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Mismatched Multi-Letter Successive Decoding
for the Multiple-Access Channel
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Abstract— This paper studies channel coding for the discrete
memoryless multiple-access channel with a given (possibly
suboptimal) decoding rule. A multi-letter successive decoding
rule depending on an arbitrary non-negative decoding metric is
considered, and achievable rate regions and error exponents are
derived both for the standard MAC (independent codebooks),
and for the cognitive MAC (one user knows both messages)
with superposition coding. In the cognitive case, the rate region
and error exponent are shown to be tight with respect to the
ensemble average. The rate regions are compared with those of
the commonly considered decoder that chooses the message pair
maximizing the decoding metric, and numerical examples are
given for which successive decoding yields a strictly higher sum
rate for a given pair of input distributions.

Index Terms— Mismatched decoding, multiple-access channel,
successive decoding, channel capacity, error exponents.

I. INTRODUCTION

THE mismatched decoding problem [1]–[3] seeks to char-
acterize the performance of channel coding when the

decoding rule is fixed and possibly suboptimal (e.g., due to
channel uncertainty or implementation constraints). Extensions
of this problem to multiuser settings are not only of interest
in their own right, but can also provide valuable insight into
the single-user setting [3]–[5]. In particular, significant atten-
tion has been paid to the mismatched multiple-access chan-
nel (MAC), described as follows. User ν = 1, 2 transmits a
codeword xν from a codebook Cν = {x(1)

ν , · · · , x(Mν)
ν }, and the

output sequence y is generated according to W n(y|x1, x2) �
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∏n
i=1 W (yi |x1,i , x2,i ) for some transition law W (y|x1, x2).

The mismatched decoder estimates the message pair as

(m̂1, m̂2) = arg max
(i, j )

qn(x(i)
1 , x( j )

2 , y), (1)

where qn(x1, x2, y) �
∏n

i=1 q(x1,i , x2,i , yi ) for some
non-negative decoding metric q(x1, x2, y). The metric
q(x1, x2, y) = W (y|x1, x2) corresponds to optimal maximum-
likelihood (ML) decoding, whereas the introduction of mis-
match can significantly increase the error probability and
lead to smaller achievable rate regions [1], [3]. Even in the
single-user case, characterizing the capacity with mismatch is
a long-standing open problem.

Given that the decoder only knows the metric
qn(x(i)

1 , x( j )
2 , y) corresponding to each codeword pair,

one may question whether there exists a decoding rule
that provides better performance than the maximum-metric
rule in (1), and that is well-motivated from a practical
perspective. The second of these requirements is not
redundant; for instance, if the values {log q(x1, x2, y)} are
rationally independent (i.e., no values can be written as
linear combinations of the others with rational coefficients),
then one could consider a highly artificial and impractical
decoder that uses these values to infer the joint empirical
distribution of (x1, x2, y), and in turn uses that to implement
the maximum-likelihood (ML) rule. While such a decoder is

a function of {qn(x(i)
1 , x( j )

2 , y)}i, j and clearly outperforms the
maximum-metric rule, it does not bear any practical interest.

There are a variety of well-motivated decoding rules that
are of interest beyond maximum-metric, including threshold
decoding [6], [7], likelihood decoding [8], [9], and successive
decoding [10], [11]. In this paper, we focus on the latter, and
consider the following two-step decoding rule:

m̂1 = arg max
i

∑

j

qn(x(i)
1 , x( j )

2 , y), (2)

m̂2 = arg max
j

qn(x(m̂1)
1 , x( j )

2 , y). (3)

The study of this decoder is of interest for several reasons:
• The decoder depends on the exact same quantities as the

maximum-metric decoder (1) (namely, qn(x(i)
1 , x( j )

2 , y)
for each (i, j)), meaning a comparison of the two rules is
in a sense fair. We will see the successive rule can some-
times achieve random-coding rates that are not achieved
by the maximum-metric rule, which is the first result of
this kind for the mismatched MAC.
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• The first decoding step (2) can be considered a mis-
matched version of the optimal decoding rule for
(one user of) the interference channel. Hence, as well as
giving an achievable rate region for the MAC with mis-
matched successive decoding, our results directly quantify
the loss due to mismatch for the interference channel.

• More broadly, successive decoding is of significant practi-
cal interest for multiple-access scenarios, since it permits
the use of single-user codes, as well as linear decoding
complexity in the number of users [11]. While the specific
successive decoder that we consider does not enjoy these
practical benefits, it may still serve as an interesting point
of comparison for such variants.

The rule in (2) is multi-letter, in the sense that the objective
function does not factorize into a product of n symbols on
(X1,Y). Single-letter successive decoders [10, Sec. 4.5.1]
could also potentially be studied from a mismatched decoding
perspective by introducing a second decoding metric q2(x1, y),
but we focus on the above rule depending only on a single
metric q(x1, x2, y).

Under the above definitions of W , q , W n and qn , and
assuming the corresponding alphabets X1, X2 and Y to be
finite, we consider two distinct classes of MACs:

1) For the standard MAC [3], encoder ν = 1, 2 takes as
input mν equiprobable on {1, · · · , Mν }, and transmits
the corresponding codeword x(mν)

ν from a codebook Cν .
2) For the cognitive MAC [4] (or MAC with degraded

message sets [10, Example 5.18]), the messages mν are
still equiprobable on {1, · · · , Mν }, but user 2 has access
to both messages, while user 1 only knows m1. Thus,
C1 contains codewords indexed as x(i)

1 , and C2 contains
codewords indexed as x(i, j )

2 .
For each of these, we say that a rate pair (R1, R2) is achievable
if, for all δ > 0, there exist sequences of codebooks C1,n and
C2,n with M1 ≥ en(R1−δ) and M2 ≥ en(R2−δ) respectively, such
that the error probability

pe � P[(m̂1, m̂2) �= (m1, m2)] (4)

tends to zero under the decoding rule described by (2)–(3).
Our results will not depend on the method for breaking ties,
so for concreteness, we assume that ties are broken as errors.

For fixed rates R1 and R2, an error exponent E(R1, R2) is
said to be achievable if there exists a sequence of codebooks
C1,n and C2,n with M1 ≥ exp(n R1) and M2 ≥ exp(n R2)
codewords of length n such that

lim inf
n→∞ − 1

n
log pe ≥ E(R1, R2). (5)

Letting Eν � {m̂ν �= mν} for ν = 1, 2, we observe that if
q(x1, x2, y) = W (y|x1, x2), then (2) is the decision rule that
minimizes P[E1]. Using this observation, we show in Appen-
dix A that the successive decoder with q = W is guaranteed
to achieve the same rate region and error exponent as that of
optimal non-successive maximum-likelihood decoding.

A. Previous Work and Contributions

The vast majority of previous works on mismatched decod-
ing have focused on achievability results via random coding,

and the only general converse results are written in terms
of non-computable information-spectrum type quantities [7].
For the point-to-point setting with mismatch, the asymp-
totics of random codes with independent codewords are
well-understood for the i.i.d. [12], constant-composition [1],
[13]–[15] and cost-constrained [2], [16] ensembles. Dual
expressions and continuous alphabets were studied in [2].

The mismatched MAC was introduced by Lapidoth [3], who
showed that (R1, R2) is achievable provided that

R1 ≤ min
P̃X1 X2Y : P̃X1=Q1, P̃X2Y =PX2Y ,

EP̃ [log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )]

IP̃ (X1; X2, Y ),

(6)

R2 ≤ min
P̃X1 X2Y : P̃X2=Q2, P̃X1Y =PX1Y ,

EP̃ [log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )]

IP̃ (X2; X1, Y ),

(7)

R1 + R2 ≤ min
P̃X1 X2Y : P̃X1=Q1, P̃X2=Q2, P̃Y =PY

EP̃ [log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )],
IP̃ (X1;Y )≤R1, IP̃ (X2;Y )≤R2

D(P̃X1 X2Y �Q1 × Q2 × P̃Y ), (8)

where Q1 and Q2 are arbitrary input distributions, and
PX1 X2Y � Q1 × Q2 × W . The corresponding ensemble-
tight error exponent was given by the present authors in [5],
along with equivalent dual expressions and generalizations to
continuous alphabets. Error exponents were also presented
for the MAC with general decoding rules in [17], but the
results therein are primarily targeted to optimal or universal
metrics; in particular, when applied to the mismatched setting,
the exponents are not ensemble-tight.

The mismatched cognitive MAC was introduced by
Somekh-Baruch [4], who used superposition coding to show
that (R1, R2) is achievable provided that

R2 ≤ min
P̃X1 X2Y : P̃X1 X2 =Q X1 X2 , P̃X1Y =PX1Y ,

EP̃ [log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )]

IP̃ (X2; Y |X1),

(9)

R1+ R2 ≤ min
P̃X1 X2Y : P̃X1 X2=Q X1 X2 , P̃Y =PY ,

EP̃ [log q(X1,X2,Y )]≥EP [log q(X1,X2,Y )],
IP̃ (X1,;Y )≤R1

IP̃ (X1, X2; Y ),

(10)

where QX1 X2 is an arbitrary joint input distribution, and
PX1 X2Y � QX1 X2 × W . The ensemble-tight error exponent
was also given therein. Various forms of superposition coding
were also studied by Scarlett et al. [5], but with a focus on
the single-user channel rather than the cognitive MAC.

