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Impact of Signal Constellation Expansion on the Achievable Diversity of
Pragmatic Bit-interleaved Space-Time Codes

Albert Guillén i Fàbregas and Giuseppe Caire

Abstract— This letter studies the effect of signal constellation
expansion on the achievable diversity of pragmatic bit-interleaved
space-time codes in quasistatic multiple antenna channels. Signal
constellation expansion can be obtained either by increasing
the size of the constellation in the complex plane or by using
multidimensional linear mappings. By means of two simple
constructions, we provide a comparison of the two options with
message passing decoding. We show that multidimensional expan-
sion achieves some performance advantage over complex-plane
expansion at the cost of significantly higher decoding complexity
and larger peak-to-average power ratio of the transmitted signals.

Index Terms— Modulation and coding, MIMO systems, iter-
ative detection, bit-interleaved coded modulation, concatenated
codes, space-time coding, fading channel, outage probability.

I. INTRODUCTION AND SYSTEM MODEL

MULTIPLE antenna transmission has emerged as a key
technology to achieve large spectral and power effi-

ciency in wireless communications. In this work, we consider
communication in a multiple antenna environment with NT
transmit and NR receive antennas in quasistatic frequency
flat fading. The complex baseband received signal matrix
Y ∈ CNR×L is given by,

Y =
√
ρHX + Z, (1)

where L is the block length, X = [x1 . . .xNT ]T ∈ CNT ×L is
the transmitted signal matrix, H = [h1 . . .hNT ] ∈ CNR×NT ,
is the fading channel matrix which stays constant during the
whole transmission of X (quasistatic fading), Z ∈ CNR×L is a
matrix of noise samples i.i.d. ∼ NC(0, 1), and ρ is the average
signal to noise ratio (SNR) per transmit antenna. The elements
of H are assumed to be i.i.d. circularly symmetric Gaussian
random variables ∼ NC(0, 1) (frequency flat Rayleigh fading).
The channel is assumed to be perfectly known at the receiver
and not known at the transmitter.
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The multiple-input multiple-output (MIMO) channel de-
fined by (1) has zero capacity. A Space-Time Code (STC) S ⊆
CNT ×L is a coding scheme that exploits both temporal and
space dimensions in order to achieve reliable communication.
Consider an ensemble of STCs generated according to the
input distribution PX . We denote the mutual information per
channel use (for a fixed H) by IH(PX). It can be shown that
the minimum achievable error probability for the ensemble in
the limit for large block length is given by the information
outage probability defined as Pout(R) = Pr(IH(PX) ≤ R)
where R is the transmission rate in bits per channel use. When
PX = NC(0, 1) (Gaussian inputs), IH(PX) = log det(I +
ρHHH) The goodness of a given STC is usually measured
by its ability to approach the outage probability limit.

Conventional code design for quasistatic MIMO channels is
based on the ML decoding union bound error probability [1].
The average pairwise error probability, i.e., the probability of
deciding in favor of X′ when X was transmitted assuming
that there are no other codewords, for large ρ behaves as
Gcρ

−drNR , where Gc is the coding gain and drNR denotes
the diversity gain, where

dr = min
X,X′∈S

rank(X − X′) (2)

is the rank diversity of the STC S ⊆ CNT ×L. Conventional
STC design searches for full-diversity codes S, i.e., dr = NT ,
with the largest possible coding gain.

In this work, we study two different approaches to construct
pragmatic STCs with full-diversity performance. In particu-
lar, we first review a pragmatic construction based on bit-
interleaved coded modulation (BICM) [2], which relies on
the underlying binary code to achieve diversity. Secondly, we
consider the concatenation of a coded modulation scheme with
an inner code that is linear in the field of complex numbers
(linear dispersion (LD) code [3]). In both cases, STCs showing
full-diversity performance of any desired spectral efficiency
are constructed by suitably expanding the signal constellation.
In the first case, we have constellation expansion in the
complex plane (Ungerboeck’s style expansion), while in the
second, we have multidimensional expansion induced by the
inner code. The aim of this paper is to provide a comparison of
these two approaches under low-complexity message passing
decoding. We show that multidimensional expansion yields a
small performance advantage over complex-plane expansion,
while significantly increasing the decoding complexity and
peak-to-average power ratio.

