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Abstract

We study iterative multiuser detection in large randomly spread code division multiple access systems under the
assumption that the number of users accessing the channel is unknown by the receiver. In particular, we focus on
the factor graph representation and iterative algorithms based on belief propagation. We build an iterative scheme
that detects the encoded data and the users’ activity. By using the replica method from statistical physics, we
characterize the density evolution of the iterative detector when the number of potential users is large. As a result,
we provide a general fixed-point equation where the nature of the exchanging probabilities depends on to the users’
activity. Finally, we show that the structure of the users’ codes yields a multiuser efficiency fixed-point equation
that is equivalent to the case of all-active users with a system load scaled by the activity rate.
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I. INTRODUCTION

The interplay between multiuser detection (MUD) and channel coding in multiple-access channels has
been recently studied from different angles. From an information-theoretic perspective, the capacity region
of the Gaussian multiple-access channel is known to be achievable by successive interference cancellation
(IC) and single-user decoding [1]. Practical approaches based on code division multiple access (CDMA)
and iterative joint decoding have also been studied [2], [3], [4], [5].

In [4], the authors provide a unified framework to analyze the performance of iterative multiuser joint
decoding with CDMA in the limit for large block length and system dimensions. Their approach is based
on a factor graph representation of the probability mass function (p.m.f.) of the system using the belief
propagation or sum-product algorithm [6] to estimate it. This characterization allows the derivation of
iterative algorithms that approximate optimal maximum a posteriori (MAP) decoding. The asymptotic
performance of belief propagation can be analyzed by using density evolution techniques [7]. Based on
results from linear MUD for uncoded systems [8] and [4] characterized the performance of large multiuser
systems using suboptimal iterative IC and decoding with linear filtering.

Similarly, using the key result for the large-system analysis of optimal MUD for uncoded systems
[9], the authors in [5] use the replica method to characterize the large-system performance of the belief
propagation iterative joint decoder. In contrast with previous work on uncoded CDMA [10], [11], the
system performance is now determined by the stable fixed-points of a mapping based on density evolution.
Since the decoder extrinsic messages are approximated as a posteriori probabilities (APP’s) of an equivalent
Gaussian channel, density evolution with a Gaussian approximation (DE-GA) can be described by a one-
dimensional dynamical system.

In this paper, we present a general treatment of large-system analysis of iterative multiuser joint adopting
the approach of [12], in which the number of users accessing the channel is variable and must be estimated
together with the transmitted data. We derive the new fixed-point equations to the corresponding density
evolution algorithm. In order to derive the these fixed-point equations we use the large-system analysis
presented in [13].

This paper is organized as follows. Section II introduces the system model and the main notations
used throughout. Section III describes the iterative MUD factor graph and the belief propagation decoding
algorithm. Section IV presents the main results on density evolution and Gaussian approximation, showing
the corresponding generalized dynamic fixed-point equations. Finally, section VI draws some concluding
remarks. Proofs can be found in the appendices.

II. SYSTEM MODEL

We consider a synchronous Gaussian CDMA system where K is the maximum number of users entitled
to access the system, N is the length of the spreading sequences and L is the length of the users’ codewords.
The corresponding received signal matrix is given by

Y = SAX + Z (1)

where Y ∈ RN×L is the received signal, S ∈ RN×K is the matrix of the spreading sequences, A =
diag(a1, . . . , aK) ∈ RK×K is the diagonal matrix of the users’ signal amplitudes, Z ∈ RN×L is an
additive white Gaussian noise matrix with i.i.d. entries ∼ N (0, 1

2
), and X = (x1, . . . ,xK)T ∈ RK×L is

the matrix containing the users’ coded blocks, where xk = (xk,1, . . . , xk,L)T.
We assume that users are active with probability α , Pr{user k active}, 1 ≤ k ≤ K. We assume

that active users employ binary-shift keying (BPSK) modulation with equal probabilities. Hence, each
component xk,l of xk belongs to a ternary constellation X , {−1, 0, +1} with prior probabilities Pr{xk,l =
−1} = Pr{xk,l = +1} = α

2
and Pr{xk,l = 0} = 1 − α. We also assume that ak =

√
γ, where γ is the

average received signal-to-noise ratio (SNR)1.We define the maximum system load as β , K
N

.

