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Abstract— This paper considers insertion and deletion chan-
nels with the additional assumption that the channel input
sequence is implicitly divided into segments such that at most
one edit can occur within a segment. No segment markers are
available in the received sequence. We propose code constructions
for the segmented deletion, segmented insertion, and segmented
insertion–deletion channels based on subsets of Varshamov–
Tenengolts codes chosen with predetermined prefixes and/or
suffixes. The proposed codes, constructed for any finite alphabet,
are zero error and can be decoded segment by segment. We also
derive an upper bound on the rate of any zero-error code for
the segmented edit channel, in terms of the segment length. This
upper bound shows that the rate scaling of the proposed codes as
the segment length increases is the same as that of the maximal
code.

Index Terms— Deletion channels, insertion channels,
Varshamov–Tenegolts codes, zero-error codes.

I. INTRODUCTION

WE CONSIDER the problem of constructing codes for
segmented edit channels, where the channel input

sequence is implicitly divided into disjoint segments. Each
segment can undergo at most one edit, which can be either an
insertion or a deletion. There are no segment markers in the
received sequence.

This model, introduced by Liu and Mitzenmacher [1], is a
simplified version of the general edit channel, where the
insertions and deletions can be arbitrarily located in the input
sequence. Constructing codes for general edit channels is well
known to be challenging problem; see, e.g., [2]–[9]. The
assumption of segmented edits not only simplifies the coding
problem, but is also likely to hold in many edit channels
that arise in practice, e.g., in data storage and in sequenced
genomic data, where the number of edits is small compared
to the length of the input sequence. As explained in [1],
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when edits (deletions or insertions of symbols) occur due
to timing mismatch between the data layout and the data-
reading mechanism, there is often a minimum gap between
successive edits. The segmented edit model includes such
cases, though it also allows for nearby edits that cross a
segment boundary. Furthermore, a complete understanding of
the segmented edit model may provide insights into the open
problem of constructing efficient, high-rate codes for general
edit channels. As we show in this paper, the segmented edit
assumption allows for the construction of low-complexity,
zero-error codes with the optimal rate scaling for any finite
alphabet.

Let us consider three examples to illustrate the model. For
simplicity, we consider a binary alphabet and assume that the
segment length, denoted by b, is 3 in each case.

1) Segmented Deletion Channel: Each segment can undergo
at most one deletion; no insertions occur. Consider the follow-
ing pair of input and output sequences:

X = 011 100 010 −→ Y = 0110010, (1)

with the underlined bits in X being deleted by the channel
to produce the output sequence Y . It is easily verified that
many other input sequences could have produced the same
output sequence, e.g., 010 100 010, 010 101 010, 011 000 100
etc. The receiver has no way of distinguishing between these
candidate input sequences. In particular, despite knowing the
segment length and that deletions occurred, it does not know
in which two segments the deletions occurred.

2) Segmented Insertion Channel: Each segment can undergo
at most one insertion; no deletions occur. The inserted bit
can be placed anywhere within the segment, including before
the first bit or after the last bit of the segment. For example,
consider

X = 011 100 010 −→ Y = 011101000110, (2)

with the underlined bits in Y indicating the insertions. Two
inserted bits can appear between two segments whenever there
is an insertion after the last bit of first segment and before the
first bit of the next segment.

3) Segmented Insertion-Deletion Channel: This is the most
general case, where a segment could undergo either an
insertion or a deletion, or remain unaffected. For example,
consider

X = 011 100 010 −→ Y = 0101000110, (3)

with the underlined bits on the left indicating deletions, and the
underlined bits on the right indicating insertions. Unlike the
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previous two cases, the receiver cannot even infer the exact
number of edits that have occurred. In the example above,
an input sequence 9 bits (three segments) long could result in
a 10-bit output sequence in two different ways: either via one
segment with an insertion, or via two segments with insertions
and the other with a deletion.

The above examples demonstrate that one cannot reduce the
problem to one of correcting one edit in a b-bit input sequence.
To see this, consider the example in (1), and suppose that we
used a single-deletion correcting code for each segment. Such
a code would declare the first three bits of Y to be the first
segment of X , which would result in incorrect decoding of the
following segments.

In this paper, we construct zero-error codes for each of the
three segmented edit models above, for any finite alphabet
of size q ≥ 2. Our codes can easily be constructed even
for relatively large segment sizes (several tens), and can
be decoded segment-by-segment in linear time. Moreover,
the proposed codes have rate R of at least

R ≥ log2 q − 1

b
log2(b + 1) − κ

b
log2 q, (4)

where the constant κ is at most 2.5 for the segmented deletion
channel, 4 for the segmented insertion channel, and 8 for the
segmented insertion-deletion channel. (Slightly better bounds
on κ are obtained for the binary case q = 2.)