Both of the above regions are known to be tight with respect
to the ensemble average for constant-composition random
coding, meaning that any looseness is due to the random-
coding ensemble itself, rather than the bounding techniques
used in the analysis [3], [4]. This notion of tightness was first
explored in the single-user setting in [15]. We also note that
the above regions lead to improved achievability bounds for
the single-user setting [3], [4].
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The main contributions of this paper are achievable rate
regions for both the standard MAC (Section II-A) and cogni-
tive MAC (Section II-B) under the successive decoding rule
in (2)–(3). For the cognitive case, we also provide an ensemble
tightness result. Both regions are numerically compared to
their counterparts for maximum-metric decoding, and in each
case, it is observed that the successive rule can provide a
strictly higher sum rate, though neither the successive nor
maximum-metric region is included in the other in general.

A by-product of our analysis is achievable error exponents
corresponding to the rate regions. Our exponent for the stan-
dard MAC is related to that of Etkin et al. [18] for the
interference channel, as both use parallel coding. Similarly, our
exponent for the cognitive MAC is related to that of Kaspi and
Merhav [19], since both use superposition coding. Like these
works, we make use of type class enumerators; however, a key
difference is that we avoid applying a Gallager-type bound in
the initial step, and we instead proceed immediately with type-
based methods.

In a work that developed independently of ours, the interfer-
ence channel perspective was pursued in depth in the matched
case in [20], with a focus on error exponents. The error
exponent of [20] is similar to that derived in the present paper,
but also contains an extra maximization term that, at least in
principle, could improve the exponent. Currently, no examples
are known where such an improvement is obtained. Moreover,
while the analysis techniques of [20] extend to the mismatched
case, doing so leads to the same achievable rate region as ours;
the only potential improvement is in the exponent. Finally,
we note that while our focus is solely on codebooks with
independent codewords, error exponents were also given for
the Han-Kobayashi construction in [20].

Another line of related work studied the achievable rates
of polar coding with mismatch [21]–[24], using a compu-
tationally efficient successive decoding rule. A single-letter
achievable rate was given, and it was shown that for a
given mismatched transition law (i.e., a conditional probability
distribution incorrectly used as if it were the true channel),
this decoder can sometimes outperform the maximum-metric
decoder. As mentioned above, we make analogous observa-
tions in the present paper, albeit for a multiple-access scenario
with a very different type of successive decoding.

B. Notation

Bold symbols are used for vectors (e.g., x), and the cor-
responding i -th entry is written using a subscript (e.g., xi ).
Subscripts are used to denote the distributions corresponding
to expectations and mutual information quantities (e.g., EP [·],
IP (X; Y )). The marginals of a joint distribution PXY are
denoted by PX and PY . We write PX = P̃X to denote element-
wise equality between two probability distributions on the
same alphabet. The set of all sequences of length n with
a given empirical distribution PX (i.e., type [25, Ch. 2]) is
denoted by T n(PX ), and similarly for joint types. We write
f (n)

.= g(n) if limn→∞ 1
n log f (n)

g(n) = 0, and similarly
for ≤̇ and ≥̇. We write [α]+ = max(0, α), and denote the
indicator function by 1{·}

II. MAIN RESULTS

A. Standard MAC

Before presenting our main result for the standard MAC,
we state the random-coding distribution that is used in its
proof. For ν = 1, 2, we fix an input distribution Qν ∈ P(Xν),
and let Qν,n be a type with the same support as Qν such that
maxxν |Qν,n(xν) − Qν(xν)| ≤ 1

n . We set

PXν (xν) = 1

|T n(Qν,n)|1
{

xν ∈ T n(Qν,n)
}
, (11)

and consider codewords {X (i)
ν }Mν

i=1 that are independently
distributed according to PXν . Thus,

(
{X(i)

1 }M1
i=1, {X( j )

2 }M2
i=1

)
∼

M1∏

i=1

PX1(x(i)
1 )

M2∏

j=1

PX2(x( j )
2 ). (12)

Our achievable rate region is written in terms of the
following functions:

F(P̃X1 X2Y , P̃ 

X1 X2Y , R2)

� max
{
EP̃ [log q(X1, X2, Y )],

EP̃ 
 [log q(X1, X2, Y )] + [
R2 − IP̃ 
(X2; X1, Y )

]+}
, (13)

F(PX1 X2Y , R2)

� max

{

EP [log q(X1, X2, Y )], max
P 


X1 X2Y ∈T 

1 (PX1 X2Y ,R2)

EP 
 [log q(X1, X2, Y )] + R2 − IP 
 (X2; X1, Y )

}

, (14)

where

T 

1 (PX1 X2Y , R2) �

{
P 


X1 X2Y : P 

X1Y = PX1Y ,

P 

X2

= PX2 , IP 
 (X2; X1, Y ) ≤ R2

}
. (15)

We will see in our analysis that PX1 X2Y corresponds to
the joint type of the transmitted codewords and the output
sequence, and P̃X1 X2Y corresponds to the joint type of some
incorrect codeword of user 1, the transmitted codeword of
user 2, and the output sequence. Moreover, P 


X1 X2Y and
P̃ 


X1 X2Y similarly correspond to joint types, the difference
being that the X2 marginal is associated with exponentially
many sequences in the summation in (2).

Theorem 1: For any input distributions Q1 and Q2,
the pair (R1, R2) is achievable for the standard MAC with
the mismatched successive decoding rule in (2)–(3) provided
that

R1 ≤ min
( P̃X1 X2Y , P̃ 


X1 X2Y )∈T1(Q1×Q2×W,R2)
IP̃ (X1; X2, Y )

+ [
IP̃ 
(X2; X1, Y ) − R2

]+
, (16)

R2 ≤ min
P̃X1 X2Y ∈T2(Q1×Q2×W )

IP̃ (X2; X1, Y ), (17)
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where

T1(PX1 X2Y , R2)

�
{
(P̃X1 X2Y , P̃ 


X1 X2Y ) : P̃X2Y = PX2Y ,

P̃X1 = PX1, P̃ 

X1Y = P̃X1Y , P̃ 


X2
= PX2 ,

F(P̃X1 X2Y , P̃ 

X1 X2Y , R2) ≥ F(PX1 X2Y , R2)

}
, (18)

T2(PX1 X2Y )

�
{

P̃X1 X2Y : P̃X2 = PX2, P̃X1Y = PX1Y ,

EP̃ [log q(X1, X2, Y )] ≥ EP [log q(X1, X2, Y )]
}
. (19)

Proof: See Section III. �
Although the minimization in (16) is a non-convex opti-

mization problem, it can be cast in terms of convex optimiza-
tion problems, thus facilitating its computation. The details are
provided in Appendix B.

While our focus is on achievable rates, the proof of
Theorem 1 also provides error exponents. The exponent
corresponding to (17) is precisely that corresponding to
the error event for user 2 with maximum-metric decoding
in [5, Sec. III], and the exponent corresponding to (16) is
given by

min
PX1 X2Y : PX1=Q1,PX2=Q2

D(PX1 X2Y �Q1 × Q2 × W )

+ [
Ĩ1(PX1 X2Y , R2) − R1

]+
, (20)

where Ĩ1(PX1 X2Y , R2) denotes the right-hand side of (16) with
an arbitrary distribution PX1 X2Y in place of Q1 × Q2 × W .
As discussed in Section I-A, this exponent is closely related
to a parallel work on the error exponent of the interference
channel [20].

Numerical Example: We consider the MAC with X1 =
X2 = {0, 1}, Y = {0, 1, 2}, and

W (y|x1, x2) =
{

1 − 2δx1x2 y = x1 + x2

δx1x2 otherwise,
(21)

where {δx1x2} are constants. The mismatched decoder uses
q(x1, x2, y) of a similar form, but with a fixed value δ ∈ (

0, 1
3

)

in place of {δx1x2}. All such choices of δ are equivalent for
maximum-metric decoding, but not for successive decoding.

We set δ00 = 0.01, δ01 = 0.1, δ10 = 0.01, δ11 = 0.3,
δ = 0.15, and Q1 = Q2 = (0.5, 0.5). Figure 1
plots the achievable rates regions of successive decoding
(Theorem 1), maximum-metric decoding ((6)–(8)), and
matched decoding (giving the same region for successive and
maximum-metric).

Interestingly, neither of the mismatched rate regions is
included in the other, thus suggesting that the two decoding
rules are fundamentally different. For the given input dis-
tribution, the sum rate for successive decoding exceeds that
of maximum-metric decoding. Furthermore, upon taking the
convex hull (which is justified by a time sharing argument),
the region for successive decoding is strictly larger. While we
observed similar behaviors for other choices of Q1 and Q2,
it remains unclear as to whether this is always the case.

Furthermore, while the rate region for maximum-metric decod-
ing is ensemble-tight, it is unclear whether the same is true of
the region given in Theorem 1.

To gain insight into the shape of the achievable rate region
for successive decoding, it is instructive to consider the various
parts of the region. When doing so, the reader may wish to
note that the condition in (16) can equivalently be expressed
as three related conditions holding simultaneously; see Appen-
dix B, leading to the conditions (131), (133), and (134).
We have the following:

• The horizontal line at R2 ≈ 0.54 corresponds to the
requirement on R2 in (17), which is identical to the
condition in (7) for maximum-metric decoding.