1The analysis presented in this paper can be easily extended to different statistics of the ak coefficients, like for example those induced
by Rayleigh fading.
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A. Encoding of data and activity
Let B = (b1, . . . , bK)T ∈ RK×B be the information bit matrix of all users, where B is the length of

an information message and bk = (bk,1, . . . , bk,B)T. Whenever user k is active, then bk ∈ FB
2 , otherwise

bk = (2, . . . , 2). We assume that active-user vectors are encoded independently with probability α and
the inactive message appears with probability 1 − α. The nature of the information messages varies
significantly from active to inactive users. For instance, it is easy to see that in the case of inactive users,
the information symbols are not independent: if the first one is represented by 2, all the rest are 2 as well.
In order to incorporate the activity of users into the decoding process, we add one pilot symbol at the
beginning of each coded block, which can be either one or zero, depending on whether the user is active
or not, respectively. Hence, if user k is active, we can define an encoding function φk : Mk → {−1, +1}L

such that
φk(mk) = (xk,1, . . . , xk,L) ∈ Ck (2)

and the code Ck is then defined as:

Ck = {x ∈ {−1, +1}L : x = (+1, φk(mk)), ∀mk ∈Mk} (3)

where Mk the message set. If the user is inactive, the user code Ck is only modulated as follows:

Ck = {x = (0, . . . , 0)}. (4)

Note that this is equivalent to considering a code C̃k that incorporates the all-zero modulated codeword
representing the non-activity. While the presentation given in this paper is general, we will focus our
examples on trellis codes. The coded BPSK streams are first interleaved across time (Π1), and once
the activity comes into play, they are interleaved across user dimensions (Π2), so that the resulting
vectors accessing the channel are independent. This corresponds to a system with coordinated but non-
cooperative users, where information is available at a common point. The interleaved signals are then
spread and transmitted over the channel. The system is depicted in Fig. 1, where one can observe the
encoding/decoding block, the random interleaver/deinterleaver and the optimum detector.

b1

bK

φ1

Π2

x1

xK

×

+

{0,1}

Y

Z
×

{0,1} IO-MUD

Π1

Π1φK

Fig. 1. Block diagram of the proposed multiuser system

When the underlying users’ codes are convolutional, the above considerations result in a trellis that
combines the activity and encoding functions. This is shown in Fig. 2 for the first stages of a convolutional
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code (5, 7)8. We represent the inactivity with the upper all-zero branch, while users’ activity corresponds
to the lower branch that contains the code structure. In particular, when the codes are trellis codes, the
overall trellis can be decoded with the forward-backward algorithm [14]. The two graphs are linked in the
initial state S0 and become independent after the arrival of the pilot symbol. Note that the upper branch
corresponds to a repetition code of rate 1/L.
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S1

S2

S4

S0 S0 S0

S1 S1

S3 S3

-1-1 -1-1

11

1-1

-11

11

.......

.......

.......

.......

Fig. 2. Modified trellis structure of a convolutional code (5, 7)8.

B. Optimum detection
Assuming that the receiver knows S and A, the a posteriori probability (APP) of the transmitted data

has the form
p(X|Y , S, A) =

1√
π

e−‖Y −SAX‖2 p(X)

p(Y |S, A)
. (5)

Hence, the maximum a posteriori (MAP) joint activity-and- data multiuser detector solves

X̂ = arg max
x∈XK×L

p(X|Y , S, A). (6)

Similarly, optimum detection of single-user data and activity is obtained by marginalizing over the
undesired users as follows:

x̂k = arg max
xk

∑
X∈{XK×L\xk}

p(X|Y , S, A). (7)

Although xk does not necessarily correspond to the k-th user’s codeword due to the interleaver, the
interleaver is a bijective map, and allows to recover a particular user’s signal by appropriate de-interleaving.
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III. ITERATIVE JOINT DECODING: FACTOR GRAPH AND BELIEF PROPAGATION

We recall the canonical factor graph representation of a multiuser coded system [4] in order to compute
the a posteriori p.m.f. of the information symbols:

Pr(b1, . . . , bK |y, S, A) (8)

The computation of (8) by brute force is infeasible even for small maximum number of users. We
consider the application of the well-known sum-product algorithm to the aforementioned factor graph [6].
In particular, we focus on the belief propagation method, which iteratively approximates the marginal
probabilities of (8). This approximation is carried out trough message passing between the optimum
multiuser detector (IO-MUD) and the users’ soft-input soft-output (SISO) decoders.

We denote the outgoing messages from the IO-MUD at iteration ` ∈ N, for signal k = 1, . . . , K and
time l = 1, . . . , L as q

(`)
k,l =

(
q
(`)
k,l (−1), q

(`)
k,l (0), q

(`)
k,l (1)

)
. The outgoing messages from the SISO decoder

are denoted as p
(`)
k,l =

(
p

(`)
k,l(−1), p

(`)
k,l(0), p

(`)
k,l(1)

)
, and are the extrinsic probabilities of the coded symbols.

When the users’ codes are convolutional codes, the messages p
(`)
k,l are obtained by applying the forward-

backward algorithm to the combined trellis.
According to [6], [4], the general sum-product rules that relate both sets or probabilities are stated as

follows:

q
(`)
k,l (x) ∝

∑
x∈A1×···×AK ,xk,l=x

exp

− ∣∣∣∣∣yl −
K∑

j=1

sjajxj,l

∣∣∣∣∣
2
∏

j 6=k

p
(`−1)
j,l (xj,l), for x ∈ Ak (9)

p
(`+1)
k,l (x) ∝

∑
{x∈Ck,xk,l=x}

∏
j 6=l

q
(`)
k,j(x) (10)

We assume that the messages p
(0)
k,l = (α

2
, 1 − α, α

2
) for k = 1, . . . , K and time l = 1, . . . , L. Note that

the above messages can be viewed as random variables, which depend on both the channel and code
parameters.