We also derive an upper bound in terms of the segment
length b on the maximum rate of any code for the seg-
mented edit channel. This upper bound (Theorem 17) shows
that the rate R of any zero-error code with code length n
satisfies

R ≤ log2 q − 1

b
log2 b − 1

b
log2(q − 1) + 1

b

+ log2(2q)

n
+ O

(
ln b

b4/3

)
. (5)

Comparing (4) and (5), we see that the rate scaling for the
proposed codes is the same as that of the maximal code with
the rate penalty being O(1/b).

The starting point for our code constructions is the family
of Varshamov-Tenengolts (VT) codes [2], [10], [11]. Each
code in this family is a single-edit correcting code. In our
constructions, the codewords in each segment are drawn from
subsets of VT codes satisfying certain prefix/suffix conditions,
which are carefully chosen to enable fast segment-by-segment
VT decoding.

A. Comparison With Previous Work
The segmented edit assumption places a restriction on

the kinds of edit patterns that can be introduced in the
input sequence. Other models with restrictions on edit
patterns include the forbidden symbol model considered
in [12].

We now highlight some similarities and differences from the
codes proposed by Liu and Mitzenmacher [1] for the binary
segmented deletion and segmented insertion channels.

1) Code Construction: The code in [1] is a binary
segment-by-segment code specified via sufficient conditions
[1, Th. 2.1, 2.2] that ensure that as decoding proceeds, there

TABLE I

NUMBER OF CODEWORDS PER SEGMENT OF THE PROPOSED
CODES. LOWER BOUNDS COMPUTED FROM (51), (64),

AND (83) ARE GIVEN IN BRACKETS

are at most two choices for the starting position of the next
undecoded segment. Finding the maximal code that satisfies
these conditions corresponds to an independent set problem,
which is challenging for large b. The maximal code satisfying
these conditions was reported in [1] for b = 8, 9. For larger b,
a greedy algorithm was used to find a set of codewords
satisfying the conditions. It was also suggested that one could
restrict the code to a subset of VT codes that satisfy the
sufficient conditions.

In comparison, our codes are directly defined as subsets of
VT codes that satisfy certain simple prefix/suffix conditions;
these conditions are different from those in [1]. Our conditions
ensure that upon decoding each segment, there is no ambiguity
in the starting position of the next segment. These subsets of
VT codes are relatively simple to enumerate, so it is possible
to find the largest code satisfying our conditions for b of the
order of several tens. Table I lists the number of codewords
per segment for the three segmented edit channels for q = 2
and lengths up to b = 24. For the segmented deletion and
segmented insertion-deletion channels, another difference from
the code in [1] is that our codebook for each segment is chosen
based on the final bit of the previous segment.

2) Rate: The VT subsets and sufficient conditions we define
allow us to obtain a lower bound of the form (4) on the rate
of our code for any segment length b. Though the maximal
codes satisfying the Liu-Mitzenmacher conditions have rate
very close to the largest possible with segment-by-segment
decoding, finding the maximal code satisfying these conditions
is computationally hard, so one has to resort to greedy algo-
rithms to construct codes for larger b. This is reflected in the
rate comparison: for b = 8, 9, the optimal Liu-Mitzenmacher
code for segmented deletions is larger than our code (12,20
vs. 8,13 codewords). However for b = 16, the code obtained
in [1] using a greedy algorithm has 652 codewords, whereas
our code has 964 codewords, as shown in Table I. For large b,
our codes are nearly optimal since the rate penalty decays
as κ/b.
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For the segmented insertion channel, it is shown in Sec. V-C
that our code construction satisfies the sufficient conditions
specified [1]. The lower bound on the rate of our code
affirmatively answers the conjecture in [1] that the rates of the
maximal codes satisfying the sufficient conditions increases
with b.

3) Encoding and Decoding Complexity: Being subsets
of VT codes, our codes can also be efficiently encoded
even for large segment sizes b, without the need for look-
up tables [13], [14]. As segment-by-segment decoding is
enforced by design, the decoding complexity grows linearly
with the number of segments for both our codes and those
in [1]. Within each segment, the decoding complexity of our
code is also linear in b, since VT codes can be decoded
with linear complexity [2]. In general, for each segment,
the maximal Liu-Mitzenmacher codes have to be decoded via
look-up tables, in which case the complexity is exponential
in b. Using subsets of VT codes was suggested in [1] as a
way to reduce the decoding complexity.

Finally, we remark that codes proposed in this paper are the
first for the binary segmented insertion-deletion model, and for
all the non-binary segmented edit models.

B. Organization of the Paper

The remainder of the paper is organized as follows.
In Section II, we formally define the channel model, and
review binary and non-binary VT codes. In Section III,
we derive an upper bound on the rate of any code for
a segmented edit channel, in terms of the segment length.
In Sections IV, V, and VI, we present our code constructions
for the segmented deletion channel, segmented insertion chan-
nel, and the segmented insertion-deletion channel, respectively.
For each model, we first treat the binary case to highlight the
key ideas, and then extend the construction to general non-
binary alphabets.