• The vertical line at R1 ≈ 0.45 also coincides with a
condition for maximum-metric decoding, namely, (6).
It is unsurprising that the two rate regions coincide at
R2 = 0, since if user 2 only has one message then the
two decoding rules are identical. For small but positive
R2, the rate region boundaries still coincide even though
the decoding rules differ, and the successive decoding
curve is dominated by condition (134) in Appendix B.

• The straight diagonal part of the achievable rate
region also matches that of maximum-metric decoding.
In this case, the successive decoding curve is dom-
inated by condition (133) in Appendix B; the term
max{0, IP̃ 
(X2; X1, Y )− R2} expressed by the [·]+ func-
tion is dominated by IP̃ 
 (X2; X1, Y )− R2, and the overall
condition becomes a sum-rate bound, i.e., an upper bound
on R1 + R2.

• In the remaining part of the curve, as R1 decreases,
the rate region boundary bends downwards, and then
becomes vertical. In this part, the successive decoding
curve is dominated by (131) in Appendix B, with R2
being large enough for the term max{0, IP̃ 
(X2; X1,
Y )−R2} to equal zero. The step-like behavior at R1 ≈ 0.1
corresponds to a change in the dominant term of F
(see (14)); in the non-vertical part, the dominant term is
EP̃ [log q(X1, X2, Y )], whereas in the vertical part, R2 is
large enough for the other term to dominate.

It is worth noting that under optimal decoding for the inter-
ference channel (taking the form (2)), it is known that for R1
below a certain threshold, R2 can be arbitrarily large while still
ensuring that user 1’s message is estimated correctly [18]. This
is in analogy with the step-like behavior in Figure 1.

Finally, we note that the mismatched maximum-metric
decoding region also has a non-pentagonal and non-convex
shape (see the zoomed part of Figure 1), though its deviation
from the usual pentagonal shape is milder than the successive
decoder in this example.

B. Cognitive MAC

In this section, we consider the analog of Theorem 1 for
the cognitive MAC. Besides being of interest in its own
right, this will provide a case where ensemble-tightness can
be established, and with the numerical results still exhibiting
similar phenomena to those shown in Figure 1.

We again begin by introducing the random coding ensemble.
We fix a joint distribution QX1 X2 ∈ P(X1 ×X2), let QX1 X2,n
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Fig. 1. Achievable rate regions for the standard MAC given in (21) with
mismatched successive decoding and mismatched maximum-metric decoding.

be the corresponding closest joint type in the same way as
the previous subsection, and write the resulting marginals
as QX1 , QX1,n , QX2|X1 , QX2|X1,n , and so on. We consider
superposition coding, treating user 1’s messages as the “cloud
centers”, and user 2’s messages as the “satellite codewords”.
More precisely, defining

PX1(x1) = 1

|T n(QX1,n)|1
{

x1 ∈ T n(QX1,n)
}
, (22)

PX2|X1(x2|x1) = 1

|T n
x1

(QX2|X1,n)|
1
{

x2 ∈ T n
x1

(QX2|X1,n)
}
,

(23)

the codewords are distributed as follows:

{(
X(i)

1 , {X(i, j )
2 }M2

j=1

)}M1

i=1

∼
M1∏

i=1

(

PX1(x(i)
1 )

M2∏

j=1

PX2|X1(x(i, j )
2 |x(i)

1 )

)

. (24)

For the remaining definitions, we use similar notation to
the standard MAC, with an additional subscript to avoid
confusion. The analogous quantities to (13)–(15) are

Fc(P̃ 

X1 X2Y , R2)

� EP̃ 
 [log q(X1, X2, Y )] + [
R2 − IP̃ 
(X2; Y |X1)

]+
, (25)

Fc(PX1 X2Y , R2) � max

{

EP [log q(X1, X2, Y )],
max

P 

X1 X2Y ∈T 


1c(PX1 X2Y ,R2)
EP 
 [log q(X1, X2, Y )]

+ R2 − IP 
 (X2; Y |X1)

}

, (26)

where

T 

1c(PX1 X2Y , R2) �

{
P 


X1 X2Y : P 

X1Y = PX1Y ,

P 

X1 X2

= PX1 X2, IP 
 (X2; Y |X1) ≤ R2

}
.

(27)

Our main result for the cognitive MAC is as follows.
Theorem 2: For any input distribution QX1 X2 , the pair

(R1, R2) is achievable for the cognitive MAC with the mis-
matched successive decoding rule in (2)–(3) provided that

R1 ≤ min
P̃ 


X1 X2Y ∈T1c(Q X1 X2 ×W,R2)
IP̃ 
(X1; Y )

+ [
IP̃ 
(X2; Y |X1) − R2

]+
, (28)

R2 ≤ min
P̃X1 X2Y ∈T2c(Q X1 X2×W )

IP̃ (X2; Y |X1), (29)

where

T1c(PX1 X2Y , R2)

�
{

P̃ 

X1 X2Y : P 


X1 X2
= PX1 X2 ,

P̃ 

Y = PY , Fc(P̃ 


X1 X2Y , R2) ≥ Fc(PX1 X2Y , R2)
}
, (30)

T2c(PX1 X2Y )

�
{

P̃X1 X2Y : P̃X1 X2 = PX1 X2, P̃X1Y = PX1Y ,

EP̃ [log q(X1, X2, Y )] ≥ EP [log q(X1, X2, Y )]
}
. (31)

Conversely, for any rate pair (R1, R2) failing to meet both
of (28)–(29), the random-coding error probability resulting
from (22)–(24) tends to one as n → ∞.

Proof: See Section IV. �
In Appendix B, we cast (28) in terms of convex optimization

problems. Similarly to the previous subsection, the expo-
nent corresponding to (29) is precisely that corresponding to
the second user in [4, Thm. 1], and the exponent corresponding
to (28) is given by

min
PX1 X2Y : PX1 X2=Q X1 X2

D(PX1 X2Y �QX1 X2 × W )

+ [
I0c(PX1 X2Y , R2) − R1

]+
, (32)

where I0c(PX1 X2Y , R2) denotes the right-hand side of (28)
with an arbitrary distribution PX1 X2Y in place of QX1 X2 × W .
Similarly to the rate region, the proof of Theorem 2 shows that
these exponents are tight with respect to the ensemble aver-
age (sometimes called exact random-coding exponents [26]).

Numerical Example: We consider again consider the tran-
sition law (and the corresponding decoding metric with a
single value of δ) given in (21) with δ00 = 0.01, δ01 = 0.1,
δ10 = 0.01, δ11 = 0.3, δ = 0.15, and QX1 X2 = Q1 × Q2
with Q1 = Q2 = (0.5, 0.5). Figure 2 plots the achievable
rates regions of successive decoding (Theorem 2), maximum-
metric decoding ((9)–(10)), and matched decoding (again
yielding the same region whether successive or maximum-
metric, cf. Appendix A).

We see that the behavior of the decoders is analogous to the
non-cognitive case observed in Figure 1. The key difference
here is that we know that all three regions are tight with respect
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Fig. 2. Achievable rate regions for the cognitive MAC given in (21) with
mismatched successive decoding and mismatched maximum-metric decoding.

to the ensemble average. Thus, we may conclude that the
somewhat unusual shape of the region for successive decoding
is not merely an artifact of our analysis, but it is indeed
inherent to the random-coding ensemble and the decoder.

III. PROOF OF THEOREM 1

The proof of Theorem 1 is based on the method of type
class enumeration (e.g. see [18], [26], [27]), and is perhaps
most similar to that of Somekh-Baruch and Merhav [26].

Step 1 (Initial Bound): We assume without loss of generality
that m1 = m2 = 1, and we write Xν = X (1)

ν and let Xν denote
an arbitrary codeword X( j )

ν with j �= 1. Thus,

(X1, X2, Y , X1, X2) ∼ PX1(x1)PX2(x2)

×W n(y|x1, x2)PX1(x1)PX2(x2). (33)

We define the following error events:

(Type 1)
∑

j

qn(X(i)
1 , X( j )

2 , Y ) ≥
∑

j

qn(X1, X ( j )
2 , Y )

for some i �= 1;

(Type 2) qn(X1, X ( j )
2 , Y ) ≥ qn(X1, X2, Y )

for some j �= 1.

Denoting the probabilities of these events by pe,1 and pe,2
respectively, it follows that the overall random-coding error
probability pe is upper bounded by pe,1 + pe,2.

The analysis of the type-2 error event is precisely that of one
of the three error types for maximum-metric decoding [3], [5],
yielding the rate condition in (17). We thus focus on the type-1
event. We let pe,1(x1, x2, y) denote the probability of the
type-1 event conditioned on (X(1)

1 , X (1)
2 , Y) = (x1, x2, y), and

we denote the joint type of (x1, x2, y) by PX1 X2Y . We write
the objective function in (2) as

�x2 y(x1) � qn(x1, x2, y) +
∑

j �=1

qn(x1, X( j )
2 , y). (34)

This quantity is random due to the randomness of {X( j )
2 }. The

starting point of our analysis is the union bound:
pe,1(x1, x2, y) ≤ (M1 − 1)P

[
�x2 y(X1) ≥ �x2 y(x1)

]
. (35)

The difficulty in analyzing (35) is that for two different
codewords x1 and x1, �x2 y(x1) and �x2 y(x1) are not inde-
pendent, and their joint statistics are complicated. We will
circumvent this issue by conditioning on high probability
events under which these random quantities can be bounded
by deterministic values.