Finally, the approximation of the APP of any information symbol b by means of belief propagation is
given by:

APP(`)
k,l(b) ∝

∑
x=φk(b),bk,l=b

L∏
j=1

q
(`)
k,j(xk,j) (11)

IV. DENSITY EVOLUTION

In order to characterize the performance over the iterations, we are interested in studying the evolution
of the p.d.f. of the above messages. This can be done by means of a procedure named density evolution.
Density evolution has been applied to study iteratively decoded codes such as turbo and low-density parity
check (LDPC) codes [7] as well as iterative MUD [4], [5]. Density evolution is based on the principle
that as the length of the code is sufficiently large, the p.d.f. of the messages becomes deterministic. In
this section, we study density evolution for our MUD problem with an unknown number of users. In
particular, we study the large-system limit, i.e., when the number of users and the spreading sequence
dimension grow large, but their ratio is kept fixed. We employ statistical physics techniques to characterize
the nature of the messages q`

k,l.
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A. Concentration
The concentration theorem in [4] for the coded CDMA channel model under some conditions on the

user codes Ck refers to the existence of a limiting distribution of the output messages p
(`)
k,l for L → ∞.

In order to validate the concentration result in our particular system, recall the way the inactivity was
characterized as a rate 1/L repetition code. Then, the probability of making a correct decision on the
activity is given by the following result.

Proposition 4.1: The success probability Ps of a repetition code of rate 1/L satisfies

Ps = 1−
(

2Q

(√
ηγ

2

))L/2+1

. (12)

Under the assumptions of density evolution, i.e., L → ∞, the success probability Ps → 1. This implies
that the activity detection will always be perfect in the iterative process in the limit for large codeword
length. We therefore consider a compound of two types of message probabilities that switch depending on
whether soft decoding operates on an active or an inactive coded block. We thus assume that according to
Proposition 4.1, we have perfect activity detection. Consequently the limiting distribution of the messages
over an active block exists under the same conditions as in the general case [4], whereas the limiting
distribution of the messages over an inactive one concentrates all the probability in the inactivity symbol.

B. Large-System Analysis
The concentration theorem is valid for L →∞ but finite K and N . However, the analysis with finite K

and N can be complicated. On the other hand, large-system analysis is remarkably simpler and accurately
mimics the behavior of the system for not-so-large dimensions. In particular, we let K, N →∞ keeping
their ratio, the system load β = K/N , fixed. Under these conditions [4], we invoke the decoupling principle
[10], [13] for optimum MUD, and use its single-user characterization. The result has the following original
form:

Claim 4.2 ([13]): In the large-system limit, the distribution of the output of the individually optimal
detector of the multiuser channel conditioned on Xk = x, converges to the distribution of a posterior
mean estimate of a single-user Gaussian channel conditioned on X = x being transmitted.

In other words, the marginal probabilities computed at the IO-MUD can be regarded as the output of an
equivalent Gaussian channel where the noise is distributed as N (0, 1/(γkη

(`))), where η(`) is the multiuser
efficiency at iteration `. The multiuser efficiency characterizes the degradation factor of the SNR due to
the multiple-access interference. The multiuser efficiency minimizes the free energy [9]

F =
1

K
log (p(y)) (13)

and it is called the globally stable solution of the system.
We now present our main results on dynamical system behavior that updates the distribution of the

IO-MUD messages at each iteration. Our approach is more general than previous work and takes into
account the fact that the distribution of the SISO message depends on the users’ activity. Note that due
to the large-system approach, the the extrinsic probabilities outgoing from the SISO decoders p

(`)
k,l are

independent of k and l. To simplify the notation we denote the extrinsic probabilities by p
(`)
ext. We assume

equal power for each users and we omit the subscript k in the SNR. The updating parameter, η(`), is given
in terms of a one-dimensional fixed-point equation η(`) = Ψ(η(`−1), β, α, γ), which is derived using the
replica method.