II. CHANNEL MODEL AND PRELIMINARIES

The channel input sequence is denoted by X = x1x2 · · · xn ,
with xi ∈ X for i = 1, . . . , n, where X = {0, . . . , q − 1} is
the input alphabet, with q ≥ 2. The channel input sequence
is divided into k segments of b symbols each. We denote the
subsequence of X , from index i to index j , with i < j by
X (i : j) = xi xi+1 · · · x j . The i -th segment of X is denoted by
Si = si,1 · · · si,b = X

(
b(i − 1) + 1 : bi

)
for i = 1, . . . , k.

In the segmented deletion channel, the channel output Y =
Y (1 : m) = y1 · · · ym , with m ≤ n is obtained by deleting at
most one symbol in each segment, i.e., at most one symbol in
Si , i = 1, . . . , k, is deleted. Similarly, in the segmented inser-
tion channel, the channel output Y = y1 . . . ym , with m ≥ n is
obtained by inserting at most one symbol per segment. In the
segmented insertion-deletion channel, the channel output is
such that each segment Si , i = 1, . . . , k undergoes at most
one edit. In all cases, we assume that the decoder knows k
and b, but not the segment boundaries.

We consider coded communication using a code C =
{X (1), . . . , X (M)} ⊆ X n of length n, M codewords and rate
R = 1

n log2 M . We consider segment-by-segment coding,

where Ms is the number of codewords per segment. The
overall code of length n = kb has (Ms)

k codewords, and rate

R = 1

n
log2(Ms )

k (6)

= 1

b
log2 Ms . (7)

The decoder produces an estimate X̂ of the transmitted
sequence. We denote the corresponding segment estimates by
Ŝi = ŝi,1 · · · ŝi,b , for i = 1, . . . , k. Thus X̂ = (Ŝ1, . . . , Ŝk).
We consider zero-error codes that always ensure the recov-
erability of the transmitted sequence, i.e., codes for which
X̂ = X .

A. Binary VT Codes

First consider the case where q = 2, i.e., X = {0, 1}.
Suppose that k = 1, and thus n = b, i.e., there is at most one
edit in the entire binary sequence. For this model, one can use
binary VT codes which are zero-error single-edit correcting
codes [2], [10], i.e., when the transmitted codeword suffers a
single insertion or a deletion, the decoder always corrects the
edit. Moreover, the complexity of the VT decoding algorithm
is linear in the code length b. The details of the decoding
algorithm can be found in [2] for the case of a single deletion;
the decoding algorithm to correct from a single insertion can
be found in [11, Sec. II].

The VT syndrome of a binary sequence S = s1 . . . sb is
defined as

syn(S) =
b∑

j=1

j s j (mod(b + 1)). (8)

For positive integers b and 0 ≤ a ≤ b, we define the VT code
of length b and syndrome a, denoted by

VTa(b) = {
S ∈ {0, 1}b : syn(S) = a

}
(9)

i.e., the set of sequences S of length b that satisfy syn(S) = a.
For example,

VT1(3) =
{

s1s2s3 :
3∑

j=1

j s j = 1 mod 4
}

= {100, 011}. (10)

The b + 1 sets VTa(b) ⊂ {0, 1}b, for 0 ≤ a ≤ b, partition the
set of all sequences of length b. Each of these sets VTa(b) is
a single-edit correcting code. In particular, if S, S� ∈ VTa(b),
then

D1(S) ∩ D1(S�) = ∅, and I1(S) ∩ I1(S�) = ∅, (11)

where D1(S) denotes the set of subsequences obtained by
deleting one bit from S, and I1(S) is the set of supersequences
obtained by inserting one bit in S.

For 0 ≤ a ≤ b, the cardinalities of these sets satisfy
[2, Corollary 2.3]

|VT0(b)| ≥ |VTa(b)| ≥ |VT1(b)|. (12)

The largest of the sets VTa(b), 0 ≤ a ≤ b, will have at

least 2b

b+1 sequences out of the 2b possible. This induces a
rate R ≥ 1 − 1

b log2(b + 1) for the largest of these codes.
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The code VT0(b) has been shown to be maximal for single
edit correction for b ≤ 8, and has been conjectured to be
maximal for arbitrary b [2].

B. Non-Binary VT Codes

Here we consider the case where X = {0, . . . , q − 1}, with
q > 2. Again, suppose that k = 1 and thus n = b, i.e., there
is at most one edit in the sequence. For this model, one can
use q-ary VT codes, introduced by Tenengolts [11]. These are
zero-error single-edit correcting codes, analogous to the binary
VT codes. We briefly describe the code construction below.