Step 2 (An Auxiliary Lemma): We introduce some addi-
tional notation. For a given realization (x1, x2, y) of
(X1, X2, Y), we let P̃X1 X2Y denote its joint type and we
write qn(P̃ 


X1 X2Y ) � qn(x1, x2, y). In addition, for a general
sequence x1, we define the type enumerator

Nx1 y(P̃ 

X1 X2Y ) =

∑

j �=1

1
{
(x1, X ( j )

2 , y) ∈ T n(P̃ 

X1 X2Y )

}
, (36)

which represents the random number of X( j )
2 ( j �= 1) such

that (x1, X ( j )
2 , y) ∈ T n(P̃ 


X1 X2Y ). As we will see below, when
X1 = x1, the quantity �x2 y(x1) can be re-written in terms
of Nx1 y(·), and �x2 y(x1) can similarly be re-written in terms
of Nx1 y(·).

The key to replacing random quantities by deterministic
ones is to condition on events that hold with probability
one approaching faster than exponentially, thus not affecting
the exponential behavior of interest. The following lemma
will be used for this purpose, characterizing the behavior of
Nx1 y(P̃ 


X1 X2Y ) for various choices of R2 and P̃ 

X1 X2Y . The

proof can be found in [18] and [26] and is based on the fact
that

P
[
(x1, X2, y) ∈ T n(P̃ 


X1 X2Y )
] .= e−nIP̃
 (X2;X1,Y ), (37)

which is a standard property of types [25, Ch. 2].
Lemma 1: ([18], [26]) Fix the pair (x1, y) ∈ T n(P̃X1Y ), a

constant δ > 0, and a type P̃ 

X1 X2Y ∈ S 


1,n(Q2,n, P̃X1Y ).
1) If R2 ≥ IP̃ 
 (X2; X1, Y ) + δ, then

M2e−n(IP̃
 (X2;X1,Y )+δ) ≤ Nx1 y(P̃ 

X1 X2Y )

≤ M2e−n(IP̃
 (X2;X1,Y )−δ) (38)

with probability tending to one faster than exponentially.
2) If R2 < IP̃ 
(X2; X1, Y ) + δ, then

Nx1 y(P̃ 

X1 X2Y ) ≤ en 2δ (39)

with probability tending to one faster than exponentially.
Roughly speaking, Lemma 1 states that if R2 >

IP̃ 
(X2; X1, Y ) then the type enumerator is highly concen-
trated about its mean, whereas if R2 < IP̃ 
(X2; X1, Y ) then
the type enumerator takes a subexponential value (possibly
zero) with overwhelming probability.

Given a joint type P̃X1Y , define the event

Aδ(P̃X1Y ) =
{

(38) holds for all P̃ 

X1 X2Y ∈ S 


1,n(Q2,n, P̃X1Y )

such that R2 ≥ IP̃ 
(X2; X1, Y ) + δ
}

∩
{

(39) holds for all P̃ 

X1 X2Y ∈ S 


1,n(Q2,n, P̃X1Y )

such that R2 < IP̃ 
 (X2; X1, Y ) + δ
}
, (40)
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where

S 

1,n(Q2,n, P̃X1Y ) �

{
P̃ 


X1 X2Y ∈ Pn(X1 × X2 × Y) :
P̃ 


X1Y = P̃X1Y , P̃ 

X2

= Q2,n

}
, (41)

and where we recall the definition of Q2,n at the start
of Section II-A. By Lemma 1 and the union bound,
P[Aδ(P̃X1Y )] → 1 faster than exponentially. and hence we
can safely condition any event on Aδ(P̃X1Y ) without changing
the exponential behavior of the corresponding probability. This
can be seen by writing the following for any event E :

P[E] = P[E ∩ A] + P[E ∩ Ac] (42)

≤ P[E |A] + P[Ac], (43)

P[E] ≥ P[E ∩ A] (44)

= (1 − P[Ac])P[E |A] (45)

≥ P[E |A] − P[Ac]. (46)

Using these observations, we will condition on Aδ several
times throughout the remainder of the proof.

Step 3 (Bound �x2 y(x1) by a Deterministic Value): From
(34), we have

�x2 y(x1) = qn(P̃X1 X2Y ) +
∑

P̃ 

X1 X2Y

Nx1 y(P̃ 

X1 X2Y )qn(P̃ 


X1 X2Y ).

(47)

Since the codewords are generated independently, Nx1 y
(P̃ 


X1 X2Y ) is binomially distributed with M2 − 1 trials and
success probability P

[
(x1, X2, y) ∈ T n(P̃ 


X1 X2Y )
]
. By con-

struction, we have Nx1 y(P̃ 

X1 X2Y ) = 0 unless P̃ 


X1 X2Y ∈
S 


1,n(Q2,n, P̃X1Y ), where S 

1,n is defined in (41).

Conditioned on Aδ(PX1Y ), we have the following:

�x2 y(x1)

= qn(PX1 X2Y ) +
∑

P 

X1 X2Y

Nx1 y(P 

X1 X2Y )qn(P 


X1 X2Y ) (48)

≥ qn(PX1 X2Y )

+ max
P 


X1 X2Y ∈S 

1,n(Q2,n,PX1Y )

R2≥IP
 (X2;X1,Y )+δ

Nx1 y(P 

X1 X2Y )qn(P 


X1 X2Y ) (49)

≥ qn(PX1 X2Y ) + M2

× max
P 


X1 X2Y ∈S 

1,n(Q2,n,PX1Y )

R2≥IP
 (X2;X1,Y )+δ

e−n(IP
 (X2;X1,Y )+δ)qn(P 

X1 X2Y )

(50)

� Gδ,n(PX1 X2Y ), (51)

where (50) follows from (38). Unlike �x2 y(x1), the quantity
Gδ,n(PX1 X2Y ) is deterministic. Substituting (51) into (35) and
using the fact that P

[
Aδ(P̃X1Y )

] → 1 faster than exponentially,
we obtain

pe,1(x1, x2, y) ≤̇ M1P
[
�x2 y(X1) ≥ Gδ,n(PX1 X2Y )

]
. (52)

Step 4 (An Expansion Based on Types): Since the statistics
of �x2 y(x1) depend on x1 only through the joint type of

(x1, x2, y), we can write (52) as follows:

pe,1(x1, x2, y)

≤̇ M1

∑

P̃X1 X2Y

P
[
(X1, x2, y) ∈ T n(P̃X1 X2Y )

]

× P
[
�x2 y(x1) ≥ Gδ,n(PX1 X2Y )

]
(53)

.= M1 max
P̃X1 X2Y ∈S1,n(Q1,n,PX2Y )

e−nIP̃ (X1;X2,Y )

× P
[
�x2 y(x1) ≥ Gδ,n(PX1 X2Y )

]
, (54)

where x1 denotes an arbitrary sequence such that (x1, x2, y) ∈
T n(P̃X1 X2Y ), and

S1,n(Q1,n, PX2Y ) �
{

P̃X1 X2Y ∈ Pn(X1 × X2 × Y) :
P̃X1 = Q1,n, P̃X2Y = PX2Y

}
. (55)

In (54), we have used an analogous property to (37) and the
fact that by construction, the joint type of (X1, x2, y) is in
S1,n(Q1,n, PX2Y ) with probability one.

Step 5 (Bound �x2 y(x1) by a Deterministic Value): Next,
we again use Lemma 1 in order to replace �x2 y(x1) in (54)
by a deterministic quantity. We have from (47) that

�x2 y(x1) ≤ qn(P̃X1 X2Y )

+ p0(n) max
P̃ 


X1 X2Y

Nx1 y(P̃ 

X1 X2Y )qn(P̃ 


X1 X2Y ), (56)

where p0(n) is a polynomial corresponding to the total number
of joint types. Substituting (56) into (54), we obtain

pe,1(x1, x2, y) ≤̇ M1 max
P̃X1 X2Y ∈S1,n(Q1,n,PX2Y )

max
P̃ 


X1 X2Y ∈S 

1(Q2,n, P̃X1Y )

e−nIP̃ (X1;X2,Y )
P
[
EP, P̃(P̃ 


X1 X2Y )
]
, (57)

where

EP, P̃(P̃ 

X1 X2Y )

�
{

qn(P̃X1 X2Y ) + p0(n)Nx1 y(P̃ 

X1 X2Y )qn(P̃ 


X1 X2Y )

≥ Gδ,n(PX1 X2Y )
}
, (58)

and we have used the union bound to take the maximum over
P̃ 


X1 X2Y outside the probability in (57). Continuing, we have
for any P̃X1 X2Y ∈ S1,n(Q1,n, PX2Y ) that

max
P̃ 


X1 X2Y ∈S 

1,n(Q2,n, P̃X1Y )

P
[
EP, P̃(P̃ 


X1 X2Y )
]

= max

{

max
P̃ 


X1 X2Y ∈S 

1,n(Q2,n, P̃X1Y )