Claim 4.3: Consider a general iterative MUD system where the number of users is unknown and
parameterized by a Bernoulli variable Aα with success probability α. Then, the multiuser efficiency at
iteration ` of a BP iterative joint multiuser decoder is given by the globally stable solution of the following
fixed point equation:

η(`) =

(
1 + βE

Aα,p
(`−1)
ext ,Y,X,γ

[
γ
(
X − X̂(η(`−1), η(`), γ)

)2
])−1

(14)
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where X̂(η(`−1), η(`), γ) = E[X|Y, γ] is the MMSE estimate.
The general result given in Claim 4.3 can be easily applied to our system, where the activity is perfectly

detected after the first iteration for arbitrary SNR and L →∞. We have the following result.
Corollary 4.4: The fixed-point equation of a system with unknown number of equal-power users that

perfectly estimates their activity at a particular iteration η(`−1) > 0 converges with probability 1 to:

η(`) =

(
1 + β′γ

(
1− Epext,Y,X,γ|Aα=1

[
γX̂2(η(`−1), η(`), γ)

]))−1

(15)

where β′ = βα and X̂(η(`−1), η(`), γ) = E[X|Y, γ] is the MMSE estimate.
Note that the above result is exactly the fixed-point equation of a system with a fixed (and known)

number of users with load β′ = βα for any η(`−1) > 0. In the case of η(`−1) = 0, the result does not hold
as it corresponds to the uncoded case [15]. The above fixed-point equation can be further developed by
using strictly some approximations of the extrinsic probabilities when an active block is transmitted.

C. Approximations
Based on common empirical observations, we can approximate the outgoing message from the SISO de-

coder as the output of a virtual equivalent Gaussian channel where the noise is modeled as N (0, 1/(µ(`))).
The approximation allows some degrees of freedom in the choice of µ. As in [5], we choose the following
matching

µ(`) = Q−1
(
Pe(γη(`))

)
(16)

where Pe(ρ) is the symbol error probability where decisions are made from extrinsic probabilities of the
SISO decoders for a general input with SNR ρ. This characteristic can be obtained by simple simulation
over the AWGN channel, or a combination of simulation and bounding techniques [4].

By the above Gaussian approximation we can recover the dual result of [5]:
Corollary 4.5: Assume the Gaussian approximation postulated above for the SISO decoders. Then, the

fixed-point equation for ` > 1 converges with probability 1 to

η(`) =

[
1 + β′γ

(
1−

∫
R2

1

2π
e−

(y2+z2)
2 tanh

(
η(`)γ + µ(η(`−1)γ)−

√
η(`)γy −

√
µ(η(`−1)γ)z

)
dydz

)]−1

(17)

where β′ = βα.
In the large SNR regime, the MMSE

MMSE = 1−
∫

R2

1

2π
e−

(y2+z2)
2 tanh

(
η(`)γ + µ(η(`−1)γ)−

√
η(`)γy −

√
µ(η(`−1)γ)z

)
dydz (18)

admits a somewhat simpler form, which results in a simpler expression for the fixed point equation (17).
As shown in [15], large-SNR analysis of the MMSE leads to interesting results for high quality-of-service
applications. However, in this case, the dependence of the asymptotic MMSE on the system parameters
is less straightforward as in the uncoded case, as illustrated by the following result.

Proposition 4.6: The large system MMSE for an iterative multiuser joint detector with SNR γ and
multiuser efficiency η using the SISO decoder Gaussian approximation described by N (0, 1

µ(ηγ)
) is given

in the high-SNR regime by

lim
γ→∞

MMSE =

√
2

π

e
− ηγ

2
−µ(ηγ)−κ2

1
2

+
(1+κ1)

√
µ

2(1+κ2)

√
ηγ + κ1

(
1− (1+κ1)

(1+κ2)2

) (19)

where κ1 , µ(ηγ)√
ηγ

and κ2 , µ(ηγ)
ηγ

.
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V. NUMERICAL RESULTS

The above results imply that the analysis of a coded multiuser system with user-and-data detection can
be easily converted into the analysis of a standard multiuser system where the number of users is fixed
and known. By using the trellis structure introduced in Section II, the activity is detected perfectly with
one iteration, and the behavior of the dynamical fixed-point equation has the form of a data detector with
a scaled system load.

In Fig. 3 we show the density evolution mapping function for the standard case (α = 1) and an example
of a case where all users are not active (α = 0.5) using the above Gaussian approximation. It can be seen
that this approximation (solid line) matches well the actual system behavior (dashed line). On the other
hand, a symmetric Gaussian approximation (classical approximation) for each extrinsic symbol does not
match well the system behavior (dash-dotted line). Remark that the standard case with α = 1 finds a fixed
point that at very low multiuser efficiency. On the contrary, when all users are active with probability
α = 0.5, this point is avoided and the unique solution is η = 1. Hence, the activity rate works as a scaling
factor of the system load and avoids fixed points at low iterations which usually represent very low values
of multiuser efficiency.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

Ψ

 

 

α = 0.5,

β = 4.5

α = 1.0,

β = 4.5

Fig. 3. Mapping function Ψ(η, β, α) with α = 1.0, 0.5, at Eb/N0 = 6dB and β = 4.5. Dashed lines represent the density evolution with
the (5, 7)8 convolutional code and solid lines the approximation for data and activity detection. The dash-dotted line is classical Gaussian
approximation.

