schemes. We also show the applicability of
these techniques to practical systems employing orthogonal frequency division multiplexing.

K. D. Nguyen and L. K. Rasmussen are with the Institute for Telecommunications Research, University
of South Australia, Mawson Lakes Boulevard, Mawson Lakes 5095, South Australia, Australia, e-mail:
dangkhoa.nguyen@postgrads.unisa.edu.au, lars.rasmussen@unisa.edu.au.

A. Guillén i Fàbregas is with the Department of Engineering, University of Cambridge, Trumpington Street,
Cambridge CB2 1PZ, UK, e-mail: guillen@ieee.org.

This work has been supported in part by the Australian Research Council under ARC grants RN0459498 and
DP0558861.



2

I. INTRODUCTION

A key design challenge for wireless communications systems is to provide high-
data-rate wireless access, while optimizing the use of limited resources such as available
frequency bandwidth, transmission power and computational ability of portable devices.
Reliable transmission is particular challenging for wireless communications systems
due to the harsh, time-varying signal propagation environment. Mobility and multipath
propagation [1], [2], [3] lead to time-selective and frequency selective fading channels,
where the dynamics of the signal variations depend on mobile velocity, carrier frequency,
transmission bandwidth, and the particular scattering environment.

The use of orthogonal frequency division multiplexing (OFDM) technologies is a
proven approach for providing high data rates in wireless communications systems.
Standards such as IEEE 802.11 (WiFi) [4] and IEEE 802.16 (WiMax) [5] already include
OFDM as a core technology, and future generations of mobile cellular systems are likely
to also feature multi-carrier techniques. OFDM transmission over frequency-selective
or time-frequency-selective wireless fading channels is adequately modelled as a block-
fading channel.

The block-fading channel [6], [1] is a useful channel model for a class of time- and/or
frequency-varying fading channels where the duration of a block-fading period is deter-
mined by the product of the channel coherence bandwidth and the channel coherence
time [7]. Within a block-fading period, the channel fading gain remains constant, while
between periods the channel gains change according to a system-specific rule. In this
setting, transmission typically extends over multiple block-fading periods. Frequency-
hopping schemes as encountered in the Global System for Mobile Communication
(GSM) and the Enhanced Data GSM Environment (EDGE), as well as transmission
schemes based on multiple antenna systems, can also conveniently be modelled as block-
fading channels. The simplified model is mathematically tractable, while still capturing
the essential features of the practical transmission schemes over fading channels.

In many situations of practical interest, channel state information (CSI), namely
the degree of knowledge that either the transmitter, the receiver, or both, have about
the channel gains, greatly influences system design and performance. In general, op-
timal transmission strategies over a block-fading channel depend on the availability
of CSI at both sides of the transmission link [1]. At the receiver side, time-varying
channel parameters can often be accurately estimated [7]. Thus, perfect CSI at the
receiver (CSIR) is a common and reasonable assumption. Conversely, perfect CSI at
the transmitter (CSIT) depends on the specific system architecture. In a system with
time-division duplex (TDD), the same channel can be used for both transmission and
reception, provided that the channel varies slowly. In this case, perfect CSIR can be
used reciprocally as perfect CSIT [8]. In other system architectures, CSIT is provided
through channel-state-feedback from the receiver. When no CSIT is available, transmit
power is commonly allocated uniformly over the blocks. In contrast, when CSIT is
available, the transmitter can adapt the transmission mode (transmission power, data
rate, modulation and coding) to the instantaneous channel characteristics, leading to
significant performance improvements.

We distinguish between two cases of transmission dynamics. On the one hand, if no
delay constraints are enforced, transmission extends over a large (infinite) number of
fading blocks. The corresponding fading process is stationary and ergodic, revealing the
fading statistics during the transmission. The maximum data rate for this case, termed
the ergodic capacity, was determined in [9], assuming perfect CSI at both transmitter and
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receiver. Two coding schemes have been shown to achieve the ergodic capacity. In [9], a
variable-rate, variable-power transmission strategy based on a library of codebooks, and
driven by the CSIT, was suggested. In contrast, a fixed-rate, variable-power transmission
strategy was proposed in [10] based on a single codebook, providing a practically more
appealing alternative in the form of a conventional Gaussian encoder followed by power
allocation driven by the CSIT.

On the other hand, when a delay constraint is enforced, the transmission of a codeword
only spans a finite number of fading blocks. This constraint corresponds to real-time
transmission over slowly varying channels. Therefore, this situation is relevant for
wireless OFDM applications in wireless local area networks (WLAN). As the channel
relies on particular realizations of the finite number of independent fading coefficients,
the channel is non-ergodic and therefore not information stable [11], [12]. It follows
that the Shannon capacity under most common fading statistics is zero, since there is
an irreducible probability, denoted as the outage probability, that the channel is unable
to support the actual data rate, [6], [1]. For sufficiently long codes, the word error rate
is strictly lower-bounded by the outage probability. In some cases there is a maximum
non-zero rate and a minimum finite signal-to-noise ratio (SNR) for which the minimum
outage probability is zero. This maximum rate is commonly referred to as the delay-
limited capacity [13]. In this paper, we will consider fixed-rate transmission strategies
over delay-limited non-ergodic block-fading channels.

In a practical system, only causal CSIT is available. Thus, in general, the channel
gains are only known up to (and possibly including) the current block-fading period.
However, in an OFDM system with multiple parallel carriers, the causal constraint still
allows for all sub-carrier channel gains to be known simultaneously in a seemingly
non-causal manner, as compared to a block-fading channel based on frequency-hopping
single-carrier transmission. Here, we will only consider the OFDM-inspired scenario
where perfect non-causal CSIT is available.

As mentioned above, when perfect CSI is available at the transmitter, power allo-
cation techniques can be used to increase the instantaneous mutual information, thus
improving the outage performance. Multiple power allocation rules derived under a
variety of constraints have been proposed in the literature [12], [14], [15], [16], [17].
The optimal power allocation minimizes the outage probability subject to a short-
term power constraint over a single codeword or a long-term power constraint over
all transmitted codewords. The optimal transmission strategy, subject to a short-term
power constraint, was shown in [12] to consist of a random code with independent,
identically distributed Gaussian code symbols, followed by optimal power allocation
based on water-filling [18]. The optimal power allocation problem is also solved in [12]
under a long-term power constraint, showing that remarkable gains are possible with
respect to transmission schemes with short-term power constraints. In some cases, the
optimal power-allocation scheme can even eliminate outages, leading to a minimum
outage probability approaching zero [12], [19], and thus, a non-zero delay-limited
capacity. In particular, gains of more than 12 dB are possible at practically relevant
error probabilities. Again, the optimal input distribution is Gaussian. The optimal power
allocation problem under a long-term power constraint, and with perfect CSIR but only
partial CSI available at the transmitter is considered in [20]. The problem is solved for
the limiting case of large SNR, leading to similar impressive improvements in outage
performance.

In practical wireless communications systems, coding schemes are constructed over
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discrete signal constellations, e.g., PSK, QAM. It is therefore of practical interest
to derive power allocation rules for coded modulation schemes with discrete input
constellations, minimizing the outage probability. A significant step towards this goal
was achieved in [21], where the fundamental relationship between mutual information
and MMSE developed in [22] proved instrumental to optimizing the transmit power of
parallel channels with discrete inputs. As stated in [21], the developed power allocation
rule for parallel channels can be applied directly to minimize the outage probability of
delay-limited block-fading channels under short-term power constraints. However, the
optimal solution in [21] does not reveal the impact of the system parameters involved,
and may also be prohibitively complex for practical applications with computational
power and memory limitations.

In this paper, we study power allocation schemes that minimize the outage probability
of fixed-rate coded modulation schemes using discrete signal constellations under short-
and long-term power constraints. In particular, we study classical coded modulation
schemes, as well as bit-interleaved coded modulation (BICM) using suboptimal non-
iterative decoding [23]. Similarly to the uniform power allocation case, we show that
under a short-term power constraint, an application of the Singleton bound [24], [25],
[26], [27] leads to the optimal SNR exponent (diversity gain) of the channel. In partic-
ular, we show that for Nakagami-m channels, the optimal SNR exponent is given by m
times the Singleton bound [24], [25], [26], [27]. In the long-term case, we derive the
optimal power allocation scheme. We show that the underlying structure of the solution
for Gaussian inputs in [12] remains valid, where no power is allocated to bad fading
realizations, minimizing power wastage. We also show that the relationship between the
mutual information and the minimum-mean-squared-error (MMSE) reported in [22] is
instrumental in deriving the optimal outage-minimizing long-term solution1. We analyze
the optimal long-term solution, showing that zero outage can be achieved provided that
the SNR exponent corresponding to the short-term scheme with the same parameters is
strictly greater than one, implying the delay-limited capacity is non-zero. Conversely,
if the short-term SNR exponent is smaller than one, we show that zero outage cannot
be achieved. In this case, we derive the corresponding long-term SNR exponent as a
function of the Singleton bound.

Practical transmitters may have limited memory and computational resources that
may prevent the use of the optimal solution based on the MMSE. We further aim at
reducing the computational complexity and memory requirements of optimal schemes
by proposing sub-optimal short- and long-term power allocation schemes. The sub-
optimal schemes enjoy significant reductions in complexity, yet they only suffer marginal
performance losses as compared to relevant optimal schemes. For the suggested sub-
optimal schemes, we further characterize the corresponding SNR exponents and delay-
limited capacities for short- and long-term constraints as functions of the modified
Singleton bound.

The paper is further organized as follows. In Section II, the system model, basic
assumptions and related notation are described, while mutual information, MMSE and
outage probability are introduced in Section III. Optimal and sub-optimal power al-
location schemes with short-term power constraints are considered in Section IV, and
corresponding optimal and sub-optimal power allocation schemes with long-term power
constraints are investigated in Section V. Numerical examples are used throughout the

1The optimal power allocation algorithm with discrete inputs has been independently reported in [28]. We became
aware of the results in [28] after the submission of the conference version of this paper [29].
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paper to illustrate the presented results. Concluding remarks, summarized in Section VI,
complete the main body of the paper. To support the readability of the paper, lengthy
proofs are moved to appendices.

Throughout the paper, we shall make use of the following notation. Scalar and vector
variables are characterized with lowercase and boldfaced lowercase letters, respectively.
The expectation with respect to the fading statistics is simply denoted by E [·], while
the expectation with respect to any other arbitrary random variable Φ is denoted by
EΦ [·]. Furthermore, the expectation with respect to an arbitrary random variable Φ,
with the constraint Φ ∈ R is denoted as EΦ∈R [·]. We define 〈x〉 , 1

B

∑B
i=1 xi as

the arithmetic mean of x = (x1, x2, ..., xB). The exponential equality f(ξ)
.
= Kξ−d

indicates that limξ→∞ f(ξ)ξd = K, with the exponential inequalities ≤̇, ≥̇ similarly
defined. Rn

+ = {ξ ∈ Rn|ξ > 0}, min{a, b} denotes the minimum of a and b, dξe (bξc)
denotes the smallest (largest) integer greater (smaller) than ξ, while (f(x))+ = 0 if
f(x) < 0, and (f(x))+ = f(x) if f(x) ≥ 0.