R2≥IP̃
 (X2;X1,Y )+δ

P
[
EP, P̃(P̃ 


X1 X2Y )
]
,

max
P̃ 


X1 X2Y ∈S 

1,n (Q2,n, P̃X1Y )

R2<IP̃
 (X2;X1,Y )+δ

P
[
EP, P̃(P̃ 


X1 X2Y )
]
}

. (59)

Step 5a – Simplify the First Term: For the first term on the
right-hand side of (59), observe that conditioned on Aδ(P̃X1Y )
in (40), we have for P̃ 


X1 X2Y satisfying R2 ≥ IP̃ 
 (X2; X1, Y )+
δ that

Nx1 y(P̃ 

X1 X2Y )qn(P̃ 


X1 X2Y )

≤ M2e−n(IP̃
 (X2;X1,Y )−δ)qn(P̃ 

X1 X2Y ), (60)
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where we have used (38). Hence, and since P
[
Aδ(P̃X1Y )

] → 1
faster than exponentially, we have

P
[
EP, P̃(P̃ 


X1 X2Y )
]

≤̇ 1
{

qn(P̃X1 X2Y ) + M2 p0(n)e−n(IP̃
 (X2;X1,Y )−δ)qn(P̃ 

X1 X2Y )

≥ Gδ,n(PX1 X2Y )
}
. (61)

Step 5b – Simplify the Second Term: For the second term
on the right-hand side of (59), we define the event B �{

Nx1 y(P̃ 

X1 X2Y ) > 0

}
, yielding

P[B] ≤̇ M2e−nIP̃
 (X2;X1,Y ), (62)

which follows from the union bound and (37). Whenever
R2 < IP̃ 
 (X2; X1, Y ) + δ, we have

P
[
EP, P̃(P̃ 


X1 X2Y )
]

≤ P
[
EP, P̃(P̃ 


X1 X2Y )
∣
∣Bc] + P[B]P[

EP, P̃(P̃ 

X1 X2Y )

∣
∣B

]
(63)

≤̇ 1
{
qn(P̃X1 X2Y ) ≥ Gδ,n(PX1 X2Y )

}

+ M2e−nIP̃
 (X2;X1,Y )
P
[
EP, P̃(P̃ 


X1 X2Y )
∣
∣B

]
, (64)

≤̇ 1
{
qn(P̃X1 X2Y ) ≥ Gδ,n(PX1 X2Y )

}

+ M2e−nIP̃
 (X2;X1,Y )1
{
qn(P̃X1 X2Y )

+ p0(n)en 2δqn(P̃ 

X1 X2Y ) ≥ Gδ,n(PX1 X2Y )

}
, (65)

where (64) follows using (62) and (58) along with the fact
that Bc implies Nx1 y(P̃ 


X1 X2Y ) = 0, and (65) follows by
conditioning on Aδ(P̃X1Y ) and using (39).

Step 6 (Deduce the Exponent for Fixed (x1, x2, y)): Observe
that F(PX1 X2Y , R2) in (14) equals the exponent of Gδ,n in (51)
in the limit as δ → 0 and n → ∞. Similarly, the exponents
corresponding to the other quantities appearing in the indicator
functions in (61) and (65) tend to

F1(P̃X1 X2Y , P̃ 

X1 X2Y , R2)

� max
{
EP̃ [log q(X1, X2, Y )], EP̃ 
 [log q(X1, X2, Y )]

+ R2 − IP̃ 
(X2; X1, Y )
}
, (66)

F2(P̃X1 X2Y , P̃ 

X1 X2Y )

� max
{
EP̃ [log q(X1, X2, Y )], EP̃ 
 [log q(X1, X2, Y )]

}
.

(67)

We claim that combining these expressions with (57), (59),
(61) and (65) and taking δ → 0 (e.g., analogously to
[4, p. 737], we may set δ = n−1/2), gives the following:

pe,1(x1, x2, y)

≤̇ max

{

max
( P̃X1 X2Y , P̃ 


X1 X2Y )∈T (1)
1 (PX1 X2Y ,R2)

M1e−nIP̃ (X1;X2,Y ),

max
( P̃X1 X2Y , P̃ 


X1 X2Y )∈T (2)
1 (PX1 X2Y ,R2)

M1e−nIP̃ (X1;X2,Y )

×M2e−nIP̃
 (X2;X1,Y )

}

, (68)

where1

T (1)
1 (PX1 X2Y , R2)

�
{
(P̃X1 X2Y , P̃ 


X1 X2Y ) : P̃X1 X2Y ∈ S1(Q1, PX2Y ),

P̃ 

X1 X2Y ∈ S 


1(Q2, P̃X1Y ), IP̃ 
 (X2; X1, Y ) ≤ R2,

F1(P̃X1 X2Y , P̃ 

X1 X2Y , R2) ≥ F(PX1 X2Y , R2)

}
, (69)

T (2)
1 (PX1 X2Y , R2)

�
{
(P̃X1 X2Y , P̃ 


X1 X2Y ) : P̃X1 X2Y ∈ S1(Q1, PX2Y ),

P̃ 

X1 X2Y ∈ S 


1(Q2, P̃X1Y ), IP̃ 
 (X2; X1, Y ) ≥ R2,

F2(P̃X1 X2Y , P̃ 

X1 X2Y ) ≥ F(PX1 X2Y , R2)

}
, (70)

and

S1(Q1, PX2Y ) �
{

P̃X1 X2Y ∈ P(X1 × X2 × Y) :
P̃X1 = Q1, P̃X2Y = PX2Y

}
, (71)

S 

1(Q2, P̃X1Y ) �

{
P̃ 


X1 X2Y ∈ P(X1 × X2 × Y) :
P̃ 


X1Y = P̃X1Y , P̃ 

X2

= Q2

}
. (72)

To see that this is true, we note the following:
• For the first term on the right-hand side of (68), the objec-

tive function follows from (56), and the additional con-
straint F1(P̃X1 X2Y , P̃ 


X1 X2Y , R2) ≥ F(PX1 X2Y , R2) in
(69) follows since the left-hand side in (61) has exponent
F1 and the right-hand side has exponent F by the
definition of Gδ,n in (51).

• For the second term on the right-hand side of (68),
the objective function follows from (56) and the second
term in (65), and the latter (along with Gδ,n in (51)) also
leads to the final constraint in (70).

• The first term in (65) is upper bounded by the right-hand
side of (61), and we already analyzed the latter in order
to obtain the first term in (68). Hence, this term can safely
be ignored.

Step 7 (Deduce the Achievable Rate Region): By a standard
property of types [25, Ch. 2], P

[
(X1, X2, Y ) ∈ T n(PX1 X2Y )

]

decays to zero exponentially fast when PX1 X2Y is bounded
away from Q1 × Q2 × W . Therefore, we can safely substitute
PX1 X2Y = Q1×Q2×W to obtain the following rate conditions
for the first decoding step:

R1 ≤ min
( P̃X1 X2Y , P̃ 


X1 X2Y )∈T (1)
1 (Q1×Q2×W,R2)

IP̃(X1; X2, Y ),

(73)

R1 + R2 ≤ min
( P̃X1 X2Y , P̃ 


X1 X2Y )∈T (2)
1 (Q1×Q2×W,R2)

IP̃ (X1; X2, Y ) + IP̃ 
 (X2; X1, Y ). (74)

Finally, we claim that (73)–(74) can be united to obtain (16).
To see this, we consider two cases:

• If R2 > IP̃ 
(X2; X1, Y ), then the [·]+ term in (16) equals
zero, yielding the objective in (73). Similarly, in this case,
the term F in (13) simplifies to F1 in (66).

1Strictly speaking, these sets depend on (Q1, Q2), but this dependence need
not be explicit, since we have PX1 = Q1 and PX2 = Q2.
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• If R2 ≤ IP̃ 
 (X2; X1, Y ), then the [·]+ term in (16) equals
IP̃ 
 (X2; X1, Y ) − R2, yielding the objective in (73). In
this case, the term F in (13) simplifies to F2 in (67).

IV. PROOF OF THEOREM 2

The achievability and ensemble tightness proofs for
Theorem 2 follow similar steps; to avoid repetition, we focus
on the ensemble tightness part. The achievability part is
obtained using exactly the same high-level steps, while occa-
sionally replacing upper bounds by lower bounds as needed
via the techniques presented in Section III.

Step 1 (Initial Bound): We consider the two error events
introduced at the beginning of Section III, and observe that
pe ≥ 1

2 max{pe,1, pe,2}. The analysis of pe,2 is precisely that
given in [4, Thm. 1], so we focus on pe,1.

We assume without loss of generality that m1 = m2 = 1,
and we write Xν = X(1)

ν (ν = 1, 2), let X( j )
2 denote

X(1, j )
2 , let X ( j )

2 denote X (i, j ) for some fixed i �= 1, and let
(X1, X2) denote (X(i)

1 , X (i, j )
2 ) for some fixed (i, j) with i �= 1.