Fig. 4 confirms the results of Corollary 4.4 for an activity rate α = 0.5. The curves are essentially
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equal (up to numerical error) and only differ in the point η0 = 0, which is not in the domain of the result.
The scaling of the system load cannot reproduce the value at the very first iteration since the detection is
done as if the system was uncoded. In fact, it is easy to see that the right limit of the scaling curve when
η(`−1) → 0 does not coincide with the value at η(`−1) = 0. The right limit is the fixed-point equation of a
data detector with scaled system load αβ:

η(0) =
1

1 + αβγ

(
1−

∫
e
−y2

2√
2π

tanh
(
η(0)γ −

√
η(0)γy

)
dy

) (20)

whereas the point Ψ(0) is given by the user-and-data detection curve with the prior probabilities {α/2, 1−
α, α/2}:

η(0) =
1

1 + βγ

(
α−

∫
e
−y2

2√
2π

α2 sinh(η(0)γ−y
√

η(0)γ)

α cosh(η0γ−y
√

η0γ)+(1−α)eη(0) γ
2

dy

) (21)

which in general yield different solutions.
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Fig. 4. Mapping function Ψ(η, β, α) with α = 0.5, at Eb/N0 = 6dB and β = 4.5. Solid lines represent density evolution for the (5, 7)8
convolutional code. Dash-dotted lines represent the approximation for data and activity detection under the same parameters, and the dashed
curve represents the approximation with α = 1.0 and β′ = 2.25.
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VI. CONCLUSIONS

Based on density evolution, we have characterized the large-system behavior of iterative multiuser joint
decoding when the number of active users is unknown. In particular, we have characterized the fixed-
point equations that yield the multiuser efficiency via the replica method. We have shown that under
the assumptions of density evolution, the system effectively performs perfect activity detection and is
hence equivalent to a system where the number of users is fixed and known, but with a scaled system
load. We have also discussed the corresponding Gaussian approximations and we have verified that these
approximations give very accurate characterizations of the overall behavior of the iterative multiuser joint
decoder.

APPENDIX I
PROOF OF PROPOSITION 4.1

The block error probability Pe is given by the product of L/2 + 1 errors in a single detection when no
data is transmitted. This is given by the expression

Pe = (2Q(
√

ηγ/2))L/2+1

where Q(.) is the Gaussian tail function that can be upper-bounded in the following form. The success
probability is then Ps = 1− Pe.

APPENDIX II
PROOF OF CLAIM 4.3

The proof lies on the so-called replica method, which is a common tool in statistical physics and has
been proved to be a powerful technique in detection analysis. We mainly follow the derivation of this
method in [10], which generalizes the pioneering study in [9]. In fact, the iterative decoding framework
described above requires a generalization of classic uncoded detection to the case of arbitrary and unequal
symbol prior probabilities, under the assumption that in the large-system limit, the empirical distribution
of these priors converges almost everywhere to some deterministic function (concentration). The proof
also extends the results for log-ratio prior probabilities in [5] to the case of arbitrary extrinsic message
probabilities (pext), whose distribution is in turn governed by a Bernoulli variable xα with mean equal to
the activity rate. In other words, we analyze the more general case where extrinsic probability distributions
are subjected to the presence of active users.

We start by analyzing an optimal generic multiuser detector. The receiver postulates an AWGN channel
with noise variance σ and prior probability pX , whereas the true noise variance is σ2

0 = 1 and the prior
probability is pX0 , without loss of generalization. The replica method consists of adding n input symbols
X1, . . . , Xn and corresponding postulated channels to the true one, whose input is X0.

By applying Varadhan’s lemma and assuming replica symmetry among the solutions of the resulting
optimization problem, the free energy can be expressed as

F = lim
n→0

∂

∂n

(
inf

{c,d,f,g}
sup

{r,p,m,q}
H(c, d, f, g, r, p,m, q)

)

= lim
n→0

∂

∂n

(
inf

{c,d,f,g}
sup

{r,p,m,q}

{
β−1Gn(r, p, m, q)− In(c, d, f, g)

})
(22)

where

Gn(r, p, m, q) =
1

2
log

(1 + β
σ2 (p− q))1−n

1 + β
σ2 (p− q) + n

σ2 (1 + β(r − 2m + q))
− n

2
log(2πσ2) (23)
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and

In(c, d, f, g) = rc + npg + 2nmd + n(n− 1)qf − lim
K→∞

1

K

K∑
k=1

log Λn
k(c, d, g, f) (24)

is the rate function computed by the Gärtner-Ellis theorem, where Λn
k(c, d, g, f) is the moment generating

function for user k of the random vector {XiXj : i = 0, . . . , n, 0 ≤ j ≤ i}, generated by the two-term
product of all replicas. In fact, note that it can be developed as:

Λn
k(c, d, g, f) = EX

[
exp

(
γkX

T QX
)]

(25)

= EX

[
exp

[
γk

(
2d

n∑
i=1

X0Xi + 2f
∑

1≤i<j≤n

XiXj + cX2
0 + g

n∑
i=1

X2
i

)]]
(26)

where Q is the matrix of parameters and the replicas X = (X0, . . . , Xn) are independent but in general
have different prior probabilities.