II. PRAGMATIC SPACE-TIME CODES

We consider natural STCs (NSTC) coupled with BICM as
a pragmatic way to construct good STCs (see e.g. [4]). We
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Fig. 1. Block diagrams of the two families of space-time codes.

nickname such scheme BICM NSTC. Such codes are formally
defined by a binary block code C ⊆ F

N
2 of length N and rate

r and a spatial modulation function F : C → S ⊆ XNT ×L,
such that F(c) = X, where X ⊆ C is the complex signal
constellation. We study the case where F is obtained as the
concatenation of a block/antenna parsing function P : Z+ →
Z2

+ such that P(n) = (t, �), 1 ≤ n ≤ N, 1 ≤ t ≤ NT , 1 ≤
� ≤ LM partitions a codeword c ∈ C into NT sub-blocks,
and blockwise BICM, where each sub-block is independently
bit-interleaved according to πt, t = 1, . . . , NT , and mapped
over the signal set X according to a labeling rule μ : FM2 →
X , such that μ(b1, . . . , bM ) = x, where M = log2 |X | (see
Figure 1a) 1. In this case, N = NTLM . The transmission
rate (spectral efficiency) of the resulting STC is R = rNTM
bit/s/Hz.

BICM NSTCs are designed assuming a genie aided decoder
that produces observables of the transmitted symbols of one
antenna, when the symbols from all other antennas are per-
fectly removed2 [8]. In this way, the channel is decomposed
into a set of NT single-input single-output non-interfering
parallel channels (see [5] and references therein). We define
the block diversity of a STC S as the blockwise Hamming
distance,

δβ
Δ= min

X,X′∈S
|{t ∈ [1, . . . , NT ] : xt − x′

t �= 0}|

i.e., the minimum number of nonzero rows of X − X′.
Then, with a genie aided decoder BICM NSTCs can achieve
diversity δβNR [5]. Notice that applying BICM within a block,
preserves the block diversity of the underlying binary code,
since the binary labeling rule μ is a bijective correspondence.
Thus, the block diversity of S is equal to the block diversity
of C after the blockwise parsing operated by P . For a binary
code C of rate r over F2 mapped over NT independent blocks,

1In the remainder of this letter we shall only consider Gray labeling rules, since they
are more efficient in quasistatic channels. This conclusion may be reversed in fully-
interleaved channels [4].

2The reader will notice the analogy with the case of decision feedback equalization for
frequency selective channels, where correct feedback is assumed to design the equalizer
filters.

a fundamental upper bound on δβ is provided by the Singleton
bound (SB),

δβ ≤ 1 + 	NT (1 − r)
 (3)

Consequently, we will search for codes maximizing δβ , i.e.,
achieving the SB for all values of NT . Equation (3) implies
that in order to have full block diversity r ≤ 1/NT . Hence,
in order to transmit a given desired rate R with δβ = NT ,
we must have M = R. This fixes the size of the signal
constellation X in the BICM scheme.

On the other hand, the evaluation of the rank diversity
of BICM NSTCs can be a very involved task especially for
constellations with M > 1. In the binary case, it is however
possible to verify through the stacking construction theorem
[6] whether a BICM NSTC is full-rank. The BICM NSTC has
full rank-diversity if and only if for all a1, . . . , aNT ∈ F2 not
all zero, the K ×N matrix

Θ =
NT⊕
t=1

atGtΠt

has rank K (
⊕

indicates addition in the binary field F2),
where G1, . . . ,GNT ∈ F

K×N
2 are the binary generator matri-

ces of the binary code C of rate K/NTN and Π1, . . . ,ΠNT ∈
Z
N×N
+ are the NT permutation matrices obtained by applying

the permutations π1, . . . ,πNT to the columns of the identity
matrix I [6]. Notice also that by definition we have that
dr ≤ δβ ≤ NT .