Thus,

(X1, X2, Y , X1, X2) ∼ PX1(x1)PX2|X1(x2|x1)

×W n(y|x1, x2)PX1(x1)PX2|X1(x2|x1). (75)

Moreover, analogously to (34), we define

�x2 y(x1) � qn(x1, x2, y) +
∑

j �=1

qn(x1, X (1, j )
2 , y) (76)

�̃y(x(i)
1 ) �

∑

j

qn(x(i)
1 , X (i, j )

2 , y). (77)

Note that here we use separate definitions corresponding to
x1 and x(i)

1 (i �= 1) since in the cognitive MAC, each
user-1 sequence is associated with a different set of user-
2 sequences.

Fix a joint type PX1 X2Y and a triplet (x1, x2, y) ∈
T n(PX1 X2Y ), and let pe,1(x1, x2, y) be the type-1 error proba-
bility conditioned on (X(1)

1 , X (1,1)
2 , Y ) = (x1, x2, y); here we

assume without loss of generality that m1 = m2 = 1. We have

pe,1(x1, x2, y)

= P

[ M1⋃

i=2

{
�̃y(X (i)

1 ) ≥ �x2 y(x1)
}]

(78)

≥ 1

2
min

{
1, (M1 − 1)P

[
�̃y(X1) ≥ �x2 y(x1)

]}
, (79)

where (79) follows since the truncated union bound is tight to
within a factor of 1

2 for independent events [28, Lemma A.2].
Note that this argument fails for the standard MAC; there,
the independence requirement does not hold, so it is unclear
whether (35) is tight upon taking the minimum with 1.

We now bound the inner probability in (79), which we
denote by �1(PX1 X2Y ). By similarly defining

�2(PX1 X2Y , P̃X1Y )

� P
[
�̃y(X1) ≥ �x2 y(x1) | (X1, y) ∈ T n(P̃X1Y )

]
, (80)

we obtain

�1(PX1 X2Y )

≥ max
P̃X1Y

P
[
(X1, y) ∈ T n(P̃X1Y )

]
�2(PX1 X2Y , P̃X1Y ) (81)

.= max
P̃X1Y : P̃X1=Q X1 , P̃Y =PY

e−nIP̃ (X1;Y )�2(PX1 X2Y , P̃X1Y ), (82)

where (82) is a standard property of types [25, Ch. 2].
We proceed by bounding �2; to do so, we let x1 be an arbitrary
sequence such that (x1, y) ∈ T n(P̃X1Y ). By symmetry, any
such sequence may be considered.

Step 2 (Type Class Enumerators): We write each metric
�x2 y in terms of type class enumerators. Specifically, again
writing qn(PX1 X2Y ) to denote the n-fold product metric for a
given joint type, we note the following analogs of (47):

�x2 y(x1) = qn(PX1 X2Y ) +
∑

P 

X1 X2Y

�y(x1, P 

X1 X2Y ) (83)

�̃y(x1) =
∑

P̃ 

X1 X2Y

�̃y(x1, P̃ 

X1 X2Y ), (84)

where

�y(x1, P 

X1 X2Y ) � Nx1 y(P 


X1 X2Y )qn(P 

X1 X2Y ), (85)

�̃y(x1, P̃ 

X1 X2Y ) � Ñx1 y(P̃ 


X1 X2Y )qn(P̃ 

X1 X2Y ), (86)

and

Nx1 y(P 

X1 X2Y ) �

∑

j �=1

1
{
(x1, X ( j )

2 , y) ∈ T n(P 

X1 X2Y )

}
, (87)

Ñx1 y(P̃ 

X1 X2Y ) �

∑

j

1
{
(x1, X ( j )

2 , y) ∈ T n(P̃ 

X1 X2Y )

}
. (88)

Note the minor differences in these definitions compared to
those for the standard MAC, resulting from the differing code-
book structure associated with superposition coding. Using
these definitions, we can bound (80) as follows:

�2(PX1 X2Y , P̃X1Y )

= P

[ ∑

P̃ 

X1 X2Y

�̃y(x1, P̃ 

X1 X2Y )

≥ qn(PX1 X2Y ) +
∑

P 

X1 X2Y

�y(x1, P 

X1 X2Y )

]

(89)

≥ P

[

max
P̃ 


X1 X2Y

�̃y(x1, P̃ 

X1 X2Y )

≥ qn(PX1 X2Y ) + p0(n) max
P 


X1 X2Y

�y(x1, P 

X1 X2Y )

]

(90)

≥ max
P̃ 


X1 X2Y

P

[

�̃y(x1, P̃ 

X1 X2Y )

≥ qn(PX1 X2Y ) + p0(n) max
P 


X1 X2Y

�y(x1, P 

X1 X2Y )

]

(91)

� max
P̃ 


X1 X2Y

�3(PX1 X2Y , P̃X1Y , P̃ 

X1 X2Y ), (92)

where p0(n) is a polynomial corresponding to the number of
joint types.
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Step 3 (An Auxiliary Lemma): We define the sets

S1c,n(QX1,n, PY ) �
{

P̃X1Y ∈ Pn(X1 × Y) :
P̃X1 = QX1,n, P̃Y = PY

}
, (93)

S 

1c,n(QX1 X2,n, P̃X1Y ) �

{
P̃ 


X1 X2Y ∈ Pn(X1 × X2 × Y) :
P̃ 


X1Y = P̃X1Y , P̃X1 X2 = QX1 X2,n

}
.

(94)

The following lemma provides analogous properties to
Lemma 1 for joint types within S 


1c,n , with suitable mod-
ifications to handle the fact that we are proving ensemble
tightness rather than achievability. It is based on the fact
that Nx1 y(P̃ 


X1 X2Y ) has a binomial distribution with success
probability P[(x1, X2, y) ∈ T n(P̃ 


X1 X2Y ) | X1 = x1] .=
e−nIP̃
 (X2;Y |X1) by (23).

Lemma 2: Fix a joint type P̃X1Y and a pair (x1, y) ∈
T n(P̃X1Y ). For any joint type P̃ 


X1 X2Y ∈ S 

1,n(QX1 X2,n, P̃X2Y )

and constant δ > 0, the type enumerator Nx1 y(P̃ 

X1 X2Y )

satisfies the following:
1) If R2 ≥ IP̃ 
(X2; Y |X1) − δ, then Nx1 y(P̃ 


X1 X2Y ) ≤
M2e−n(IP̃
 (X2;Y |X1)−2δ) with probability approaching
one faster than exponentially.

2) If R2 ≥ IP̃ 
(X2; Y |X1) + δ, then Nx1 y(P̃ 

X1 X2Y ) ≥

M2e−n(IP̃
 (X2;Y |X1)+δ) with probability approaching one
faster than exponentially.

3) If R2 ≤ IP̃ 
(X2; Y |X1) − δ, then
a) Nx1 y(P̃ 


X1 X2Y ) ≤ enδ with probability approaching
one faster than exponentially;

b) P
[
Nx1 y(P̃ 


X1 X2Y ) > 0
] .= M2e−nIP̃
 (X2;Y |X1).

Moreover, the analogous properties hold for the type enumer-
ator Nx1 y(P 


X1 X2Y ) and any joint types PX1Y (with PX1 =
QX1,n) and P̃ 


X1 X2Y ∈ S 

1,n(QX1 X2,n, PX1Y ).

Proof: Parts 1, 2 and 3a are proved in the same
way as Lemma 1; we omit the details to avoid repetition
with [18], [26]. Part 3b follows by writing the probability that
Nx1 y > 0 as a union of the M1 − 1 events in (87) holding,
and using the fact that the truncated union bound is tight to
within a factor of 1

2 [28, Lemma A.2]. The truncation need not
explicitly be included, since the assumption of part 3 implies
that M2e−nIP̃
 (X2;Y |X1) → 0. �

Given a joint type PX2Y (respectively, P̃X1Y ), let Aδ(P̃X1Y )
(respectively, Ãδ(P̃X1Y )) denote the union of the high-
probability events in Lemma 2 (in parts 1, 2 and 3a) taken
over all P 


X1 X2Y ∈ S1,n(QX1 X2 , PX2Y ) (respectively, P̃ 

X1 X2Y ∈

S 

1,n(QX1 X2, P̃X1Y )). By the union bound, the probability of

these events tends to one faster than exponentially, and hence
we can safely condition any event accordingly without chang-
ing the exponential behavior of the corresponding probability
(see (42)–(46)).