The overall computation of the free-energy is equivalent to a simple derivation of H over the symmetric
replicas at n = 0:

lim
n→0

∂H

∂(.)

Hence, we immediately obtain:

lim
n→0

∂H

∂r
= 0 ⇒ c = 0 (27)

lim
n→0

∂H

∂m
= 0 ⇒ d =

1

2[σ2 + β(p− q)]
(28)

lim
n→0

∂H

∂q
= 0 ⇒ f =

1 + β(r − 2m + q)

2(σ2 + β(p− q))
(29)

lim
n→0

∂H

∂p
= 0 ⇒ g = f − d (30)

The rest of parameters are found by derivation of the moment generating function (26) with respect to
c, d, f, g.

lim
n→0

∂H

∂(.)
= lim

n→0
lim

K→∞

1

K

K∑
k=1

∂ (log Λn
k(c, d, g, f))

∂(.)
= 0 (31)

By applying the law of large numbers to (31), we have

lim
n→0

∂H

∂c
= 0 ⇒ r = lim

n→0
Exα,pext,X,γ

[
X2

0γ exp
(
XT QX

)
Λn(c, d, g, f)

]

lim
n→0

∂H

∂g
= 0 ⇒ np = lim

n→0
Exα,pext,X,γ

[∑n
i=1 X2

i exp
(
XT QX

)
Λn(c, d, g, f)

]

lim
n→0

∂H

∂d
= 0 ⇒ 2nm = lim

n→0
Epα,pext,X,γ

[
2
∑n

i=1 X0Xi exp
(
XT QX

)
Λn(c, d, g, f)

]

lim
n→0

∂H

∂f
= 0 ⇒ n(n− 1)q = lim

n→0
Exα,pext,X,γ

[
2
∑

1≤i<j≤n XiXj exp
(
XT QX

)
Λn(c, d, g, f)

]
where Λn(c, d, g, f) = EX

[
exp

(
γXT QX

)]
and γ ∼ γk. We can further develop the above equations by

using the unit area property of the Gaussian density

et2 =

√
η

2π

∫
exp

[
−η

2
z2 +

√
2ηtz

]
dz, ∀t, η (32)
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which yields

Λn(c, d, g, f) = EX

[√
d2

fπ

∫
exp

[
−d2

f
(z −√γX0)

2 + cγX0

] n∏
i=1

EXi
[exp[2d

√
γXiz + (g − f)γX2

i ]|γ]dz

]
(33)

Notice that c = 0, and d = f − g, and (33) can be written as:

Λn(c, d, g, f) = EX

[√
η

2π

∫
exp

[
−η

2
(z −√γX0)

2
] n∏

i=1

EXi

[
exp

[
−ξ

2
− ξ

2
(z −√γXi)

]
|γ
]

dz

]
(34)

where η = 2d2/f and ξ = 2d are the multiuser efficiency of the original and postulated channel
respectively. Then, it is easy to see that:

lim
n→0

Λn(c, d, g, f) = 1 (35)

The parameter r can therefore be computed straightforwardly

lim
n→0

∂H

∂c
= 0 ⇒ r = lim

n→0
Exα,pext,X,γ

[
X2

0γ exp
(
XT QX

)
Λn(c, d, g, f)

]
= Exα,pext,X,γ[γX2

0 ] (36)

Note that for p, we have:

lim
n→0

∂H

∂g
= 0 ⇒ np = lim

n→0
Exα,pext,X,γ

[∑n
i=1 X2

i exp
(
XT QX

)
Λn(c, d, g, f)

]

= Exα,pext,γ

[
γ

n∑
i=1

(Pr(Xi = 1)− Pr(Xi = −1))|X

]

= n

(∑
xα

xαEpext|xα,γ[γ Pr(X = 1)|X, xα]− Epext|xα,γ[γ Pr(X = −1)|X, xα]

)
where pext|xα = {Pr(X = −1), Pr(X = 0), Pr(X = 1)|xα} are distributed as {Pr(Xi = −1), Pr(Xi =
0), Pr(Xi = 1)|xα}, ∀i ∈ {1, . . . , n}. Then:

p = lim
n→0

Exα,pext,X,γ[γX2] (37)

Similarly, we have:

lim
n→0

∂H

∂d
= 0 ⇒ 2nm = lim

n→0
Exα,pext,X,γ

[
2
∑n

i=1 X0Xi exp
(
XT QX

)
Λn(c, d, g, f)

]

= Exα,pext,X,γ

[
γ

√
η

2π

∫
exp

[
−η

2
(z −√γX0)

2
]
2

n∑
i=1

X0Xi

]