II. SYSTEM MODEL

Consider transmission over an additive white Gaussian noise (AWGN) block-fading
channel with B blocks of L channel uses each, in which, for b = 1, . . . , B, block b is
affected by a flat fading coefficient hb ∈ C. The corresponding block diagram is shown
in Figure 1. Let γb = |hb|2 be the power fading gain and assume that the fading gain
vector γ = (γ1, . . . , γB) is available at both the transmitter and the receiver. The transmit
power is allocated to the blocks according to the scheme p(γ) = (p1(γ), . . . , pB(γ)).
Then, the complex baseband channel model can be written as

yb =
√

pb(γ)hbxb + zb, b = 1, . . . , B, (1)

where yb ∈ CL is the received signal in block b, xb ∈ X L ⊂ CL is the portion of the
codeword being transmitted in block b, X ⊂ C is the signal constellation and zb ∈ CL

is a noise vector with independent, identically distributed (i.i.d.) circularly symmetric
Gaussian entries ∼ NC(0, 1). Assume that the signal constellation X is normalized
in energy such that

∑
x∈X |x|2 = 2M , where M = log2 |X |. Then, the instantaneous

received SNR at block b is given by pb(γ)γb. The following power constraints are
considered [12]

Short-Term: 〈p(γ)〉 ,
1

B

B∑
b=1

pb(γ) ≤ P (2)

Long-Term: E [〈p(γ)〉] = E

[
1

B

B∑
b=1

pb(γ)

]
≤ P. (3)

In all cases, P represents the average SNR at the receiver. We will denote by pst and plt

the power allocation vectors corresponding to short- and long-term power constraints,
respectively. We will also denote by peq(p) = (p, . . . , p) the uniform power vector that
allocates the same power p to each block.

We consider block-fading channels where hb are independent realizations of a random
variable H , whose magnitude is Nakagami-m distributed [30], [31] and has a uniformly
distributed phase2. The fading magnitude has the following probability density function

2Due to our perfect transmitter and receiver CSI assumption, we can assume that the phase has been perfectly
compensated for.
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Fig. 1. Block diagram corresponding to the channel system model with CSI at the transmitter and the receiver.

(pdf)

f|H|(h) =
2mmh2m−1

Γ(m)
e−mh2

, (4)

where Γ(a) is the Gamma function, Γ(a) =
∫∞

0
ta−1e−tdt [32]. The coefficients γb are

realizations of the random variable |H|2 whose pdf and cdf are given by

fγb
(γ) =

{
mmγm−1

Γ(m)
e−mγ, γ ≥ 0

0, otherwise
(5)

and

Fγb
(ξ) =

{
1− Γ(m,mξ)

Γ(m)
, ξ ≥ 0

0, otherwise,
(6)

respectively, where Γ(a, ξ) is the upper incomplete Gamma function, Γ(a, ξ) =
∫∞

ξ
ta−1e−tdt

[32].
The Nakagami-m distribution encompasses many fading distributions of interest. In

particular, we obtain Rayleigh fading by letting m = 1 and an accurate approximation
of Rician fading with parameter K by setting m = (K + 1)2/(2K + 1) [31].

III. MUTUAL INFORMATION, MMSE AND OUTAGE PROBABILITY

The channel model described in (1) corresponds to a parallel channel model, where
each sub-channel is used a fraction 1

B
of the total number of channel uses per codeword.

Therefore, for any given power fading gain realization γ and power allocation scheme
p(γ), the instantaneous input-output mutual information of the channel is given by [18]

IB(p(γ), γ) =
1

B

B∑
b=1

IX (pbγb), (7)
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where IX (ρ) is the input-output mutual information of an AWGN channel with input
constellation X and received SNR ρ. In this paper we will consider coded modulation
(CM) schemes with uniform input distribution, for which IX (ρ) is given by

ICM
X (ρ) = M − 1

2M

∑
x∈X

EZ

[
log2

(∑
x′∈X

e−|
√

ρ(x−x′)+Z|2+|Z|2
)]

.

Furthermore, we also consider bit-interleaved coded modulation (BICM) using the
classical sub-optimal non-iterative BICM decoder proposed in [33], for which the mutual
information for a given binary labeling rule3 can be expressed as the mutual information
of M binary-input continuous-output-symmetric parallel channels [23],

IBICM
X (ρ) = M − 1

2M

1∑
q=0

M∑
j=1

∑
x∈X j

q

EZ

log2

∑
x′∈X

e−|
√

ρ(X−x′)+Z|2

∑
x′∈X j

q

e−|
√

ρ(X−x′)+Z|2

 .

where the sets X i
c contain all signal constellation points with bit c in the j-th binary

labeling position. Both CM and BICM mutual information expressions can be efficiently
evaluated numerically using Gauss-Hermite quadratures [32].

A fundamental relationship between the MMSE and the mutual information (in bits)
in additive Gaussian channels is introduced in [22] showing that

d

dρ
IX (ρ) =

1

log 2
MMSEX (ρ), (8)

where MMSEX (ρ) is the MMSE for a given signal constellation X expressed as a
function of the SNR ρ. This relationship proves instrumental in obtaining optimal power
control rules. In particular, for the CM case, the MMSE resulting from estimating the
input based on the received signal over an AWGN channel with SNR ρ can be written
as [21],

MMSECM
X (ρ) = E

[
|X − X̂|2

]
= E

[
|X − E [X|Y ] |2

]
(9)

= 1− 1

π

∫
C

∣∣∣∑x∈X xe−|y−
√

ρx|2
∣∣∣2∑

x∈X e−|y−
√

ρx|2 dy, (10)

where X̂ = E [X|Y ] is the MMSE estimate of X given the channel observation Y .
Once again, (10) can be efficiently evaluated using Gauss-Hermite quadratures [32]. In
the case of BICM, we obtain an equivalent set of symmetric binary-input continuous
output channels [23]. However, due to the demodulation process, the equivalent channels
have a noise that is non-Gaussian, and more importantly, non-additive. We therefore
define the function derivative of IBICM

X (ρ), denoted by MMSEBICM
X (ρ), by enforcing the

relationship (8) to hold as follows

MMSEBICM
X (ρ) ,

d

dρ
IBICM
X (ρ). (11)

3We select Gray labeling [34], since it has been shown to maximize the mutual information for the non-iterative
BICM decoder [23].
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Note that this is only a shorthand notation, so that whenever MMSEX appears in the
coming sections, it can be replaced by either MMSECM

X (ρ) or MMSEBICM
X (ρ). Therefore,

(11) does not denote the MMSE in estimating the input bits given the noisy channel
observation. The function MMSEBICM

X (ρ) can again be easily evaluated numerically.
Finally, we define the transmission to be in outage when the instantaneous input-

output mutual information is less than the target fixed transmission rate R. For a
given power allocation scheme p(γ) with power constraint P , the outage probability at
transmission rate R is given by [6], [1]

Pout(p(γ), P, R) = Pr(IB(p(γ), γ) < R)

= Pr

(
1

B

B∑
b=1

IX (pbγb) < R

)
. (12)

Since IBICM
X (ρ) ≤ ICM

X (ρ) we will have that the corresponding outage probabilities
verify that PBICM

out (p(γ), P, R) ≥ PCM
out (p(γ), P, R). All the algorithms and results

presented in the following are valid for both CM and BICM. Therefore, unless explicitly
stated, we will use the common notation IX (ρ) and MMSEX (ρ) to refer to both.

IV. SHORT-TERM POWER ALLOCATION

Short-term power allocation schemes are applied to systems where the transmit
power of each codeword is limited to BP . Following the definition of short-term
power constraint given in Section II, a given short-term power allocation scheme pst =
(p1, . . . , pB) must then satisfy 1

B

∑B
b=1 pb ≤ P .

A. Optimal Short-Term Power Allocation
The optimal short-term power allocation rule popt

st (γ) is the solution to the outage
probability minimization problem [12]. Mathematically we express popt

st (γ) as

popt
st (γ) = arg min

p∈RB
+

1
B

PB
b=1 pb=P

Pout(p, P, R). (13)

For short-term power allocation, the power allocation scheme that maximizes the
instantaneous mutual information at each channel realization also minimizes the outage
probability since the available power can only be distributed within one codeword.
Formally, we have [12]

Lemma 1: Let popt
st (γ) be a solution of the problem

Maximize
∑B

b=1 IX (pbγb)

Subject to 1
B

∑B
b=1 pb ≤ P

pb ≥ 0, b = 1, . . . , B.

(14)

Then popt
st (γ) is a solution of (13).

Proof: See Appendix I.
The solution of problem (14), which is based on the relationship between the MMSE

and the mutual information [22], was obtained in [21]. From [21] one has the following
theorem.
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Theorem 1: The solution of problem (14) is given by

popt
b (γ) =

1

γb

MMSE−1
X

(
min

{
1,

η

γb

})
, (15)

for b = 1, . . . , B, where η is chosen such that the power constraint is satisfied,

1

B

B∑
b=1

1

γb

MMSE−1
X

(
min

{
1,

η

γb

})
= P. (16)

Proof: See [21] for details.
As outlined in [21], the results of Theorem 1, are valid for any constellation. In
particular, since the MMSE for Gaussian inputs (GI) is

MMSEGI
X (ρ) =

1

log 2 (1 + ρ)
, (17)

the inverse function can be written in closed form [21] and we therefore recover the
waterfillng solution by replacing MMSEX (ρ) by MMSEGI

X (ρ) [12].
The optimal short-term power allocation scheme improves the outage performance of

coded modulation schemes over block-fading channels. However, it does not increase
the outage diversity compared to a uniform power allocation, as shown in the following
result.

Proposition 1: Consider transmission over the block-fading channel defined in (1)
with the optimal power allocation scheme popt

st (γ) given in (15). Assume input constel-
lation size |X | = 2M . Further assume that the power fading gains follow the distribution
given in (5). Then, for large P and some Kopt > 0 the outage probability behaves as

Pout(p
opt
st (γ), P, R)

.
= KoptP

−mdB(R), (18)

where dB(R) is the Singleton bound given by

dB(R) = 1 +

⌊
B

(
1− R

M

)⌋
. (19)

Proof: See Appendix I.

B. Sub-optimal Short-Term Power Allocation Schemes
Although the power allocation scheme in (15) is optimal, it involves an inverse MMSE

function, which may be excessively complex to implement or store for specific low-
cost systems. Moreover, the MMSE function provides little insight into the role of each
system parameter. In this section, we propose sub-optimal power allocation schemes
similar to water-filling that tackle both drawbacks, leading to only minor losses in
outage performance as compared to the optimal solution.

1) Truncated water-filling scheme: The complexity of the solution in (15) is due
to the complex expression of IX (ρ) in problem (14). Therefore, in order to obtain a
simple sub-optimal solution, we propose an approximation for IX (ρ) in problem (14).
For Gaussian input channels with I(ρ) = log2(1 + ρ), optimal power allocation is
obtained by the simple water-filling scheme [18]. This suggests the use of the following
approximation for IX (ρ).

IX (ρ) ≤ Itw(ρ) ,

{
log2(1 + ρ), ρ ≤ β

log2(1 + β), otherwise,
(20)
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Fig. 2. Mutual information of QPSK, and the approximations used by truncated water-filling and its corresponding
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where β is a design parameter to be optimized for best performance. An example of
Itw(ρ) is illustrated in Figure 2. The resulting sub-optimal scheme ptw

st (γ) is given as
a solution of 

Maximize
∑B

b=1 Itw(pbγb)

Subject to 1
B

∑B
b=1 pb ≤ P

pb ≥ 0, b = 1, . . . , B.