Step 4 (Bound �y(x1, P 

X1 X2Y ) by a Deterministic Value):

We first deal with �y(x1, P 

X1 X2Y ) in (91). Defining the event

Bδ �
{

Nx1 y(P 

X1 X2Y ) = 0 for all P 


X1 X2Y

such that R2 ≤ IP̃ 
(X2; Y |X1) − δ
}
, (95)

we immediately obtain from Property 3b in Lemma 2 that
P
[
Bc

δ

] ≤̇ e−nδ → 0, and hence

�3(PX1 X2Y , P̃X1Y , P̃ 

X1 X2Y )

≥ P

[

�̃y(x1, P̃ 

X1 X2Y ) ≥ qn(PX1 X2Y )

+ p0(n) max
P 


X1 X2Y

�y(x1, P 

X1 X2Y ) ∩ Bδ

]

(96)

.= P

[

�̃y(x1, P̃ 

X1 X2Y ) ≥ qn(PX1 X2Y )

+ p0(n) max
P 


X1 X2Y

�y(x1, P 

X1 X2Y )

∣
∣
∣Bδ

]

. (97)

Next, conditioned on Bδ and the events in Lemma 2,
we have

qn(PX1 X2Y ) + p0(n) max
P 


X1 X2Y

�y(x1, P 

X1 X2Y )

= qn(PX1 X2Y )

+ p0(n) max
P 


X1 X2Y ∈S 

1c,n(Q X1 X2,n , P̃X1Y ) :

R2≥IP
 (X2;Y |X1)−δ

�y(x1, P 

X1 X2Y ) (98)

≤ qn(PX1 X2Y ) + p0(n)

× max
P 


X1 X2Y ∈S 

1c,n(Q X1 X2,n , P̃X1Y ) :

R2≥IP
 (X2;Y |X1)−δ

M2e−n(IP̃
 (X2;Y |X1)−2δ)

×qn(P 

X1 X2Y ) (99)

� Gδ,n(PX1 X2Y ), (100)

where in (99) we used part 1 of Lemma 2. It follows that

�3(PX1 X2Y , P̃X1Y , P̃ 

X1 X2Y )

≥̇ P
[
�̃y(x1, P̃ 


X1 X2Y ) ≥ Gδ,n(PX1 X2Y )
]
, (101)

where the conditioning on Bδ has been removed since it is
independent of the statistics of �̃y(x1, P̃ 


X1 X2Y ).
Step 5 (Bound �x2 y(x1) by a Deterministic Value): We now

deal with the quantity �̃y(x1, P̃ 

X1 X2Y ). Substituting (101) into

(92) and constraining the maximization in two different ways,
we obtain

�2(PX1 X2Y , P̃X1Y ) ≥̇ max

{

max
P̃ 


X1 X2Y ∈S 

1c,n (Q X1 X2,n , P̃X1Y ) :

R2≥IP̃
 (X2;Y |X1)+δ

P

[
�̃y(x1, P̃ 


X1 X2Y ) ≥ Gδ,n(PX1 X2Y )
]
,

max
P̃ 


X1 X2Y ∈S 

1c,n (Q X1 X2,n, P̃X1Y ) :

R2≤IP̃
 (X2;Y |X1)−δ

P

[
�̃y(x1, P̃ 


X1 X2Y ) ≥ Gδ,n(PX1 X2Y )
]}

. (102)

For R2 ≥ IP̃ 
 (X2; Y |X1)+δ, we have from part 2 of Lemma 2
that, conditioned on Ãδ(P̃X1Y ),

�̃y(x1, P̃ 

X1 X2Y ) ≥ M2e−n(IP̃
 (X2;Y |X1)+δ)qn(P̃ 


X1 X2Y ).

(103)



SCARLETT et al.: MISMATCHED MULTI-LETTER SUCCESSIVE DECODING 2263

On the other hand, for R2 ≤ IP̃ 
(X2; Y |X1) − δ, we have

P

[
�̃y(x1, P̃ 


X1 X2Y ) ≥ Gδ,n(PX1 X2Y )
]

(104)

= P

[
�̃y(x1, P̃ 


X1 X2Y ) ≥ Gδ,n(PX1 X2Y )

∩Nx1 y(P̃ 

X1 X2Y ) > 0

]
(105)

= P

[
Nx1 y(P̃ 


X1 X2Y ) > 0
]
P

[
�̃y(x1, P̃ 


X1 X2Y )

≥ Gδ,n(PX1 X2Y )
∣
∣ Nx1 y(P̃ 


X1 X2Y ) > 0
]

(106)

.= M2e−nIP̃
 (X2;Y |X1)P

[
�̃y(x1, P̃ 


X1 X2Y )

≥ Gδ,n(PX1 X2Y )
∣
∣ Nx1 y(P̃ 


X1 X2Y ) > 0
]

(107)

≥̇ 1
{

qn(P̃ 

X1 X2Y ) ≥ Gδ,n(PX1 X2Y )

}
M2e−nIP̃
 (X2;Y |X1),

(108)

where (105) follows since the event under consideration is
zero unless Nx1 y(P̃ 


X1 X2Y ) > 0, (107) follows from part 3b
of Lemma 2, and (108) follows since when Nx1 y(P̃ 


X1 X2Y ) is
positive it must be at least one.

Step 6 (Deduce the Exponent for Fixed (x1, x2, y)):
We have now handled both cases in (102). Combining them,
and substituting the result into (82), we obtain

�1(PX1 X2Y ) ≥̇ max
P̃X1Y ∈S1c,n (Q X1,n,PY )

e−nIP̃ (X1;Y )

× max

{

max
P̃ 


X1 X2Y ∈S 

1c,n(Q X1 X2 ,n, P̃X1Y ) :

R2≥IP̃
 (X2;Y |X1)+δ

1
{

M2e−n(IP̃
 (X2;Y |X1)+δ)qn(P̃ 

X1 X2Y ) ≥ Gδ,n(PX1 X2Y )

}
,

max
P̃ 


X1 X2Y ∈S 

1c,n(Q X1 X2,n , P̃X1Y ) :

R2≤IP̃
 (X2;Y |X1)−δ

M2e−nIP̃
 (X2;Y |X1)

×1
{

qn(P̃ 

X1 X2Y ) ≥ Gδ,n(PX1 X2Y )

}}

. (109)

Observe that Fc(PX1 X2Y ) in (14) equals the exponent of Gδ,n

in (100) in the limit as δ → 0 and n → ∞. Similarly,
the exponent corresponding to the quantity in the first indicator
function in (109) tends to

F1c(P̃ 

X1 X2Y , R2)

� EP̃ 
 [log q(X1, X2, Y )] + R2 − IP̃ 
(X2; Y |X1). (110)

Recalling that �1 is the inner probability in (79), we obtain
the following by taking δ → 0 sufficiently slowly and using
the continuity of the underlying terms in the optimizations:

pe,1(x1, x2, y)

≥̇ max

{

max
( P̃X1Y , P̃ 


X1 X2Y )∈T (1)
1c (PX1 X2Y ,R2)

M1e−nIP̃ (X1;Y ),

max
( P̃X1Y ,P̃ 


X1 X2Y )∈T (2)
1c (PX1 X2Y ,R2)

M1e−nIP̃ (X1;Y )M2e−nIP̃
 (X2;Y |X1)

}

,

(111)

where

T (1)
1c (PX1 X2Y , R2)

�
{
(P̃X1Y , P̃ 


X1 X2Y ) : P̃X1Y ∈ S1c(QX1, PY ),

P̃ 

X1 X2Y ∈ S 


1c(QX1 X2 , P̃X1Y ),

IP̃ 
(X2; Y |X1) ≤ R2,

F1c(P̃ 

X1 X2Y , R2) ≥ Fc(PX1 X2Y , R2)

}
, (112)

T (2)
1c (PX1 X2Y , R2)

�
{
(P̃X1Y , P̃ 


X1 X2Y ) :
P̃X1Y ∈ S1c(QX1, PY ),

P̃ 

X1 X2Y ∈ S 


1c(QX1 X2 , P̃X1Y ),

IP̃ 
(X2; Y |X1) ≥ R2,

EP̃ 
 [log q(X1, X2, Y )] ≥ F(PX1 X2Y , R2)
}
, (113)

and

S1c(QX1, PY ) �
{

P̃X1 X2Y ∈ P(X1 × X2 × Y) :
P̃X1 = QX1, P̃Y = PY

}
, (114)

S 

1c(QX1 X2, P̃X1Y ) �

{
P̃ 


X1 X2Y ∈ P(X1 × X2 × Y) :
P̃ 


X1Y = P̃X1Y , P̃ 

X1 X2

= QX1 X2

}
.

(115)

More specifically, this follows from the same argument as
Step 6 in Section III.

Step 7 (Deduce the Achievable Rate Region): Similarly
to Section III, the fact that the joint type of (X1, X2, Y )
approaches QX1 X2 × W with probability approaching one
means that we can substitute PX1 X2Y = QX1 X2 × W to obtain
the following rate conditions:

R1 ≤ min
( P̃X1Y , P̃ 


X1 X2Y )∈T (1)
1c (Q X1 X2×W,R2)

IP̃ (X1; Y ), (116)

R1 + R2 ≤ min
( P̃X1Y , P̃ 


X1 X2Y )∈T (2)
1c (Q X1 X2×W,R2)

IP̃ (X1; Y )

+ IP̃ 
(X2; Y |X1). (117)

The proof of (28) is now concluded via the same argument
as Step 7 in Section III, using the definitions of Fc, F1c,
S1c, S 


1c, T (1)
1c and T (2)

1c to unite (116)–(117). Note that the
optimization variable P̃X1Y can be absorbed into P̃ 


X1 X2Y due
to the constraint P̃ 


X1Y = P̃X1Y .

V. CONCLUSION

We have obtained error exponents and achievable rates for
both the standard and cognitive MAC using a mismatched
multi-letter successive decoding rule. For the cognitive case,
we have proved ensemble tightness, thus allowing us to
conclusively establish that there are cases in which neither the
mismatched successive decoding region nor the mismatched
maximum-metric decoding region [3] dominate each other in
the random coding setting.
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An immediate direction for further work is to establish the
ensemble tightness of the achievable rate region for the stan-
dard MAC in Theorem 1. A more challenging open question is
to determine whether either of the true mismatched capacity
regions (rather than just achievable random-coding regions)
for the two decoding rules contain each other in general.