= Exα,pext,X,γ

2γX0

n∑
i=1

√
η

2π

∫
exp

[
−η

2
(z −√γX0)

2
] Xi

√
ξ
2π

∫
exp

[
− ξ

2
(z −√γXi)

]
EXi

[
√

ξ
2π

∫
exp

[
− ξ

2
(z −√γXi)

]
|γ]

dz


= Exα,pext,X,γ

[
2γX0

n∑
i=1

√
η

2π

∫
exp

[
−η

2
(z −√γX0)

2
]
X̂idz

]
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where f(z|Xi) =
√

ξ
2π

exp
[
− ξ

2
(z −√γXi)

]
is an auxiliary Gaussian channel and X̂i is the posterior

mean estimator of the replica Xi. Notice that the above expression can be expressed as an expectation
over the variables X, γ, Z:

2nm = 2Exα,pext,z,X0,γ

[
γX0

n∑
i=1

X̂i

]
= 2Exα,pext,z

[
n∑

i=1

X̂i

]
Exα,pext,z,X0,γ [γX0]

= 2nExα,pext,z

[
X̂
]

Epext,z,X0,γ [γX0] = 2nExα,pext,z,X0,γ

[
γX0X̂

]
⇒ m = Exα,pext,z,X0,γ

[
γX0X̂

]
where it is used that the expectation of all X̂i over pext|xα yields the same result. In fact, the random
variable X̂|xα has the same distribution of X̂i|xα, ∀i ∈ {1, . . . , n}. Similarly,

q = Exα,pext,z,X,γ

[
γX̂2

]
(38)

By simple combination between the replicas, it is easy to see that:

r − 2m + q = = Exα,pext,z,X,γ

[
γ
(
X0 − X̂

)2
]

p− q = Exα,pext,z,X,γ

[
γ
(
X − X̂

)2
]

which in turn leads to the fixed-point equations

η−1 = 1 + βExα,pext,z,X,γ

[
γ
(
X0 − X̂

)2
]

ξ−1 = σ2 + βExα,pext,z,X,γ

[
γ
(
X − X̂

)2
]

using (27)-(30) and the definition of (η, ξ).
For the case of interest here, i.e., individually optimum detection, the postulated noise variance σ2

coincides with the true variance σ0 = 1 so that the replica solution η = ξ is chosen, and the fixed-point
equation is reduced to:

η−1 = 1 + βExα,pext,z,X,γ

[
γ
(
X − X̂

)2
]

(39)

Since pext depends on the state of the channel in the previous iteration, we can express the result
recursively in the following manner:

η(`) =

(
1 + βExα,pext,z,X,γ

[
γ
(
X − X̂

)2
])−1

(40)

where the MMSE estimate can be expressed as X̂ = X̂(η(`−1), η(`), γ).

APPENDIX III
PROOF OF COROLLARY 4.4

As seen in proposition 4.1, the extrinsic probabilities converge with probability 1 to:

(pext|xα = 0) = (p(−1), p0, p1) → (0, 1, 0) (41)

regardless of the positive value of SNR. Hence, the fixed-point equation can be simplified by noticing
that:
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Exα,pext,z,X,γ

[
γ
(
X − X̂

)2
]

=αEpext,z,X,γ|xα=1

[
γ
(
X − X̂

)2
]

+ (1− α)Epext,z,X,γ|xα=0

[
γ
(
X − X̂

)2
]

(42)

where the last term tends to zero due to the deterministic probabilities (41). Assuming that the SNR is
constant among users, we finally have:

η(`) =

(
1 + βαγE(pext|xα=1),z,X

[
γ
(
X − X̂

)2
])−1

=

(
1 + βαγ

(
1− Epext|xα=1,z,X

[
γX̂2

]))−1

(43)

where X̂ = X̂(η(`−1), η(`), γ).

APPENDIX IV
PROOF OF COROLLARY 4.5

We use here the aforementioned Gaussian approximation of the probability messages, that states that
when there is an active user (xα = 1, with probability α), the virtual channel at the SISO decoder can
be approximated by the distribution δ ∼ N (0, 1/(µ(γη`−1))). Hence, the extrinsic probabilities can be
computed as APP’s of this virtual channel:

(pext|xα = 1) = (p(−1), p0, p1) =
1

Z(y)
√

2π

(
α

2
e

(y−
√

µ(ηγ))2

2 , (1− α)e−
y2

2 ,
α

2
e−

(y+
√

µ(ηγ))2

2

)
(44)

where Z(y) is the p.d.f. of the variable y.
Further development of (15) yields:

Ey,z,X [X̂2] = Ey,X


∫ (

1
2π

[
e
− 1

2

“
(z−√ηγ)2−(y−

√
µ(ηγ))2

”
− e

− 1
2

“
(z+

√
ηγ)2−(y+

√
µ(ηγ))2

”])2

1
2π

(
e
− 1

2

“
(z−√ηγ)2−(y−

√
µ(ηγ))2

”
+ e

− 1
2

“
(z+

√
ηγ)2−(y+

√
µ(ηγ))2

”)


=

∫
R2

1

2π
e−

(y2+z2)
2 tanh

(
η(`)γ + µ(η(`−1)γ)−

√
η(`)γy −

√
µ(η(`−1)γ)z

)
dydz

which is the claimed result.