(21)

Theorem 2: A solution to the problem in (21) is given by

ptw
b (γ) =


β
γb

, if 1
B

∑B
b=1

β
γb
≤ P

min

{
β
γb

,
(
η − 1

γb

)
+

}
, otherwise,

(22)

for b = 1, . . . , B, where η is chosen such that

1

B

B∑
b=1

min

{
β

γb

,

(
η − 1

γb

)
+

}
= P. (23)

Proof: See Appendix II.
Without loss of generality, assume that γ1 ≥ . . . ≥ γB, then, similarly to water-filling,

η can be determined such that [12]

(k − l)η = BP −
l∑

b=1

β + 1

γb

+
k∑

b=1

1

γb

, (24)

where k, l are integers satisfying 1
γk

< η < 1
γk+1

and β+1
γl

< η ≤ β+1
γl+1

.
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From Theorem 2, the resulting power allocation scheme is similar to water-filling,
except for the truncation of the allocated power at β

γb
. We refer to this scheme as

truncated water-filling. The outage performance obtained by the truncated water-filling
scheme depends on the choice of the design parameter β. We now analyze the asymptotic
performance of the outage probability, thus providing some guidance for the choice of
β.

Proposition 2: Consider transmission over the block-fading channel defined in (1)
with input constellation X and the truncated water-filling power allocation scheme
ptw

st (γ) given in (22). Assume that the power fading gains follow the distribution given
in (5). Then, for large P , the outage probability Pout(p

tw
st (γ), P, R) is asymptotically

upper bounded by
Pout(p

tw
st (γ), P, R) ≤̇ KβP−mdβ(R), (25)

where
dβ(R) = 1 +

⌊
B

(
1− R

IX (β)

)⌋
, (26)

and IX (β) is the input-output mutual information of an AWGN channel with SNR β.
Proof: See Appendix III.

From the results of Proposition 1, Proposition 2, and noting that Pout(p
tw
st (γ), P, R) ≥

Pout(p
opt
st (γ), P, R), we have

Pout(p
tw
st (γ), P, R)

.
= KtwP−mdtw(R), (27)

where dtw(R) satisfies that dβ(R) ≤ dtw(R) ≤ dB(R). Therefore, the truncated water-
filling scheme is guaranteed to obtain optimal diversity whenever dβ(R) = dB(R), or
equivalently, when

B

(
1− R

IX (β)

)
≥
⌊
B

(
1− R

M

)⌋
(28)

IX (β) ≥ BR

B −
⌊
B
(
1− R

M

)⌋ , (29)

which implies that

β ≥ I−1
X

(
BR

B −
⌊
B
(
1− R

M

)⌋) , βR.

Therefore, by letting β →∞, the truncated water-filling power allocation scheme given
in (22), which now becomes the classical water-filling algorithm for Gaussian inputs,
provides optimal outage diversity at any transmission rate. For any rate R that is not at a
discontinuity point of the Singleton bound, i.e. R such that B

(
1− R

M

)
is not an integer,

we can always design a truncated water-filling scheme that obtains optimal diversity by
choosing β ≥ βR.

With the results above, we choose β as follows. For a transmission rate R that is not
a discontinuity point of the Singleton bound, we perform a simulation to compute the
outage probability obtained by truncated water-filling with various β ≥ βR and pick
the β that gives the best outage performance. The dashed lines in Figure 3 illustrate
the performance of the obtained schemes for block-fading channels with B = 4 and
QPSK input under Rayleigh fading. At all rates of interest, the truncated water-filling
schemes suffer only minor losses in outage performance as compared to the optimal
schemes (solid lines), especially at high SNR. We also observe a remarkable difference
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Fig. 3. Outage performance of various short-term power allocation schemes for QPSK-input block-fading
channels with B = 4 and Rayleigh fading. The solid-lines represent the optimal scheme; the solid lines with �
represent uniform power allocation; the dashed lines and dashed-dotted lines represent truncated water-filling and its
corresponding refinement, respectively; the dotted lines represent the classical water-filling scheme.

with respect to pure water-filling for Gaussian inputs (dotted lines). As a matter of fact,
pure water-filling performs worse than uniform power allocation.

For rates at the discontinuous points of the Singleton bound, especially when operating
at high SNR, β needs to be relatively large in order to maintain diversity. However,
large β increases the gap between Itw(ρ) and IX (ρ), thus degrading the performance
of the truncated water-filling scheme. For β = 15, the gap is illustrated by the dashed
lines in Figure 4. In the extreme case where β → ∞, the truncated water-filling turns
into the water-filling scheme, which exhibits a significant loss in outage performance
as illustrated in Figure 3.

2) Refined truncated water-filling schemes: To obtain a better approximation to the
optimal power allocation scheme, we need a more accurate approximation to IX (ρ) in
(14). We propose the following bound.

IX (ρ) ≤ Iref(ρ) ,


log2(1 + ρ), ρ ≤ α

κ log2(ρ) + a, α < ρ ≤ β

κ log2(β) + a, otherwise,
(30)

where κ and a are chosen such that (in a dB scale) κ log2(ρ)+a is a tangent to IX (ρ) at
a predetermined point ρ0. Therefore α is chosen such that κ log2(α) + a = log2(1 + α),
and β is a design parameter. These parameters are reported in Table I for CM and BICM
using various modulation schemes. An example of the approximation is also illustrated
by the dashed-dotted curve in Figure 2.
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Fig. 4. Outage performance of various short-term power allocation schemes for QPSK-input block-fading channels
with B = 4 and Rayleigh fading. The solid-lines represent the optimal scheme; the solid lines with � represent the
uniform power allocation; the dashed lines and dashed-dotted lines correspondingly represent the truncated water-
filling and its refinement with β = 15.

TABLE I

PARAMETERS ρ0, κ, a AND α FOR THE REFINED POWER ALLOCATION SCHEME.

Modulation Scheme

QPSK 8-PSK 16-QAM 64-QAM

CM BICM CM BICM CM BICM CM BICM
ρ0 3 3 7 7 15 15 63 63
κ 0.3528 0.3528 0.4693 0.4744 0.56 0.5608 0.6581 0.6460
a 1.1327 1.1327 1.1397 1.1234 1.347 1.3452 1.5255 1.5978
α 1.585 1.585 2.1677 2.0922 5.8884 5.8264 18.954 19.8884

The corresponding optimization problem can be written as
Maximize

∑B
b=1 Iref(pbγb)

Subject to
∑B

b=1 pb ≤ BP

pb ≥ 0, b = 1, . . . , B.

(31)

The refined truncated water-filling scheme pref
st (γ) is given by the following theorem.

Theorem 3: A solution to problem (31) is

pref
b =

β

γb

, b = 1, . . . , B (32)
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if 1
B

∑B
b=1

β
γb

< P , and otherwise,

pref
b =



β
γb

, η ≥ β
κγb

κη, α
κγb

≤ η < β
κγb

α
γb

, α+1
γb

≤ η < α
κγb

η − 1
γb

, 1
γb
≤ η < α+1

γb

0, otherwise,

(33)

for b = 1, . . . , B, where η is chosen such that

1

B

B∑
b=1

pref
b = P. (34)

Proof: See Appendix IV.
The refined truncated water-filling scheme provides significant gain over the truncated

water-filling scheme, especially when the transmission rate requires a relatively large β
to maintain the outage diversity. The dashed-dotted lines in Figure 4 show the outage
performance of the refined truncated water-filling scheme for block-fading channels with
B = 4, and QPSK input under Rayleigh fading. The outage performance of the refined
truncated water-filling scheme is close to the outage performance of the optimal case
even at the rates where the Singleton bound is discontinuous, i.e. rates R = 0.5, 1.0, 1.5.
The performance gains of the refined scheme over the truncated water-filling scheme at
other rates are also illustrated by the dashed-dotted lines in Figure 3.

V. LONG-TERM POWER ALLOCATION

We consider systems with long-term power constraints, in which the expectation of
the power allocated to each block (over infinitely many codewords) does not exceed
P . This problem has been investigated in [12] for block-fading channels with Gaussian
inputs. In this section, we obtain similar results for channels with discrete inputs, and
propose sub-optimal schemes that reduce the complexity of the algorithm.

A. Optimal Long-Term Power Allocation
Following [12], the problem can be formulated as{

Minimize Pr(IB(plt(γ), γ) < R)

Subject to E [〈plt(γ)〉] ≤ P,
(35)

where 〈p〉 = 1
B

∑B
b=1 pb.

The following theorem shows that the structure of the optimal long-term solution
popt

lt (γ) of [12] for Gaussian inputs is generalized to the discrete-input case.
Theorem 4: Consider transmission over the block-fading channel given in (1) with

input constellation X . Assume that the power fading gains in γ follow the distribution
given in (5). Then, the optimal power allocation scheme for systems with long-term
constraint P , is given by

popt
lt (γ) =

{
℘opt(γ), 〈℘opt(γ)〉 ≤ s

0, otherwise,
(36)

where
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1) ℘opt(γ) is the solution of the following optimization problem:
Minimize 〈℘(γ)〉
Subject to 1

B

∑B
b=1 IX (℘bγb) ≥ R

℘b ≥ 0, b = 1, . . . , B.
(37)

2) s satisfies{
s = ∞ if lims→∞ ER(s) [〈℘opt(γ)〉] ≤ P
P = Eγ∈R(s) [〈℘opt(γ)〉] , otherwise,

(38)

in which,
R(s) ,

{
γ ∈ RB

+ : 〈℘opt(γ)〉 ≤ s
}

. (39)
Proof: See Appendix V.

Theorem 5: Consider transmission at rate R over the block-fading channel given in
(1) with input constellation X and realized power fading gain γ, the power allocation
scheme that minimizes the input power, which is a solution of the problem given in
(37), is given by

℘opt
b (γ) =

1

γb

MMSE−1
X

(
min

{
1,

1

ηγb

})
, (40)

where η is chosen such that

1

B

B∑
b=1

γb≥ 1
η

IX

(
MMSE−1

X

(
1

ηγb

))
= R. (41)

Proof: See Appendix VI.
As in the Gaussian input case [12], the optimal power allocation scheme either transmits
with the minimum power that enables transmission at the target rate using an underlying
dual short-term scheme ℘opt(γ) with short-term constraint 〈℘opt(γ)〉 < s, or turns off
transmission (allocating zero power) when the channel realization is bad. Therefore,
there is no power wastage on outage events.

The solid lines in Figures 5 and 6 illustrate the outage performance of optimal long-
term power allocation schemes for transmission over 4-block block-fading channels with
QPSK and 16-QAM inputs and Rayleigh fading (m = 1). The simulation results suggest
that for transmission rates where dB(R) > 1, zero outage probability can be obtained
with finite power. This agrees with the results obtained for block-fading channels with
Gaussian inputs [12], where only for B > 1 zero outage is possible.