III. LD CONCATENATED CODES

In this section we consider the case where the codewords
X of the STC S are obtained from the concatenation of an
outer coded modulation scheme CO ⊆ Xn of rate rO and
length n with an inner LD code. The inner code is formed by
a parser P , that partitions the codewords c ∈ CO into sub-
blocks c[j] = [c1[j], . . . , cQ[j]], j = 1, . . . , J of length Q,
with J = n/Q and by a LD space-time modulation function
F defined by,

S[j] = F(c[j]) =
Q∑
q=1

(cq[j]Gq), (4)
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where Gq ∈ CNT×T are the LD code generator matrices.
Finally, the overall space-time codeword is given by X =
[S[1] . . .S[J ]]. Equation (1) can be rewritten as a virtual
MIMO channel with Q inputs and Nv

R = NRT outputs as,

y[j] = Hc[j] + z[j], j = 1, . . . , J (5)

where H = [IT ⊗ H]G ∈ CN
v
R×Q is the equivalent channel

matrix, ⊗ is the Kronecker product, G ∈ C
NTT×Q is the

suitably reformatted generator matrix of the LD code, y[k] =
vec(Y[k]), z[k] = vec(Z[k]), Nv

R = NRT is the number of
virtual receive antennas, and vec(A) = [aT1 . . .a

T
l ]T , for a

matrix A = [a1 . . .al]. We will refer to Q as the number of
virtual transmit antennas.

In order to perform a meaningful comparison with BICM
NSTC, we choose CO to be a standard BICM, i.e, a binary
code C ∈ FN2 of rate r whose bit-interleaved codewords are
mapped onto the signal set X according to the binary labeling
rule μ : FM2 → X [2]. In this work we are interested in inner
LD codes with full-diversity and full-rate, i.e., transmission of
NL = min{NT , NR} symbols per channel use. Orthogonal
and quasi-orthogonal STCs codes cannot achieve more than 1
symbol per channel use. Therefore, using such codes as inner
codes incurs a significant rate loss for NL > 1. As the inner
LD code, we use the recently proposed threaded algebraic
space-time (TAST) constellations [7]. We nickname such a
transmission scheme as BICM TAST (Figure 1b).

The aforementioned algebraic STCs are based on the
threaded layering [8], for which a number of component
encoders (or layers) NL and the component codewords c� ∈
C� , � = 1, . . . , NL onto the array TNT ,NL,NL following the
(layer, antenna, time) indexing triplet

P(�, n) = (�, |t+ �− 1|NT , t), 1 ≤ t ≤ T, � = 1, . . . , NL,

thus having full spatial and temporal spans. Modulo-k opera-
tion is denoted by |.|k. The codewords of C�, � = 1, . . . , NL
are obtained as the set of vectors v = φ�Ms, where M is
a rate one full-diversity linear algebraic rotation, φ�, � =
1, . . . , NL are scalar complex coefficients chosen to be Dio-
phantine numbers that ensure that TAST constellation achieves
full diversity with maximum-likelihood (ML) decoding (see
[7] for details) and s ∈ XNT . In TAST constellations,
NL = min(NT , NR), T = NT , Q = NLNT , and φ�, � =
1, . . . , NL are chosen such that |φ�| = 1, � = 1, . . . , NL. The
transmission rate of the resulting BICM TAST is therefore
R = rNLM bit/s/Hz. Notice that while the components of
s belong to X , the components of v, which are sent to the
antennas for transmission, belong to a scattered constellation
with 2MNT points since by construction any two different s, s′

are mapped by the rotation M into points v,v′ that differ in
all NT components (see [7] and references therein). Therefore,
BICM TAST expands the signal constellation by construction,
and of M is NT and that φ�, � = 1, . . . , NL are Diophantine
numbers [7].