APPENDIX A
BEHAVIOR OF SUCCESSIVE DECODER WITH q = W

Here we show that a rate pair (R1, R2) or error exponent
E(R1, R2) is achievable under maximum-likelihood (ML)
decoding if and only if it is achievable under the successive
rule in (2)–(3) with q(x1, x2, y) = W (y|x1, x2). This is shown
in the same way for the standard MAC and the cognitive MAC,
so we focus on the former.

It suffices to show that, for any fixed codebooks C1 =
{x(i)

1 }M1
i=1 and C2 = {x( j )

2 }M2
j=1, the error probability under

ML decoding is lower bounded by a constant times the
error probability under successive decoding. It also suffices to
consider the variations where ties are broken as errors, since
doing so reduces the error probability by at most a factor of
two [29]. Formally, we consider the following:

1) The ML decoder maximizing W n(y|x(i)
1 , x( j )

2 );
2) The successive decoder in (2)–(3) with q = W ;
3) The genie-aided successive decoder using the true value

of m1 on the second step rather than m̂1 [11]:

m̂1 = arg max
i

∑

j

W n(x(i)
1 , x( j )

2 , y), (118)

m̂2 = arg max
j

W n(x(m1)
1 , x( j )

2 , y). (119)

We denote the probabilities under these decoders by P
(ML)[·],

P
(S)[·] and P

(Genie)[·] respectively. Denoting the random mes-
sage pair by (m1, m2), the resulting estimate by (m̂1, m̂2), and
the output sequence by Y , we have

P
(ML)[(m̂1, m̂2) �= (m1, m2)]

≥ max

{

P
(ML)[m̂1 �= m1],

P
(ML)

[ ⋃

j �=m2

{ W n(x(m1)
1 , x( j )

2 , Y)

W n(x(m1)
1 , x(m2)

2 , Y)
≥ 1

}]}

(120)

≥ max

{

P
(Genie)[m̂1 �= m1],

P
(Genie)

[ ⋃

j �=m2

{ W n(x(m1)
1 , x( j )

2 , Y )

W n(x(m1)
1 , x(m2)

2 , Y )
≥ 1

}]}

(121)

≥ 1

2
P

(Genie)[(m̂1, m̂2) �= (m1, m2)] (122)

= 1

2
P

(S)[(m̂1, m̂2) �= (m1, m2)], (123)

where (121) follows since the two steps of the genie-
aided decoder correspond to minimizing the two terms in
the max{·, ·}, (122) follows by writing max{P[A], P[B]} ≥
1
2 (P[A] + P[B]) ≥ 1

2P[A ∪ B], and (123) follows since the
overall error probability is unchanged by the genie [11].

APPENDIX B
FORMULATIONS OF (16) AND (28) IN TERMS OF

CONVEX OPTIMIZATION PROBLEMS

In this section, we provide an alternative formulation of
(16) that is written in terms of convex optimization problems.
We start with the alternative formulation in (73)–(74). We first
note that (74) holds if and only if

R1 ≤ min
( P̃X1 X2Y , P̃ 


X1 X2Y )∈T (2)
1 (Q1×Q2×W,R2)

IP̃ (X1; X2, Y )

+ [
IP̃ 
 (X2; X1, Y ) − R2

]+
, (124)

since the argument to [·]+ is non-negative when
IP̃ 
(X2; X1, Y ) ≥ R2. Next, we claim that when combining
(73) and (124), the rate region is unchanged if the constraint
IP̃ 
(X2; X1, Y ) ≥ R2 is omitted from (124). This is seen by
noting that whenever IP̃ 
(X2; X1, Y ) < R2, the objective in
(124) coincides with that of (73), whereas the latter has a
less restrictive constraint since F1 > F2 (see (66)–(67)).

We now deal with the non-concavity of the functions F1 and
F2 appearing in the sets T (1)

1 and T (2)
1 . Using the identity

min
x≤max{a,b} f (x) = min

{
min
x≤a

f (x), min
x≤b

f (x)
}
, (129)

we obtain the following rate conditions from (73) and (124):

R1 ≤ min
( P̃X1 X2Y , P̃ 


X1 X2Y )∈T (1,1)
1 (Q1×Q2×W,R2)

IP̃ (X1; X2, Y ),

(130)

R1 ≤ min
( P̃X1 X2Y , P̃ 


X1 X2Y )∈T (1,2)
1 (Q1×Q2×W,R2)

IP̃ (X1; X2, Y ),

(131)

R1 ≤ min
( P̃X1 X2Y , P̃ 


X1 X2Y )∈T (2,1)
1 (Q1×Q2×W,R2)

IP̃ (X1; X2, Y )

+ [
IP̃ 
 (X2; X1, Y ) − R2

]+
, (132)

R1 ≤ min
( P̃X1 X2Y , P̃ 


X1 X2Y )∈T (2,2)
1 (Q1×Q2×W,R2)

IP̃ (X1; X2, Y )

+ [
IP̃ 
 (X2; X1, Y ) − R2

]+
, (133)

where the constraint sets are defined in (125)–(128) at the top
of the next page. These are obtained from T (k) (k = 1, 2) by
keeping only one term in the definition of Fk (see (66)–(67)),
and by removing the constraint IP̃ 
 (X2; X1, Y ) ≥ R2 when
k = 2 in accordance with the discussion following (124).

The variable P̃ 

X1 X2Y can be removed from both (130) and

(132), since in each case the choice P̃ 

X1 X2Y (x1, x2, y) =

Q2(x2)P̃X1Y (x1, y) is feasible and yields IP̃ 
 (X2; X1, Y ) = 0.
It follows that (130) and (132) yield the same value, and we
conclude that (16) can equivalently be expressed in terms of
three conditions: (131), (133), and

R1 ≤ min
P̃X1 X2Y ∈T (1,1
)

1 (Q1×Q2×W,R2)

IP̃ (X1; X2, Y ), (134)

where the set

T (1,1
)
1 (PX1 X2Y , R2)

�
{

P̃X1 X2Y ∈ S1(Q1, PX2Y ) :
EP̃ [log q(X1, X2, Y )] ≥ F(PX1 X2Y , R2)

}
(135)
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T (1,1)
1 (PX1 X2Y , R2) �

{
(P̃X1 X2Y , P̃ 


X1 X2Y ) : P̃X1 X2Y ∈ S1(Q1, PX2Y ),

P̃ 

X1 X2Y ∈ S 


1(Q2, P̃X1Y ), IP̃ 
 (X2; X1, Y ) ≤ R2, EP̃ [log q(X1, X2, Y )] ≥ F(PX1 X2Y , R2)
}
, (125)

T (1,2)
1 (PX1 X2Y , R2) �

{
(P̃X1 X2Y , P̃ 


X1 X2Y ) : P̃X1 X2Y ∈ S1(Q1, PX2Y ), P̃ 

X1 X2Y ∈ S 


1(Q2, P̃X1Y ), IP̃ 
(X2; X1, Y ) ≤ R2,

EP̃ 
 [log q(X1, X2, Y )] + R2 − IP̃ 
 (X2; X1, Y ) ≥ F(PX1 X2Y , R2)
}
, (126)

T (2,1)
1 (PX1 X2Y , R2) �

{
(P̃X1 X2Y , P̃ 


X1 X2Y ) : P̃X1 X2Y ∈ S1(Q1, PX2Y ),

P̃ 

X1 X2Y ∈ S 


1(Q2, P̃X1Y ), EP̃ [log q(X1, X2, Y )] ≥ F(PX1 X2Y , R2)
}
, (127)

T (2,2)
1 (PX1 X2Y , R2) �

{
(P̃X1 X2Y , P̃ 


X1 X2Y ) : P̃X1 X2Y ∈ S1(Q1, PX2Y ),

P̃ 

X1 X2Y ∈ S 


1(Q2, P̃X1Y ), EP̃ 
 [log q(X1, X2, Y )] ≥ F(PX1 X2Y , R2)
}
. (128)

is obtained by eliminating P̃ 

X1 X2Y from either (125) or (127).

These three conditions are all written as convex optimization
problems, as desired.

Starting with (116)–(117), one can follow a (a simplified
version of) the above arguments for the cognitive MAC to
show that (28) holds if and only if

R1 ≤ min
( P̃X1Y , P̃ 


X1 X2Y )∈T (1)
1c (Q X1 X2×W,R2)

IP̃ (X1; Y ), (136)

R1 ≤ min
( P̃X1Y , P̃ 


X1 X2Y )∈T (2
)
1c (Q X1 X2×W,R2)

IP̃ (X1; Y )

+ [
IP̃ 
(X2; Y |X1) − R2

]+
. (137)

where

T (2
)
1c (PX1 X2Y , R2)

�
{
(P̃X1Y , P̃ 


X1 X2Y ) :
P̃X1Y ∈ S1c(QX1, PY ), P̃ 


X1 X2Y ∈ S 

1c(QX1 X2, P̃X1Y ),

EP̃ 
 [log q(X1, X2, Y )] ≥ F(PX1 X2Y , R2)
}
, (138)

and where T (1)
1c , S1c and S 


1c are defined in (112)–(115).
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