To provide more insight into this effect, consider the following long-term power
allocation scheme,

plt(γ) =

{
℘(γ), γ ∈ R(s)

0, otherwise,
(42)

where ℘(γ) is an arbitrary underlying short-term power allocation scheme,

R(s) =
{
γ ∈ RB

+ : 〈℘(γ)〉 ≤ s
}

, (43)

and s is chosen to satisfy the long-term power constraint,

E [〈plt(γ)〉] = Eγ∈R(s) [〈℘(γ)〉] = P. (44)
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´
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Assuming that for any s, ℘(γ) satisfies 1
B

∑B
b=1 IX (℘bγb) ≥ R for any γ ∈ R(s), then

the resulting outage probability of the corresponding long-term power allocation is

Pout(plt(γ), P (s), R) = Pr(γ /∈ R(s)). (45)

For any long-term power constraint P , the long-term power allocation scheme in (42)
depends on the threshold s defined in (44). Conversely, for any choice of the threshold
s, the long-term power P (s) is given by

P (s) = Eγ∈R(s) [〈℘(γ)〉] . (46)

We now consider the behavior of the average power P (s) and the corresponding outage
probability Pout(plt(γ), P (s), R) when s → ∞. In particular, we study the long-term
exponent defined as

dlt(R) , lim
P (s)→∞

− log Pout(plt(γ), P (s), R)

log P (s)
. (47)

Firstly, consider the following asymptotic relationship between s and P (s).
Proposition 3: Consider transmission over a block-fading channel with a long-term

power allocation scheme corresponding to an arbitrary underlying short-term scheme
℘(γ), a threshold s given in (42), and a long-term power constraint P (s) given in
(46). Assume that ℘(γ) is chosen such that asymptotically in s, the outage probability
satisfies

Pout(plt(γ), P (s), R)
.
= Ks−d(R) (48)
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for some finite d(R) > 0. Then,

d

ds
P (s)

.
= Kd(R)s−d(R) (49)

Proof: See Appendix VII.
From the previous proposition, we obtain the following result.

Theorem 6: Consider transmission over a block-fading channel with a long-term
power allocation scheme corresponding to an arbitrary underlying short-term scheme
℘(γ), a threshold s given in (42), and a long-term power constraint P (s) given in
(46). Assume that ℘(γ) is chosen such that asymptotically in s, the outage probability
satisfies

Pout(plt(γ), P (s), R)
.
= Ks−d(R) (50)

for some finite d(R) > 0. Then, if d(R) > 1 we have that

lim
s→∞

P (s) = Pth < ∞ and dlt(R) = ∞,

while if d(R) < 1,

dlt(R) =
d(R)

1− d(R)
. (51)

Proof: See Appendix VII.
The previous results highlight the effect of the power constraint on the outage perfor-

mance obtained by a specific power allocation scheme plt(γ). In particular, Pout(plt(γ), P (s), R)
is the outage probability of the block-fading channel with power allocation scheme ℘(γ)
and short-term power constraint 〈℘(γ)〉 < s, and d(R) is the corresponding short-term
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outage diversity. When a long-term power constraint is applied, the long-term outage
diversity dlt(R) is affected in the following way:

• If d(R) > 1, then dlt(R) = ∞ and lims→∞ P (s) = Pth < ∞. Therefore, since

lim
s→∞

Pout(plt(γ), P (s), R) = 0, (52)

there exists a threshold long-term power constraint Pth beyond which strictly
zero outage probability is achieved, proving that vanishing error probability can
be achieved and that reliable communication is possible at rates below R. R is
therefore a lower bound to the delay limited capacity [13] of the block-fading
channel with power constraint Pth.

• If d(R) < 1, then (51) gives the relationship between the long- and short-term
outage diversity.

In order to apply the previous theorem to analyze the asymptotic behaviour of
the optimal power allocation for systems with long-term constraints, we consider the
following duality between popt

st (γ) and ℘opt(γ).
Proposition 4: Consider transmission at rate R over the block-fading channel given

in (1) with the optimal long-term power allocation scheme popt
lt (γ) given in (36) and a

long-term power constraint P (s). Then, independent of the fading statistics, the outage
probability satisfies

Pout(p
opt
lt (γ), P (s), R) = Pout(p

opt
st (γ), s, R), (53)

where popt
st (γ) is the optimal power allocation scheme with short-term power constraint

〈popt
st (γ)〉 ≤ s.

Proof: See Appendix VII.
From Theorem 6, we have the following result.
Corollary 1: Consider transmission at rate R over the block-fading channel given

in (1) with the optimal long-term power allocation scheme popt
lt (γ). Assume input

constellation X of size |X | = 2M . Further assume that the power fading gain γ
follows a Nakagami-m distribution given in (5). Then, the delay-limited capacity is
non-zero whenever dB(R) > 1

m
. Conversely, when dB(R) < 1

m
, the outage probability

asymptotically behaves as

P lt
out(p

opt
lt (γ), P (s), R)

.
= Kopt

lt P−dopt
lt (R), (54)

where P is the long-term power constraint, and dopt
lt (R) is the optimal long-term outage

diversity given by

dopt
lt (R) =

mdB(R)

1−mdB(R)
. (55)

Proof: From Propositions 1 and 4, we have

P lt
out(p

opt
lt (γ), P (s), R)

.
= Kopts

−mdB(R). (56)

Therefore, the corollary can be obtained as a direct application of Theorem 6.
This behavior is illustrated in Figure 7, where the outage probability with QPSK

inputs, m = 0.5 and R = 1.7 has been plotted as a function of the average long-term
power P (s) and as a function of the dual short-term constraint s. As predicted by the
previous results, the dual short-term curve has slope mdB(R) = 0.5. Furthermore, since
dB(R) = 1 < 1

m
= 2, we observe that the long-term outage curve (as a function of

P (s)) has slope dopt
lt (R) = mdB(R)

1−mdB(R)
= 1.
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B. Sub-optimal Long-Term Power Allocation
In the optimal long-term power allocation scheme popt

lt (γ) given in Theorem 4, s can
be evaluated offline for any fading distribution. Therefore, given an allocation scheme
℘opt(γ), the complexity required to evaluate popt

lt (γ) is low. Thus, the complexity of
the long-term power allocation scheme is mainly due to the complexity of evaluating
℘opt(γ), which requires the evaluation or storage of MMSEX (ρ) and IX (ρ). In this
section, we propose sub-optimal long-term power allocation schemes by replacing the
optimal underlying short-term algorithm ℘opt(γ) with simpler allocation rules.

A long-term power allocation scheme plt(γ) corresponding to an arbitrary ℘(γ) is
obtained by replacing ℘opt(γ) in (36), (38) and (39) with ℘(γ). From (36), the long-
term power allocation scheme plt(γ) satisfies

E [〈plt(γ)〉] =Eγ∈R(s) [〈℘(γ)〉] = P. (57)

Therefore, a long-term power allocation scheme corresponding to an arbitrary ℘(γ) is
sub-optimal with respect to popt

lt (γ). Following the transmission strategy in the optimal
scheme, we consider the power allocation schemes ℘(γ) that satisfy the rate constraint
IB(℘(γ), γ) ≥ R to avoid wasting power on outage events. These schemes are sub-
optimal solutions of problem (37). Based on the short-term schemes, two simple rules
are discussed in the next subsections.

1) Long-term truncated water-filling scheme: Similar to the short-term truncated
water-filling scheme, we consider approximating IX (ρ) in (37) by Itw(ρ) in (20), which
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results in the following problem
Minimize 〈℘(γ)〉
Subject to 1

B

∑B
b=1 Itw(℘bγb) ≥ R

℘b ≥ 0, b = 1, . . . , B

(58)

Theorem 7: Problem (58) is solved by ℘(γ) given as

℘b = min

{
β

γb

,

(
η − 1

γb

)
+

}
, b = 1, . . . , B, (59)

where η is chosen such that

1

B

B∑
b=1

log2(1 + ℘bγb) = R. (60)

Proof: See Appendix VIII.
Note that since Itw(ρ) is an upper bound on IX (ρ), ℘(γ) does not satisfy the rate
constraint IB(℘(γ), γ) ≥ R. By adjusting η, we can obtain a sub-optimal ℘tw(γ) as
follows

℘tw
b = min

{
β

γb

,

(
η − 1

γb

)
+

}
, b = 1, . . . , B, (61)

where now η is chosen according to the true mutual information with discrete inputs,
namely, we choose η such that

1

B

B∑
b=1

IX (℘tw
b γb) = R. (62)

Using this scheme, we obtain a power allocation ptw
lt (γ), which is the long-term power

allocation scheme corresponding to the sub-optimal ℘tw(γ) of ℘opt(γ). The perfor-
mance of the scheme is illustrated by the dashed lines in Figures 5 and 6. As we
observe, the performance of the truncated water-filling scheme is very close to that of
the optimal scheme.

Similar to the optimal power allocation scheme, we have the following duality be-
tween ptw

st (γ) and ℘tw(γ).
Proposition 5: Consider transmission at rate R over the block-fading channel given

in (1) with power allocation scheme ptw
lt (γ) and long-term power constraint P (s). Then,

independent of the fading statistics, the outage probability satisfies

Pout(p
tw
lt , P (s), R) = Pout(p

tw
st (γ), s, R), (63)

where ptw
st (γ) is the truncated water-filling power allocation scheme with short-term

constraint 〈ptw
st (γ)〉 ≤ s.

Proof: See Appendix IX
Therefore, from Theorem 6 and Lemma 2, we have the following result.
Corollary 2: Let ptw

lt (γ) be the long-term power allocation scheme corresponding to
℘tw(γ) given in (61). Consider transmission at rate R over the block-fading channel
given in (1) with the long-term power allocation scheme ptw

lt (γ). Assume that the power
fading gain γ follows a Nakagami-m distribution given in (5). Then, the corresponding
delay-limited capacity is non-zero if dβ(R) > 1

m
, where

dβ(R) = 1 +

⌊
B

(
1− R

IX (β)

)⌋
. (64)
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Proof: From Propositions 5 and 2, we have

Pout(p
tw
lt (γ), P (s), R)

.
= Ktws−dtw(R), (65)

where dtw(R) ≥ dβ(R). Therefore, the proof follows as a result of Theorem 6.
In Figure 7 we also show in dashed lines the corresponding long-term truncated

water-filling outage curves, and we observe the same asymptotic behavior as for the
optimal scheme.

2) Refinement of the long-term truncated water-filling scheme: In order to improve
the performance of the sub-optimal scheme, we approximate IX (ρ) by Iref(ρ) given in
(30). Replacing IX (ρ) in (37) by Iref(ρ), we have the following problem

Minimize 〈℘(γ)〉
Subject to 1

B

∑B
b=1 Iref(℘bγb) ≥ R

℘b ≥ 0, b = 1, . . . , B.

(66)

Theorem 8: The problem given in (66) is solved by ℘(γ) given as

℘b =



β
γb

, η ≥ β
κγb

κη, α
κγb

< η < β
κγb

α
γb

, α+1
γb

≤ η ≤ α
κγb

η − 1
γb

, 1
γb
≤ η < α+1

γb

0, otherwise,

(67)

where η is chosen such that
B∑

b=1

Iref(℘bγb) = BR. (68)

Proof: See Appendix X.
Following the arguments in Section V-B.1, we obtain the sub-optimal ℘ref(γ) of ℘opt(γ)
from (67) by choosing η in such that

1

B

B∑
b=1

IX (℘ref
b γb) = R. (69)

The performance of the long-term power allocation corresponding to ℘ref(γ), pref
lt (γ),

is illustrated by the dashed-dotted lines in Figures 5 and 6. We observe that refined
truncated water-filling leads to performance closer to that of the optimal schemes than
truncated water-filling. The improvements are particularly clear for higher transmission
rates.