With this divide and conquer design, full diversity is always
guaranteed by the inner code, while coding gain is left to the
outer coded modulation. Furthermore, since full-diversity is
ensured by the inner code, the designer has some degrees of
freedom in choosing r and M in order to achieve the desired
transmission rate, as opposed to the BICM NSTC case.

IV. MESSAGE PASSING DECODING

Because of the pseudo-random bit interleaver present in
both schemes, ML decoding of BICM NSTC or BICM TAST
has generally unaffordable complexity. We therefore resort to
iterative techniques based on a factor graph representation.
In analogy to the case of multiuser receivers for CDMA [9],
applying the belief propagation (BP) algorithm to the STC
dependency graph, yields several receivers that approximate
the optimal maximum a posteriori (MAP) detection rule.
In particular, exact BP reduces the overall receiver to a
MAP soft-input soft-output (SISO) bitwise demodulator and a
MAP SISO decoder of C, that exchange extrinsic information
probability messages through the iterations. The log-likelihood
ratio (LLR) message at the i-th iteration by the MAP SISO
bitwise demodulator for the decoder of C for BICM NSTC,
corresponding to the m-th bit of the constellation symbol
transmitted over antenna t at discrete time �, is given by

LLR(i)
ext(ct,�,m|y�,H) =

log

∑
x∈X t

m=0

p(y�|x,H)
NT∏
t′=1

M∏
m′=1

m′ �=m, t=t′

P(i−1)
ext (ct′,�,m′)

∑
x∈X t

m=1

p(y�|x,H)
NT∏
t′=1

M∏
m′=1

m′ �=m, t=t′

P(i−1)
ext (ct′,�,m′)

for 1 ≤ m ≤M, 1 ≤ t ≤ NT , 1 ≤ � ≤ L, where X t
m=a is the

set of NT -dimensional symbols for which the m-th bit of the
symbol transmitted over antenna t equal to a, P(i)

ext(c) denotes
extrinsic (EXT) probability (provided by the SISO decoder
of C) of the coded binary symbol c at the i-th iteration with
P(0)
ext(c) = 0.5, and p(y�|x,H) ∝ exp(−|y� −√

ρHx|2).
The case of BICM TAST is completely analogous, as it

suffices to replace NT by Q, L by J and H by H. Exact
BP is of exponential complexity in MNT for BICM NSTC
and MNLNT for BICM TAST and it is usually approximated
by soft-output sphere decoding techniques (see e.g. [10] for
recent results on the subject). The complexity of such decoders
critically depends on the dimension of the channel matrix.
Since the dimension of H ∈ CNRNT×NLNT is larger than the
dimension of the original channel matrix H, in general the de-
coding complexity of BICM TAST codes will be substantially
higher than the decoding complexity of BICM NSTCs.

In this work we also consider lower-complexity receivers
based on iterative interference cancellation (IC) and linear
filtering. For BICM NSTC, the LLR message to the decoder
of C is given by,

LLR(i)
ext(ct,�,m|z(i)

t,� ,H) =

log

∑
x∈Xm=0

p(z(i)
t,� |x,H)

M∏
m′=1
m′ �=m

P(i−1)
ext (ct,�,m′)

∑
x∈Xm=1

p(z(i)
t,� |x,H)

M∏
m′=1
m′ �=m

P(i−1)
ext (ct,�,m′)

for 1 ≤ m ≤ M, 1 ≤ t ≤ NT , 1 ≤ k ≤ L, where now Xm=a

is the set of all constellation points of X with the m-th bit
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Fig. 2. WER as a function of Eb/N0 in a MIMO channel with NT = 4,
NR = 4 and R = 1 bit/s/Hz, with the (5, 7, 7, 7)8 convolutional code, 128
information bits per frame, BPSK modulation and several iterative receivers
with 5 decoding iterations.