APPENDIX V
PROOF OF PROPOSITION 4.6

The MMSE for the iterative multiuser detector with Gaussian approximation can be written in the
following form:

MMSE = 1− 1

2π

∫
R2

e−
y2+z2

2 tanh (µ + γ −√µz −√γy) dydz

Here, we make the change of variable y′ = −y +
√

γ +
µ−√µz
√

γ
and we obtain:

MMSE = 1− 1

2π

∫
e−

z2

2

∫
e−

„
y′−√γ−µ−√µz√

γ

«2

2 tanh (
√

γy′) dy′dz
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We use now the asymptotic expansion tanh(z) = sgn(z)
(
1 +

∑∞
`=1(−1)`e−2`|z|) for large z. Hence in

the case of the argument z = γy′, the expression turns out to be:

lim
γ→∞

MMSE = 1− 1√
2π

∫
e−

z2

2

∫ 0

−∞
−e−

„
y′−√γ−µ−√µz√

γ

«2

2 dy′ +

∫ ∞

0

e−

„
y′−√γ−µ−√µz√

γ

«2

2 dy′

 dz

= 1− 1√
2π

∫
e−

z2

2

 1√
2π

∫ 0

−∞
−e−

„
y′−√γ−µ−√µz√

γ

«2

2 dy +
1√
2π

∫ ∞

0

e−

„
y′−√γ−µ−√µz√

γ

«2

2 dy′

 dz

We make the change of variables t = y′−√γ − µ−√µz
√

γ
and t′ = −

(
y′ −√γ − µ−√µz

√
γ

)
, and using the Q

function, and the relationship Q(−x) = 1−Q(x) we obtain:

lim
γ→∞

MMSE =
1√
2π

∫
e−

z2

2 2Q

(
√

γ +
µ−√µz
√

γ

)
dz

We use now the asymptotic expansion of the Q function:

Q(x) =
e−x2/2

√
2πx

(
1 +

∞∑
`=1

(−1)`

∏`
q=1(2q − 1)

x2`

)
(45)

and express the MMSE as:

lim
γ→∞

MMSE =
2

2π

∫
e−

z2

2
e−

„
√

γ+
µ−√µz√

γ

«2

2

√
γ +

µ−√µz
√

γ

dz

lim
γ→∞

MMSE =
2e−

γ
2
−µ−µ2

2γ

2π

∫
e−

z2

2
e
(1+ µ√

γ
)
√

µz−µz2

2γ

√
γ +

µ−√µz
√

γ

dz

After some manipulation we have:

lim
γ→∞

MMSE =
2e−

γ
2
−µ−µ2

2γ

2π

∫
e
− 1

2

“
(µ

γ
+1)z2−2(1+ µ√

γ
)
√

µz
”

√
γ +

µ−√µz
√

γ

dz

For convenience, we convert the expression into the following one:

lim
γ→∞

MMSE =
2e

− γ
2
−µ−µ2

2γ
+

(1+
µ√
γ

)
√

µ

2(1+
µ
γ )

2π

∫
e
− 1

2

 
(1+µ

γ )z−
(1+

µ√
γ

)
√

µ

1+
µ
γ

!2

√
γ +

µ−√µz
√

γ

dz

We make now the change of variable t = (1 + µ
γ
)z −

(1+ µ√
γ
)
√

µ

1+µ
γ

, and then:

lim
γ→∞

MMSE =
2e

− γ
2
−µ−µ2

2γ
+

(1+
µ√
γ

)
√

µ

2(1+
µ
γ )

2π

∫
e−

t2

2

√
γ +

µ−√µ

0@ t

(1+
µ
γ )

+
(1+

µ√
γ

)
√

µ

(1+
µ
γ )

2

1A
√

γ

dt
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Using the Saddle-point approximation of the integral and taking the value of the integrand in t = 0 for
large SNR, we find that:

lim
γ→∞

MMSE =
2e

− γ
2
−µ−µ2

2γ
+

(1+
µ√
γ

)
√

µ

2(1+
µ
γ )

√
2π

√γ +

µ−√µ
(1+

µ√
γ

)
√

µ

(1+
µ
γ )

2

√
γ


Finally,

lim
γ→∞

MMSE =

√
2

π

e
− γ

2
−µ−κ2

1
2

+
(1+κ1)

√
µ

2(1+κ2)

√
γ + κ1

(
1− (1+κ1)

(1+κ2)2

)
where κ1 = µ(ηγ)√

ηγ
and κ2 = µ(ηγ)

ηγ
.
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