3) Approximation of IX (ρ): The sub-optimal schemes in the previous sections are
significantly less complex than the corresponding optimal schemes, while only suffering
minor losses in outage performance. However, the sub-optimal schemes still require the
computation or storage of IX (ρ) for determining η. This can be avoided by using an
approximation of IX (ρ). Let ĨX (ρ) be an approximation of IX (ρ) and ∆R be the error
measure given by

∆R = max
ρ

{
ĨX (ρ)− IX (ρ)

}
. (70)
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TABLE II

OPTIMIZED c1, c2 AND c3 PARAMETERS FOR THE APPROXIMATION (73) OF [35].

Modulation Scheme

QPSK 8-PSK 16-QAM 64-QAM

CM BICM CM BICM CM BICM CM BICM
c1 0.77 0.77 0.61 0.81 0.48 0.59 0.47 0.4
c2 0.87 0.87 0.68 0.06 0.61 0.06 0.44 0.05
c3 1.16 1.16 1.45 1.75 1.48 1.65 1.87 1.63

∆R 0.0033 0.0033 0.0241 0.0223 0.0414 0.0259 0.0977 0.0656

Then, for a sub-optimal scheme ℘(γ), η is chosen such that
B∑

b=1

ĨX (℘bγb) = B(R + ∆R) (71)

satisfies the rate constraint since
B∑

b=1

IX (℘bγb) ≥
B∑

b=1

ĨX (℘bγb)−B∆R = BR. (72)

Following [35], we propose the following approximation for IX (ρ)

ĨX (ρ) = M
(
1− e−c1ρc2

)c3
. (73)

For channels with QPSK input, using numerical optimization to minimize the mean-
squared-error between IX (ρ) and ĨX (ρ), we obtain the parameters, c1, c2, c3, shown in
Table II. Using this approximation to evaluate η in subsections V-B.1 and V-B.2, we
arrive at computationally efficient power allocation schemes with little loss in outage
performance.

In Figure 8, we illustrate the significant gains achievable by the long-term schemes
when compared to short-term schemes. As observed in [12], remarkable gains of 11 dB
at an outage probability of 10−4 are possible with optimal long-term power allocation
when compared to uniform power allocation for Gaussian input distributions. As shown
in Figure 8, similar gains of the order of 12 dB at an outage probability of 10−4 are
also achievable with discrete inputs. Note that, due to the Singleton bound, the slope
of the QPSK-input short-term curves is not as steep as the slope of the corresponding
Gaussian input or 16-QAM input curves. This is due to the fact that both Gaussian and
16-QAM inputs have SNR exponent d(R) = 4 while QPSK has dB(R) = 3. Figure 9
shows similar results comparing CM and BICM. In particular, the figure shows little
loss between the corresponding power allocation schemes. This is due to the fact that
the mutual information curves from CM and BICM with Gray mapping do not differ
much [23]. Once again, in the case of BICM, the loss incurred by suboptimal schemes
is negligible.

We finally illustrate the application of the above results to practical OFDM channels.
In particular, we show in Figure 10 the results corresponding to an OFDM channel
with B = 64 sub-carriers, whose 9-tap symbol-period-sampled power delay profile is
extracted from the ETSI BRAN-A model [36] using a zero-hold order filter. The power
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Fig. 8. Outage performance of various short- and long-term power allocation schemes in a block-fading channel
with B = 4, R = 1, Rayleigh fading and Gaussian, QPSK and 16-QAM inputs. The thick solid line corresponds
to the Gaussian input; the thin solid-lines represent optimal scheme; the solid lines with � represent uniform power
allocation; the dashed lines and dashed-dotted lines represent truncated water-filling (ptw

lt (γ) with β1 = 6 dB for
QPSK input and 14.3 dB for QAM input respectively) and the dashed dotted lines represents the corresponding
refinement (pref

lt (γ) for QPSK input with β2 = 5.5).

delay profile models a typical non-line-of-sight (NLOS) indoor office scenario and is
given in Table III. We observe a similar behavior as in the block-fading channel. In
particular, we show that in practical OFDM scenarios impressive gains of more than
10 dB with respect to uniform power allocation (eventually reducing all outages) are
possible. Note that due to the large frequency diversity induced by the time-domain
channel in Table III, the uniform and short-term power allocation curves do not reveal
their respective asymptotic slopes in the error probability range shown in the figure.

VI. CONCLUSIONS

We considered power allocation schemes for fixed-rate transmission over discrete-
input block-fading channels with transmitter and receiver CSI under short- and long-term
power constraints. We have studied optimal and low-complexity sub-optimal schemes.
In particular, we have analyzed the optimal diversity orders and we have shown that, in
the long-term case, outages can be removed provided that the short-term SNR exponent
be greater than one. We have illustrated the corresponding performances, showing
significant performance advantages on the order of 10 dB of the proposed long-term
schemes when compared to uniform power allocation. Furthermore, we have shown that
minimal loss is incurred when using the suggested sub-optimal schemes. We have also
illustrated the applicability and performance advantages of the proposed techniques to
practical OFDM situations.
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Fig. 9. Outage performance of various short- and long-term power allocation schemes in a block-fading channel
with B = 4, R = 1, Rayleigh fading, Gaussian and 16-QAM CM and BICM (with Gray mapping). The thick solid
lines correspond to the Gaussian input; the thin solid-lines represent optimal scheme; the dashed lines represent
truncated water-filling (ptw

lt (γ) with β = 13 dB).

APPENDIX I
OPTIMAL POWER ALLOCATION FOR SHORT-TERM CONSTRAINTS

Proof of Lemma 1: Since popt
st (γ) is the solution of (14), we have

B∑
b=1

IX (popt
b γb) ≥

B∑
b=1

IX (pbγb) (74)

for any power allocation scheme pst(γ) satisfying the short-term power constraint.
Therefore,

Pr

(
B∑

b=1

IX (popt
b γb) < BR

)
≤ Pr

(
B∑

b=1

IX (pbγb) < BR

)
, (75)

and thus,
Pout(p

opt
st (γ), P, R) ≤ Pout(pb(γ), P, R) (76)

for any scheme pst(γ) satisfying the short-term power constraint. This proves that
popt

st (γ) is a solution of (13).
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TABLE III

POWER DELAY PROFILE OF THE NORMALIZED ETSI BRAN-A CHANNEL MODEL USING A ZERO-HOLD ORDER

FILTER.

Delay (multiples of 50ns) Normalized path power (dB)

1 −3.4630
2 −4.6006
3 −8.9151
4 −12.8223
5 −19.9222
6 −21.1202
7 −25.4329
8 −29.7891
9 −34.1993

Proof of Proposition 1: With the optimal power allocation scheme popt
st (γ), the

outage probability is given by

Pout(p
opt
st (γ), P, R) = Pr

(
1

B

B∑
b=1

IX (popt
b γb) < R

)
. (77)

Since popt
st (γ) is the solution of (14), we have popt

b ≥ 0, b = 1, . . . , B and 1
B

∑B
b=1 popt

b ≤
P . Therefore, 0 ≤ popt

b ≤ BP, b = 1, . . . , B. Thus, Pout(p
opt
st (γ), P, R) is lower bounded

by

Pout(p
opt
st (γ), P, R) ≥ Pr

(
1

B

B∑
b=1

IX (BPγb) < R

)
(78)

= Pout(peq(BP ), PB, R), (79)

namely, the outage probability of block-fading channels corresponding to an equal
allocation of power PB per block. Now, according to [27], under Nakagami-m fading
statistics, we have that

Pout(p
opt
st (γ), P, R) ≥̇ K(BP )−mdB(R) (80)

= KB−mdB(R)P−mdB(R). (81)

Conversely, since the power allocation scheme is optimal, the outage performance is
upper bounded by the allocation scheme that assigns power P to each block. Therefore,

Pout(p
opt
st (γ), P, R) ≤ Pout(peq(P ), P, R) (82)

.
= KP−mdB(R). (83)

From (81) and (83), we have

Pout(p
opt
st (γ), P, R)

.
= KoptP

−mdB(R). (84)

Thus, the diversity obtained by the optimal power allocation scheme is given by mdB(R),
which is the same as that of the uniform power allocation scheme. This concludes the
proof of the Proposition.
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Fig. 10. Outage performance of various short- and long-term power allocation schemes in an OFDM channels
with B = 64 carriers, R = 1, Rayleigh fading and Gaussian, QPSK inputs. The thick solid line corresponds to the
Gaussian input, the thin solid lines represent the optimal scheme; the solid lines with � represent uniform power
allocation; the dotted line represents the pure water-filling; the dashed lines and dashed-dotted lines respectively
represent long-term truncated water-filling ptw

lt (γ)and its corresponding refinement pref
lt (γ) with β = 6 dB.

APPENDIX II
PROOF OF THEOREM 2

Proof: The power allocation algorithm of interest is the solution of the optimization
problem (21). Since f(pbγb) is constant at log2(1+β) for pb ≥ β

γb
, having pb > β

γb
does

not provides any gain to the target function in (21). Therefore, the solution of the
following optimization problem

Minimize f0(p) , − 1
B

∑B
b=1 log2(1 + pbγb)

Subject to fb(p) , −pb ≤ 0, b = 1, . . . , B

gb(p) , pb − β
γb
≤ 0, b = 1, . . . , B

h(p) ,
∑B

b=1 pb ≤ BP

(85)

is also a solution of (21).
It can be verified that the functions f0(p), fb(p), gb(p), b = 1, . . . , B, and h(p) are

convex. Therefore, according to the Karush-Kuhn-Tucker (KKT) conditions [37], the
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solution ptwof (85) must satisfies

ν ≥ 0 (86)

ν

(
B∑

b=1

ptw
b −BP

)
= 0 (87)

B∑
b=1

ptw
b −BP ≤ 0 (88)

ptw
b ≥ 0, b = 1, . . . , B (89)
λb ≥ 0, b = 1, . . . , B (90)

−λbp
tw
b = 0, b = 1, . . . , B (91)
αb ≥ 0, b = 1, . . . , B (92)

ptw
b − β

γb

≤ 0, b = 1, . . . , B (93)

αb

(
ptw

b − β

γb

)
= 0, b = 1, . . . , B (94)

− γb log2 e

1 + ptw
b γb

− λb + αb + ν = 0, b = 1, . . . , B, (95)

where ν, λb, αb, b = 1, . . . , B are the Lagrangian multipliers. For any b,
• If λb > 0, from (91), ptw

b = 0. Therefore, from (94) αb = 0. In this case condition
(95) is satisfied only if ν > γb log2 e.

• If λb = 0, we have the following cases
– If αb > 0, from (94), ptw

b = β
γb

. In this case, (95) is satisfied only when
ν < γb log2 e

β+1
.