of the label equal to a, z(i)
t,� is the output at symbol time �

and i-th iteration of the front-end linear filter f (i)
t of antenna

t after IC,

z
(i)
t,� = f (i) H

t

⎛
⎝y� −√

ρ

NT∑
t′ �=t

ht′ x̂
(i−1)
t′,�

⎞
⎠ ,

where (dropping antenna and time indexes for simplicity),

x̂(i) = E[x |EXT] =
∑
x∈X

x

M∏
m=1

P(i)
ext(cm)

is the minimum mean-square error estimate (conditional mean)
of the symbol x given the extrinsic information (briefly
denoted by EXT) relative to the bits in the label of x.

In particular, we consider minimum mean squared error
(MMSE) IC, for which the filter at the i-th iteration corre-
sponding to the t-th antenna is given by,

f (i)
t = αt

√
ρR−1ht,

where αt = (ρhHt R−1ht)−1 is the normalization constant,
R = I +

√
ρ
∑NT

t=1 hthHt vt is the covariance matrix of the
input signal to the filter, and vt = E[|xt− x̂t|2] is the variance
of the residual interference at virtual antenna t (see [9] and
references therein). A practical implementation (and in our
simulations) we estimate vt as vt ≈ 1 − 1

L

∑L
�=1 |x̂t[�]|2.

Notice that f (i)
t has to be computed once per virtual transmit

antenna and iteration. The proposed algorithm differs from
that proposed in [8] in that the latter has to be computed once
per symbol interval, transmit antenna and iteration. Obviously,
the MMSE IC scheme is also applicable to BICM TAST by
using H instead of H.

V. EXAMPLES

In this section we provide several numerical examples
obtained by computer simulation that illustrate the effect of the
constellation expansion on the achievable diversity of BICM

NSTC and BICM TAST. For the sake of comparison, we
include the outage probability curves with Gaussian inputs
(denoted by “GI” in the figures) at the corresponding spectral
efficiency.

In the case of Figure 2, clearly, the block diversity of
C is δβ = 4. In dotted line we show the word-error rate
(WER) for the NSTC with ML decoding. Recall that the
NSTC array is constructed using identity permutations [6],
and therefore ML decoding is possible using the Viterbi
algorithm. The stacking construction theorem yields that the
NSTC code is rank deficient. We have also applied the theorem
to BICM NSTC with a large number of randomly generated
interleaver permutations, and none of them gave a full-rank
code. However, as the curves in the figure show, in the WER
region of interest (i.e., 10−3−10−4) the performance with two
suboptimal iterative receivers (BP and MMSE-IC) follows the
matched filter bound (MFB), i.e., the performance of the genie
aided receiver that has full diversity by definition. Eventually
at large SNR and much lower WER, the rank deficiency of
the code will show its effect, and the slope of the curves with
iterative decoding will change, in a way similar to the different
behavior of the waterfall and floor regions in the error curve
of turbo-codes. This simple example shows the key role that
the block diversity plays in BICM NSTC. We shall say that a
scheme shows full diversity behavior if the slope of the error
curve in a region of interest coincide with the optimal (full-
diversity) slope, given by the information outage probability
with Gaussian inputs.

In Figure 3 the block diversity of C is δβ = NT = 2.
In fact, BICM NSTC shows full diversity behavior. On the
other hand, BICM TAST achieves full diversity and the coded
modulation yields only some coding gain (horizontal shift of
the error curve). Figure 3 shows also the scatter diagrams
of the TAST constellations. Notice that, in such concatenated
scheme, we may set φ� = 1, � = 1, . . . , NL without any
noticeable difference in performance, since the outer code
removes most of the rank-deficient error events of the inner
code. In this way, it suffices to find a good rotation matrix M
in order to construct efficient BICM TAST codes. However, in
this case the BICM TAST scheme does not probably achieve
full diversity, and shows just the full diversity behavior in the
range of WER we have simulated.