– If αb = 0, from (95), ptw
b = log2 e

ν
− 1

γb
. Furthermore, from (89) and (93), we

have γb log2 e
β+1

≤ ν ≤ γb log2 e.
Therefore, for any choice of ν, we must have

ptw
b =


β
γb

, ν < γb log2 e
β+1

log2 e
ν

− 1
γb

, γb log2 e
β+1

≤ ν ≤ γb log2 e

0, otherwise

(96)

= min

{
β

γb

,

(
log2 e

ν
− 1

γb

)
+

}
. (97)

The solution in (97) satisfies conditions (89)–(95). We are left to choose ν ≥ 0 such
that conditions (86) – (88) are satisfied. If ν = 0, from (97), ptw

b = β
γb

, b = 1, . . . , B.
Therefore, ν = 0 is valid only if

B∑
b=1

β

γb

≤ BP. (98)

Otherwise, if
∑B

b=1
β
γb

> BP , choose ν such that

B∑
b=1

ptw
b = BP. (99)
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Therefore, letting η = log2 e
ν

, the solution of (85) can be summarized as follows. If∑B
b=1

β
γb
≤ BP ,

ptw
b =

β

γb

, b = 1, . . . , B. (100)

Otherwise, the solution is

ptw
b = min

{
β

γb

,

(
η − 1

γb

)
+

}
, (101)

where η is the solution of
B∑

b=1

min

{
β

γb

,

(
η − 1

γb

)
+

}
= BP. (102)
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APPENDIX III
PROOF OF PROPOSITION 2

Proof: With the truncated water-filling power allocation scheme ptw
st (γ), the outage

probability is given by

Pout(p
tw
st (γ), P, R) = Pr

(
1

B

B∑
b=1

IX (ptw
b γb) < R

)
. (103)

The outage probability can be upper bounded by

Pout(p
tw
st (γ), P, R) ≤ Pr

(
1

B

B∑
b=1

Iβ
X (ptw

b γb) < R

)
, (104)

where Iβ
X (ρ) is a lower bound to IX (ρ) given by

Iβ
X (ρ) =

{
IX (β), ρ ≥ β
0, otherwise.

(105)

We now further upper bound Pout(p
tw
st (γ), P, R) using the following proposition.

Proposition 6: Consider the truncated water-filling scheme given in (22). For any
channel realization γ, we have

B∑
b=1

Iβ
X (ptw

b γb) ≥
B∑

b=1

Iβ
X (Pγb), (106)

where Iβ
X (ρ) is given in (105).

Proof: According to (105), Iβ
X (Pγb) is non-zero only if γb ≥ β

P
. Therefore, we

need to prove that if γb ≥ β
P

then ptw
b ≥ β

γb
for all realization of γ. Without loss of

generality, assume that γ1 ≤ . . . ≤ γB. If γB < β
P

, (106) is certainly true. Otherwise,
there exists a k, 1 ≤ k ≤ B, such that γk−1 < β

P
≤ γk ≤ . . . ≤ γB. Consider the

following two cases:
• If

∑B
b=1

1
γb

< BP
β

then from (22), ptw
b = β

γb
, b = 1, . . . , B.

• Otherwise, from (22), the power allocation solution is given by

ptw
b = min

{
β

γb

,

(
η − 1

γb

)
+

}
, b = 1, . . . , B, (107)

where η is chosen such that
B∑

b=1

ptw
b = BP. (108)

Since γk ≥ β
P

, we have from (107)

ptw
b ≤ β

γb

≤ β

γk

≤ P, b = k, . . . , B. (109)

Therefore from (108),
k∑

b=1

ptw
b =

B∑
b=1

ptw
b −

B∑
b=k+1

ptw
b ≥ kP. (110)
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Now, suppose

η <
β + 1

γk

, (111)

then, for b = 1, . . . , k,

ptw
b ≤ η − 1

γb

<
β + 1

γk

− 1

γk

=
β

γk

≤ P. (112)

Thus,
∑k

b=1 ptw
b < kP , which contradicts to (110). Therefore, assumption (111)

is invalid. We then conclude that η ≥ β+1
γk

≥ β+1
γb

, b = k, . . . , B. Therefore from
(107), ptw

b = β
γb

, b = k, . . . , B.

Therefore, in all cases, we have ptw
b = β

γb
if γb ≥ β

P
. This concludes the proof of the

proposition.
From Proposition 6, we can further upper bound Pout(p

tw
st (γ), P, R) by

Pout(p
tw
st (γ), P, R) ≤ P β

out(peq(P ), P, R) , Pr

(
1

B

B∑
b=1

Iβ
X (Pγb) < R

)
. (113)

The asymptotic behavior of P β
out(peq(P ), P, R) is given by the following proposition

Proposition 7: Assume that γb follows the distribution given in (5), then P β
out(peq(P ), P, R)

in (113) asymptotically behaves as

P β
out(peq(P ), P, R)

.
= KβP−mdβ , (114)

where
dβ = 1 +

⌊
B

(
1− R

IX (β)

)⌋
, (115)

and IX (ρ) is the input-output mutual information of a AWGN channel with input
constellation X and SNR ρ.

Proof: Consider the random set given by Sβ =
{
i ∈ {1, . . . , B} : γi > β

P

}
. Then

for b = 1, . . . , B,

Pr(b ∈ Sβ) = Pr

(
γb >

β

P

)
= 1− Fγ

(
β

P

)
, pβ. (116)

The asymptotic behavior of pβ is given by

pβ =
Γ
(
m, m β

γb

)
Γ(m)

(117)

.
=

Γ(m)− 1
m

(
m β

P

)m
Γ(m)

(118)

1− pβ
.
=

mm−1βm

Γ(m)
P−m. (119)

Since γ1, . . . , γB are independent random variables, |Sβ| is binomially distributed

Pr(|Sβ| = t) =

(
B

t

)
pt

β(1− pβ)B−t (120)

.
=

(
B

t

)(
mm−1βm

Γ(m)

)B−t

P−m(B−t). (121)
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Now from (105),

Iβ
X (Pγb) =

{
IX (β), b ∈ Sβ

0, otherwise.
(122)

Therefore,

Pout(P, R) = Pr

(
B∑

b=1

Iβ
X (Pγb) < BR

)
(123)

= Pr(|Sβ|IX (β) < BR) (124)

= Pr

(
|Sβ| <

BR

IX (β)

)
(125)

=

l
BR

IX (β)

m
−1∑

t=0

Pr(|Sβ| = t) (126)

.
=

l
BR

IX (β)

m
−1∑

t=0

(
B

t

)(
mm−1βm

Γ(m)

)B−t

P−m(B−t). (127)

At high P , the dominating term in (127) is the term with t = t1 =
⌈

BR
IX (β)

⌉
− 1.

Therefore,
Pout(P, R)

.
= KβP−mdβ(R), (128)

where
dβ(R) = B − t1 = 1 +

⌊
B

(
1− R

IX (β)

)⌋
. (129)

This concludes the proof of the proposition.
Finally, from (113) and Proposition 7, we have

Pout(p
tw
st (γ), P, R) ≤̇KβP−mdβ(R), (130)

as required by the Proposition.
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APPENDIX IV
PROOF OF THEOREM 3

Proof: Similar to Theorem 2, a solution pref
st (γ) to the optimization problem given

in (31) satisfies the KKT conditions [37] for the following problem:
Minimize −

∑B
b=1 Iref(pbγb)

Subject to
∑B

b=1 pb ≤ BP

pb ≤ β
γb

, b = 1, . . . , B

pb ≥ 0, b = 1, . . . , B

(131)

Therefore, pref(γ) satisfies

ν ≥ 0 (132)
B∑

b=1

pref
b ≤ BP (133)

ν

(
B∑

b=1

pref
b −BP

)
= 0 (134)

λb ≥ 0, b = 1, . . . , B (135)

pref
b ≥ 0, b = 1, . . . , B (136)

λbp
ref
b = 0, b = 1, . . . , B (137)
τb ≥ 0, b = 1, . . . , B (138)

pref
b ≤ β

γb

, b = 1, . . . , B (139)

τb

(
pref

b − β

γb

)
= 0, b = 1, . . . , B (140)

and 
− γb log2 e

1+pref
b γb

− λb + τb + ν = 0, if pref
b < α

γb

−κ log2 e

pref
b

− λb + τb + ν = 0, if α
γb

< pref
b ≤ β

γb
γb log2 e

1+α
≥ −λb + τb + ν ≥ γbκ log2 e

α
, if pref

b = α
γb

(141)

for b = 1, . . . , B.
For any b, consider the following cases
• If λb > 0, then from (137), (140), we have pref

b = τb = 0. In this case, condition
(141) is satisfied only if ν > γb log2 e.

• If λb = 0 and τb > 0, then from (140), pref
b = β

γb
. Therefore, from (141), ν <

κγb log2 e
β

.
• If λb = τb = 0, from (141), we have

+ pref
b = log2 e

ν
− 1

γb
when 0 ≤ pref

b < α
γb

or equivalently when γb log2 e
1+α

< ν ≤
γb log2 e.

+ pref
b = κ log2 e

ν
if α

γb
< pref

b ≤ β
γb
⇔ κ log2 eγb

β
≤ ν < κγb log2 e

α
.

+ pref
b = α

γb
if γbκ log2 e

α
≤ ν ≤ γb log2 e

1+α
.
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Therefore, for any choice of ν, we have

pref
b =



β
γb

, ν < κγb log2 e
β

κ log2 e
ν

, κγb log2 e
β

≤ ν < κγb log2 e
α

α
γb

, κγb log2 e
α

≤ ν ≤ γb log2 e
1+α

log2 e
ν

− 1
γb

, γb log2 e
1+α

< ν ≤ γb log2 e

0, otherwise.

(142)

We are left to choose ν ≥ 0 such that conditions (132)–(134) are satisfied. If ν = 0,
then from (142), pref

b = β
γb

, b = 1, . . . , B. Furthermore, from (133), ν = 0 is valid only
if

B∑
b=1

β

γb

≤ BP. (143)

If
∑B

b=1
β
γb

> BP , then ν > 0. Therefore, from (134), ν is chosen such that

B∑
b=1

pref
b = BP. (144)

Therefore, by denoting η = log2 e
ν

, we obtain pref(γ) as defined in the Theorem.
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APPENDIX V
PROOF OF THEOREM 4

We first consider the following Proposition, which is a generalization of the result in
[12] to channels with discrete inputs.

Proposition 8: The solution of (35) has the following form

popt
lt (γ) =

{
℘opt(γ), with probability ŵ(γ)

0, with probability 1− ŵ(γ),
(145)

where ℘opt is the solution to the problem in (37) and ŵ(γ) is the solution of Maximize E [w(γ)]
Subject to 0 ≤ w(γ) ≤ 1

E [〈℘opt(γ)〉w(γ)] ≤ P.
(146)

Proof: From (145) and (146), we have

E
[
〈popt

lt (γ)〉
]

= E
[
〈℘opt(γ)〉ŵ(γ)

]
≤ P, (147)

which shows that popt
lt (γ) satisfies the long-term power constraint. We need to prove

that
Pout(p

opt
lt (γ), P, R) = 1− E [ŵ(γ)] ≤ Pout(p(γ), P, R), (148)

where p(γ) is an arbitrary power allocation scheme satisfying the long-term power
constraint E [〈p(γ)〉] ≤ P .

Given a channel realization γ, define the region

A(γ, R) ,

{
p ∈ RB

+ :
1

B

B∑
b=1

IX (pbγb) ≥ R

}
, (149)

and
w(γ) , Pr (p(γ) ∈ A(γ, R)) . (150)

Since A(γ, R) is the power allocation region that does not cause outages, the outage
probability given a channel realization γ is 1−w(γ), and the overall outage probability
is given by

Pout(p(γ), P, R) = 1− E [w(γ)] . (151)

We now prove that w(γ) satisfies the constraints of the problem given in (146). By
definition (150) we have that 0 ≤ w(γ) ≤ 1. Furthermore, since ℘opt(γ) is a solution
to (37), we have

∀ p(γ) ∈ A(γ, R), 〈℘opt(γ)〉 ≤ 〈p(γ)〉. (152)

Therefore, conditioned on γ, the expectation of 〈p(γ)〉 over the distribution of p(γ)
can be lower bounded as follows.

Ep(γ)∈RB
+

[〈p(γ)〉|γ] ≥ Ep(γ)∈A(γ ,R) [〈p(γ)〉|γ] (153)

≥ 〈℘opt(γ)〉Pr(p(γ) ∈ A(γ, R)) (154)
= 〈℘opt(γ)〉w(γ). (155)

Thus, since E [〈p(γ)〉] = Eγ∈RB
+

[
Ep(γ)∈RB

+
[〈p(γ)〉|γ]

]
≤ P , we have

E
[
〈℘opt(γ)〉w(γ)

]
≤ P. (156)
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As a result, w(γ) satisfies the constraints in (146), and thus,

E [ŵ(γ)] ≥ E [w(γ)] .

Therefore, we finally have

Pout(p
opt
lt , P, R) = 1− E [ŵ(γ)] ≤ 1− E [w(γ)] = Pout(p, P, R) (157)

for any arbitrary p(γ), which shows that popt
lt (γ) is a solution to the problem given in

(35).
We have the following Proposition, which gives the solution to the problem given in

(146).
Proposition 9: Suppose that γb follows a continuous probability density function.

Then, a solution to the problem in (146) is given by

ŵ(γ) =

{
1, if 〈℘opt(γ)〉 ≤ s

0, otherwise,
(158)

where s satisfies {
s = ∞, if lims→∞ P (s) ≤ P
P (s) = P, otherwise,

(159)

and
P (s) , E

[
〈℘opt(γ)〉ŵ(γ)

]
.

Proof: If lims→∞ P (s) ≤ P , ŵ(γ) = 1 (which corresponds to s = ∞) is certainly
a solution to the problem.

Consider the case when lims→∞ P (s) > P . We first prove the existence of an s
satisfying (159). Denoting fγ(γ) as the pdf of γ, we can write P (s) as

P (s) =

∫
R(s)

〈℘opt(γ)〉fγ(γ)dγ, (160)

where R(s) is defined in (39). For all s0 > s,R(s) ⊂ R(s0). Therefore, from (160),
P (s) is an increasing function of s. Due to the continuity of the fading statistics and
of the mutual information curve, 〈℘opt(γ)〉 is a continuous function of γ.

Without loss of generality, assume that γ1 ≥ . . . ≥ γB. We first prove that ℘opt
1 > 0.

This is in fact the case since for any power allocation scheme ℘(γ) such that ℘1(γ) = 0,
and ℘k(γ) > 0 satisfying the rate constraint, the power allocation scheme ℘′(γ) with

℘′b(γ) =


℘k(γ)γk

γ1
, b = 1

0, b = k

℘b(γ), otherwise,

(161)

which has 〈℘′(γ)〉 < 〈℘(γ)〉, also satisfies the rate constraints.
Now assume that γ ′ satisfies γ′1 > γ1, γ

′
b = γb, b = 2, . . . , B. Consider the power

allocation scheme ℘(γ ′) satisfying

℘b(γ
′) =

{
℘opt

1 (γ)γ1

γ′1
, b = 1

℘opt
b (γ), otherwise.

(162)

Obviously,
B∑

b=1

IX (℘b(γ
′)γ′b) =

B∑
b=1

IX (℘opt
b γb) ≥ BR.
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Therefore, 〈℘opt(γ ′)〉 ≤ 〈℘(γ ′)〉 < 〈℘opt(γ)〉 (since ℘opt
1 (γ) > 0). This proves that

〈℘opt(γ)〉 is a strictly decreasing function of γ1 for any fixed γ2, . . . , γB.
Due to the aforementioned monotonity and continuity of 〈℘opt(γ)〉, given γ2, . . . , γB,

there exists a unique γ1(s, γ2, . . . , γB) such that 〈℘opt(γ)〉 = s for any s > 0, and we
can rewrite the region R(s) as

R(s) = {γ ∈ RB
+ : γ1 ≥ γ1(s, γ2, . . . , γB)}. (163)

Additionally, for all ε, there exists a δ(ε) such that

γ1(s + ε, γ2, . . . , γB) = γ1(s, γ2, . . . , γB) + δ(ε) (164)
lim
ε→0

δ(ε) = 0 (165)

εδ(ε) ≤ 0. (166)

Therefore, denoting γs , γ1(s, γ2, . . . , γB), we have

lim
ε→0

P (s + ε) = lim
ε→0

∫
R(s+ε)

〈℘opt(γ)〉fγ(γ)dγ (167)

= lim
ε→0

∫
γ2,...,γB

(∫ ∞

γs+δ(ε)

〈℘opt(γ)〉fγ(γ)dγ1

)
dγ2 . . . dγB (168)

=

∫
γ2,...,γB

(
lim

δ(ε)→0

∫ ∞

γs+δ(ε)

〈℘opt(γ)〉fγ(γ)dγ1

)
dγ2 . . . dγB (169)

=

∫
γ2,...,γB

(∫ ∞

γs

〈℘opt(γ)〉fγ(γ)dγ1

)
dγ2 . . . dγB (170)

= P (s). (171)

Thus, P (s) is an continuously increasing function of s, which proves that there exists
an s satisfying P (s) = P since lims→∞ P (s) > P .

On the other hand, for any w(γ), we have

E
[
〈℘opt(γ)〉w(γ)

]
− P = E

[
〈℘opt(γ)〉w(γ)

]
− E

[
〈℘opt(γ)〉ŵ(γ)

]
(172)

=

∫
RB

+\R(s)

w(γ)〈℘opt(γ)〉dFγ(γ) (173)

−
∫
R(s)

(1− w(γ))〈℘opt(γ)〉dFγ(γ) (174)

≥ s

(∫
RB

+\R(s)

w(γ)dFγ(γ)−
∫
R(s)

(1− w(γ))dFγ(γ)

)
(175)

= s (E [w(γ)]− E [ŵ(γ)]) , (176)

where (173) and (176) are due to

ŵ(γ) =

{
1, if γ ∈ R(s)

0, otherwise,
(177)

and (175) is obtained using the following bounds

〈℘opt(γ)〉 ≤ s, if γ ∈ R(s) (178)
〈℘opt(γ)〉 > s, if γ /∈ R(s). (179)
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Therefore, for all w(γ), E [w(γ)] ≥ E [ŵ(γ)] implies E [〈℘opt(γ)〉w(γ)] > P , which
violates the problem constraint. Thus, ŵ(γ) is a solution to the problem. This concludes
the proof of the proposition.

The proof of the Theorem is obtained by applying Propositions 8 and 9.
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PROOF OF THEOREM 5

Proof: Since 〈℘〉,−
∑B

b=1 IX (℘γb),−℘b are convex functions of ℘(γ), applying
the KKT conditions [37] and note the fact that [22]

d

dρ
IX (ρ) =

1

log 2
MMSEX (ρ), (180)

the solution ℘opt(γ) of (37) satisfies the following conditions

ν ≥ 0 (181)

ν

(
BR−

B∑
b=1

IX (℘opt
b γb)

)
= 0 (182)

BR−
B∑

b=1

IX (℘opt
b γb) ≤ 0 (183)

λb ≥ 0, b = 1, . . . , B (184)

−℘opt
b ≤ 0, b = 1, . . . , B (185)

λb℘
opt
b = 0, b = 1, . . . , B (186)

1− 1

log 2
νγbMMSEX (℘opt

b γb)− λb = 0, b = 1, . . . , B (187)

where ν, λb, b = 1, . . . , B are the Lagrangian multipliers. Letting η = ν
log 2

, for any b,
we have

• If λb > 0, then from (186), ℘opt
b = 0 and thus (187) requires η < 1

γb
.

• If λb = 0, then from (187),

℘opt
b =

1

γb

MMSE−1
X

(
1

ηγb

)
(188)

and η ≥ 1
γb

since MMSEX (ρ) ≤ 1.
Therefore, with any choice of η, we have

℘opt
b =

{
1
γb

MMSE−1
X

(
1

ηγb

)
, γb ≥ 1

η

0, otherwise
(189)

=
1

γb

MMSE−1
X

(
min

{
1,

1

ηγb

})
, (190)

for b = 1, . . . , B. We are left to choose η ≥ 0 such that (182) and (183) are satisfied.
From (189), (183) is not satisfied if η = 0. Therefore, from (182), η is chosen such that

B∑
b=1

IX (℘opt
b γb) = BR (191)

as required by the Theorem.
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ASYMPTOTIC ANALYSIS OF POWER ALLOCATION FOR LONG-TERM CONSTRAINTS

Proof of Proposition 3: From the definition of differentiation, we have

d

ds
P (s) = lim

a↓1

P (as)− P (s)

as− s
, (192)

where

P (as) = Eγ∈R(as) [〈℘(γ)〉] (193)
= Eγ∈R(s) [〈℘(γ)〉] + Eγ∈R(as)\R(s) [〈℘(γ)〉] (194)
= P (s) + Eγ∈R(as)\R(s) [〈℘(γ)〉] . (195)

Note that ∀γ ∈ R(s), we have that 〈℘(γ)〉 ≤ s. Therefore, since a > 1, 〈℘(γ)〉 < as,
which implies that γ ∈ R(as) and thus, R(s) ⊂ R(as). Now, let fγ(γ) be the pdf of
the γ. Since ∀γ ∈ R(as), 〈℘(γ)〉 ≤ as, we have

Eγ∈R(as)\R(s) [〈℘(γ)〉] =

∫
γ∈R(as)\R(s)

〈℘(γ)〉fγ(γ)dγ (196)

≤ as

∫
γ∈R(as)\R(s)

fγ(γ)dγ (197)

= as [Pr (γ /∈ R(s))− Pr (γ /∈ R(as))] . (198)

From the assumption in (48), and noting that Pout(plt(γ), P (s), R) = Pr(γ /∈ R(s))
.
=

Ks−d(R), we have

Eγ∈R(as)\R(s) [〈℘(γ)〉] ≤̇ asK
(
s−d(R) − (as)−d(R)

)
. (199)

On the other hand, since ∀γ ∈ R(as) \ R(s), 〈℘(γ)〉 > s, by similar arguments,

Eγ∈R(as)\R(s) [〈℘(γ)〉] ≥̇ sK
(
s−d(R) − (as)−d(R)

)
. (200)

Therefore, from (192), (195), (199), (200), we have

lim
a↓1

Ks−d(R)
(
1− a−d(R)

)
a− 1

≤̇ d

ds
P (s) ≤̇ lim

a↓1

aKs−d(R)
(
1− a−d(R)