Figure 4 clearly illustrates the effect of constellation ex-
pansion to achieve full diversity. In order to achieve R = 3
bit/s/Hz with QPSK, we need the rate of C be r = 3/4. As
we observe, under such configuration BICM TAST achieves
full diversity due to its inherent multidimensional constellation
expansion. If M = I no multidimensional expansion occurs
(the transmitted signal constellation at each antenna is QPSK),
and full-diversity is obviously not achieved. On the other hand,
the diversity of BICM NSTC is governed by the Singleton
bound (which in this case yields δβ = 1) and therefore under
this configuration it does not achieve full-diversity. However,
R = 3 bit/s/Hz can also be achieved by using a rate r = 1/2
code (which has δβ = NT = 2) and expanding the signal
constellation in the complex plane, i.e., using 8-PSK instead
of QPSK. In this case, BICM NSTC achieves a full diversity
behavior but it pays about 0.8 dB penalty in average SNR for
the expansion with respect to the BICM TAST. The curves
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Fig. 3. (a) WER performance in a NT = 2 and NR = 2 MIMO channel with
the 4 states (5, 7)8 convolutional code of r = 1/2 with 128 information bits
per frame, QPSK, 16-QAM modulations with Gray mapping and 5 iterations
of BP decoding. The spectral efficiencies are R = 2 bit/s/Hz (solid lines) and
R = 4 bit/s/Hz (dashed lines) respectively. Scatter diagrams of the transmitted
TAST constellations for QPSK and (b) 16-QAM with (c) the optimal 2 × 2
complex rotation [7, Eq. (15)].

for R = 4 bit/s/Hz have a similar behavior (for the sake of
clarity we omit the curves for BICM NSTC with r = 2/3
8-PSK and BICM TAST with M = I for which full diversity
is not achieved). In this case, BICM NSTC and BICM TAST
are very close.

Figure 5 reports again the NT = 4 and NR = 4 case
with higher spectral efficiencies. We also plot the simulated
matched filter bound. In this example we observe that a new
effect arises, namely, for too large spectral efficiency, even if
the transmission schemes ensure full diversity, the MMSE-IC
decoder is not able to remove the interference and achieve
the correct slope. The characterization of the thresholds of
the spectral efficiency for which the MMSE-IC is able to
perform close to ML or BP appears to be a difficult problem
and at present there is no satisfactory explanation. In [11] we
derived a semi-analytical method based on density evolution
and bounding techniques, which however is as complex as
simulation due to the outer expectation over the quasi-static
fading.
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Fig. 5. WER performance of BICM NSTC and BICM TAST in a MIMO
channel with NT = 4 and NR = 4, with the 4 states (5, 7, 7, 7)8
convolutional code of r = 1/4, using 16 and 64 QAM modulations with
Gray mapping and 5 iterations of MMSE-IC decoding. The corresponding
spectral efficiencies are R = 4 bit/s/Hz (128 information bits per frame) and
R = 6 bit/s/Hz (120 information bits per frame).

VI. CONCLUSIONS

In this letter we have illustrated the effect of signal con-
stellation expansion on the achievable diversity in quasistatic
MIMO channels. In particular we have compared complex
plane expansion and expansion due to multidimensional full-
diversity rotations. We have shown that under message passing
decoding, concatenated LD STCs enjoy higher design flexibil-
ity in the choice of the outer binary coding rate and of the
underlying constellation size, but yield only small performance
advantage with respect to the simpler BICM NSTCs, while
considerably increasing the decoding complexity and the peak-
to-average power ratio. Therefore, in practical applications
such as IEEE802.11n, considering BICM NSTC (with very
powerful binary outer codes) is fully justified.
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