)
a− 1

. (201)

Since

lim
a↓1

aKs−d(R)
(
1− a−d(R)

)
a− 1

= lim
a↓1

Ks−d(R)
(
1− a−d(R)

)
a− 1

= Kd(R)s−d(R), (202)

we have that
d

ds
P (s)

.
= Kd(R)s−d(R) (203)

which concludes the proof.
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Proof of Theorem 6: We begin with the first part of the theorem, i.e. lims→∞ P (s) =
Pth < ∞ when d(R) > 1. From Proposition 3, we have

lim
s→∞

(
d

ds
P (s)

)
sd(R) = Kd(R). (204)

Therefore, for any ε > 0, there exists a finite s1 such that for all s > s1,(
d

ds
P (s)

)
sd(R) < Kd(R) + ε, (205)

or equivalently, for all s > s1,

d

ds
P (s) < (Kd(R) + ε)s−d(R). (206)

Thus,

lim
s→∞

P (s) = P (s1) + lim
s→∞

∫ s

s1

(
d

dt
P (t)

)
dt (207)

< P (s1) + lim
s→∞

∫ s

s1

(Kd(R) + ε)t−d(R)dt (208)

= P (s1) + lim
s→∞

(
Kd(R) + ε)(s1−d(R) − s

1−d(R)
1

)
1− d(R)

, (209)

which gives

lim
s→∞

P (s) < P (s1) +
(Kd(R) + ε)s

1−d(R)
1

d(R)− 1
(210)

, Pth < ∞, (211)

when d(R) > 1 as required. Furthermore, from the definition of the long-term exponent,

dlt(R) = lim
P (s)→∞

− log Pout(plt(γ), P (s), R)

log P (s)
(212)

= lim
s→∞

− log Pout(plt(γ), P (s), R)

log P (s)
(213)

= lim
s→∞

− log
(
Ks−d(R)

)
log P (s)

(214)

= lim
s→∞

d(R) log s

log P (s)
. (215)

Therefore
dlt(R) = lim

s→∞

d(R) log(s)

Pth

= ∞ (216)

if d(R) > 1.
In the second part of the theorem, where we have d(R) < 1, then from (209) we

observe that lims→∞ P (s) = ∞. Applying L’Hôpital’s rule to (215), we obtain

dlt(R) = lim
s→∞

d(R)P (s)
s

d
ds

P (s)
. (217)
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Applying Proposition 3, we can further write dlt(R) as

dlt(R) = lim
s→∞

P (s)

Ks1−d(R)
. (218)

Further applying L’Hôpital’s rule and Propostion 3 yields

dlt(R) = lim
s→∞

d
ds

P (s)

K(1− d(R))s−d(R)
(219)

=
d(R)

1− d(R)
, (220)

which completes the proof.
Proof of Proposition 4: From [21], the optimal power allocation scheme for system

with short-term power constraint s is given by

popt
b (γ) =

1

γb

MMSE−1
X

(
min

{
1,

η

γb

})
, b = 1, . . . , B, (221)

where η is chosen such that the power constraint is satisfied,
B∑

b=1

popt
b (γ) = Bs. (222)

Transmission with rate R and power allocation scheme popt
st (γ) is in outage if and

only if there is no η satisfying
B∑

b=1

IX

(
MMSE−1

X

(
min

{
1,

1

ηγb

}))
≥ BR (223)

B∑
b=1

1

γb

MMSE−1
X

(
min

{
1,

1

ηγb

})
≤ Bs. (224)

Similarly, from Lemma 5 and Theorem 4, transmission with power allocation scheme
popt

lt (γ) is also in outage if and only if there is no η satisfying (223) and (224)
simultaneously.

Therefore,
Pout(plt(γ), P (s), R) = Pout(p

opt
st (γ), s, R) (225)

as required by the Proposition.
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PROOF OF THEOREM 7

Proof: Similar to Appendix II, a solution to the problem given in (58) is given
by solving 

Minimize 〈℘(γ)〉
Subject to

∑B
b=1 log2(1 + ℘bγb) ≥ BR

℘b ≤ β
γb

℘b ≥ 0, b = 1, . . . , B.

(226)

The problem given in (226) is a standard convex optimization problem. Therefore,
according to the KKT conditions [37], a solution ℘?(γ) to the problem satisfies

ν ≥ 0 (227)

BR−
B∑

b=1

log2(1 + ℘?
bγb) ≤ 0 (228)

ν

(
BR−

B∑
b=1

log2(1 + ℘?
bγb)

)
= 0 (229)

λb ≥ 0, b = 1, . . . , B (230)
℘?

b ≥ 0, b = 1, . . . , B (231)
λb℘

?
b = 0, b = 1, . . . , B (232)

αb ≥ 0, b = 1, . . . , B (233)

℘?
b −

β

γb

≤ 0, b = 1, . . . , B (234)

α(℘?
b −

β

γb

) = 0, b = 1, . . . , B (235)

1− ν
γb log2 e

1 + ℘?
bγb

− λb + αb = 0, b = 1, . . . , B (236)

where ν, λb, αb, b = 1, . . . , B are the Lagrangian multipliers. For any b,
• If λb > 0, from (232) and (235), we have ℘?

b = αb = 0. Therefore, (236) requires
ν < 1

γb log2 e
.

• If λb = 0, αb > 0, from (235), we have ℘?
b = β

γb
. Therefore, (236) requires ν >

β+1
γb log2 e

.
• If λb = αb = 0, from (236), we have ℘?

b = ν log2 e− 1
γb

. Therefore, (230) and (234)
require 1

γb log2 e
≤ ν ≤ β+1

γb log2 e
.

Therefore, for any choice of ν, we have

℘?
b =


β
γb

, ν > β+1
γb log2 e

ν log2 e− 1
γb

, 1
γb log2 e

≤ ν ≤ β+1
γb log2 e

0, otherwise

(237)

= min

{
β

γb

,

(
ν log2 e− 1

γb

)
+

}
. (238)
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We are left to choose ν such that the conditions in (227)–(229) are satisfied. From
(238), (228) is not satisfied if ν = 0. Therefore, from (229), we choose ν such that

B∑
b=1

℘?
b =

B∑
b=1

min

{
β

γb

,

(
ν log2 e− 1

γb

)
+

}
= BR. (239)

Finally, denoting η = ν log2 e, we have ℘?(γ) as required by the Theorem.
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PROOF OF PROPOSITION 5

Proof: According to Theorem 2, the truncated water-filling scheme with short-term
power constraint s can be written as follows

ptw
st = f(ηst, γb) (240)

with ηst chosen such that{
ηst = ∞ if

∑B
b=1

1
γb
≤ Bs

g(η, γ) = Bs otherwise,
(241)

where

f(η, γ) , min

{
β

γb

,

(
η − 1

γb

)
+

}
, (242)

g(η, γ) ,
B∑

b=1

f(η, γb). (243)

Similarly, from (61), ℘tw
b = f(ηlt, γb), b = 1, . . . , B with ηlt chosen such that

I(ηlt, γ) = BR, (244)

where I(η, γ) ,
∑B

b=1 IX (f(η, γb)γb). Transmission with power allocation scheme
ptw

lt (γ) is in outage if g(ηlt, γb) > Bs.
Consider truncated water-filling schemes with β chosen such that IX (β) ≥ R. Con-

sider a channel realization γ, and, without loss of generality, suppose γ1 ≥ . . . ≥ γB.
If transmission with power allocation scheme ptw

st (γ) is in outage then

ηst <
β + 1

γB

(245)

g(ηst, γ) = Bs (246)
I(ηst, γ) < BR. (247)

Noting that I(η, γ) and g(η, γ) are increasing function of η for η < β+1
γB

, from (244) and
(247), we have ηlt > ηst and thus, g(ηlt, γ) > g(ηst, γ) = Bs. Therefore, transmission
with power allocation scheme ptw

lt (γ) is also in outage.
By similar arguments, we also conclude that if transmission with ptw

lt (γ) results in
an outage event, then transmission with ptw

st (γ) also results in outage.
Therefore,

Pout(p
tw
lt (γ), P (s), R) = Pout(p

tw
st (γ), s, R). (248)
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PROOF OF THEOREM 8

Proof: Similar to Theorem 2, a solution ℘?(γ) to problem (66) satisfies the KKT
conditions [37] for the following problem

Minimize 〈℘(γ)〉
Subject to

∑B
b=1 Iref(℘bγb) ≥ BR

℘b ≤ β
γb

, b = 1, . . . , B

℘b ≥ 0, b = 1, . . . , B.

(249)

Therefore, ℘?(γ) satisfies

ν ≥ 0 (250)

BR−
B∑

b=1

Iref(℘?
bγb) ≤ 0 (251)

ν

(
BR−

B∑
b=1

Iref(℘?
bγb)

)
= 0 (252)

λb ≥ 0, b = 1, . . . , B (253)
℘?

b ≥ 0, b = 1, . . . , B (254)
λb℘

?
b = 0, b = 1, . . . , B (255)

τb ≥ 0, b = 1, . . . , B (256)

℘?
b −

β

γb

≤ 0, b = 1, . . . , B (257)

τb

(
℘?

b −
β

γb

)
= 0, b = 1, . . . , B (258)

and 
1− ν γb log2 e

1+℘?
bγb

− λb + τb = 0, if ℘?
b < α

γb

1− ν κ log2 e
℘?

b
− λb + τb = 0, if α

γb
< ℘?

b ≤
β
γb

ν γb log2 e
1+τ

≥ 1− λb + τb ≥ ν γbκ log2 e
α

, if ℘?
b = α

γb

(259)

for b = 1, . . . , B.
For any b, consider the following cases:
• If λb > 0, from (255) and (258), we have ℘?

b = τb = 0. In this case, condition
(259) is satisfied only if ν < 1

γb log2 e
.

• If λb = 0 and τb > 0, from (258), ℘?
b = β

γb
. Therefore, from (259), ν > β

κγb log2 e
.

• If λb = τb = 0, from (259), we have
+ ℘?

b = ν log2 e − 1
γb

when 0 ≤ ℘?
b < α

γb
or equivalently, when 1

γb log2 e
≤ ν <

α+1
γb log2 e

.
+ ℘?

b = νκ log2 e when α
γb

< ℘?
b ≤

β
γb

, or equivalently when α
κγb log2 e

< ν ≤
β

κγb log2 e
.

+ ℘?
b = α

γb
when 1+α

γb log2 e
≤ ν ≤ α

κγb log2 e
.

Therefore, for any choice of ν, we have
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℘?
b =



β
γb

, ν > β
κγb log2 e

νκ log2 e, α
κγb log2 e

< ν ≤ β
κγb log2 e

α
γb

, 1+α
γb log2 e

≤ ν ≤ α
κγb log2 e

ν log2 e− 1
γb

, 1
γb log2 e

≤ ν < α+1
γb log2 e

0, otherwise.

(260)

We are left to choose ν such that conditions (250)– (252) are satisfied. From (259),
℘?

b = 0, b = 1, . . . , B if ν = 0. Therefore, (251) requires that ν > 0. Thus, from (252),
we need to choose ν such that

B∑
b=1

Iref(℘?
bγb) = BR. (261)

Therefore, by denoting η = ν log2 e, we obtained ℘?(γ) as defined in the Theorem.
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