For each non-binary sequence S, define a length (b − 1)
auxiliary binary sequence AS = α2, . . . , αb as follows.
For 2 ≤ i ≤ b,

αi =
{

1 if si ≥ si−1

0 if si < si−1
(13)

We also define the modular sum as

sum(X) =
b∑

i=1

si (mod q). (14)

The q-ary VT code with length b and parameters (a, c) is
defined as [11]

VTa,c(b) = {
S ∈ X b : syn(AS) = a, sum(S) = c

}
, (15)

for 0 ≤ a ≤ b − 1 and c ∈ X . Similarly to the binary
case, the sets VTa,c(b) for 0 ≤ a ≤ b − 1 and c ∈ X
partition the space X b of all q-ary sequences of length b.
Clearly, the largest codebook has at least qb

qb codewords which
implies the following rate lower bound for the largest VT code
among all choices of (a.c):

R ≥ log2 q − 1

b
log2 b − 1

b
log2 q. (16)

The complexity of the decoding algorithm for q-ary
VT codes is linear in the code length b. The details of the
decoder can be found in [11, Sec. II].

III. UPPER BOUND ON RATE

In this section, we derive an upper bound on the rate of any
code for q-ary segmented edit channels, for q ≥ 2. The upper
bound is valid for all zero-error codes, including those that
cannot be decoded segment-by-segment.

Theorem 1: For each of the three segmented edit models,
with segment length b, the rate R of any zero-error code with
code length n = kb satisfies

R ≤ log2 q − 1

b
log2 b − 1

b
log2(q − 1) + 1

b

+ log2(2q)

kb
+ O

(
ln b

b4/3

)
. (17)

Remarks:
1) In the theorem, the alphabet size q is held fixed as

the segment size b grows. The number of segments per
codeword, k, is arbitrary, and need not grow with b.

2) The theorem is obtained via non-asymptotic bounds
on the size and the rate of any zero-error code.

These bounds, given in (38)–(43), may be of indepen-
dent interest.

3) The dominant terms in the upper bound may be inter-
preted as follows for the case of the segmented deletion
channel. For a noiseless q-ary input channel the rate is
log2 q bits/transmission. The log2 b/b term corresponds
to a penalty required to convey the run in which the
deletion occurred in each segment. The log2(q − 1)/b
term is a penalty required to convey the value of the
deleted symbol.

Proof of Theorem 1: We give the proof for the segmented
deletion model with segment length b. The argument for the
segmented insertion model is similar.

The proof technique is similar to that used by Tenengolts
in [11, Th. 2]. The high-level idea is the following. The
codewords are split into two groups: the first group contains
the codewords in which a large majority of segments have
at least b (q−1)

q − O(b2/3) runs. The other group contains
the remaining codewords. As b grows larger, the fraction of
length b sequences with close to b (q−1)

q runs (the ‘typical’
value) approaches 1. So we carefully bound the number of
codewords in the first group, while the number of codewords
in the second group can be bounded by a direct counting
argument.

Consider a code C of length n = kb, i.e., each codeword
has k segments of length b. Let M = |C| = 2nR denote the
size of the code. For integers r ≥ 0 and 0 ≤ l ≤ k, define
M(r, l) ⊂ C as the set of the codewords that have exactly
l segments with more than r runs. Let M(r, l) = |M(r, l)|.
Note that for any r ≥ 0, we have

k∑
l=0

M(r, l) = M. (18)

For any l ≤ k and a codeword x ∈ M(r, l), let ρl (x)
denote the number of distinct sequences of length (n − l) by
deleting exactly l symbols from x (following the segmented
assumption). We then have

(r − 1)l ≤ ρl(x). (19)

To show (19), we only need to consider r ≥ 3 as the inequality
is trivial for r ≤ 2. Considering the l segments that each have
at least (r +1) runs, there are at least (r −1)l ways of choosing
one run from each segment so that the l chosen runs are non-
adjacent. For each such choice of l non-adjacent runs, we get a
distinct subsequence of length (n − l) by deleting one symbol
from each run. This proves (19).

Since C is a zero-error code, for two distinct codewords
x1, x2 ∈ M(r, l), the set of length (n − l) sequences obtained
via l deletions (in a segmented manner) from x1 must be dis-
tinct from the corresponding set for codeword x2. We therefore
have

qn−l ≥
∑

x∈M(r,l)

ρl(x) (20)

(a)≥
∑

x∈M(r,l)

(r − 1)l (21)
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= M(r, l)(r − 1)l, (22)

where (a) is obtained from (19). We therefore obtain

M(r, l) ≤ qn−l

(r − 1)l
. (23)

Fix α ∈ (0, 1). Summing (23) over αk ≤ l ≤ k, we obtain

∑
l≥αk

M(r, l) ≤
∑
l≥αk

qn−l

(r − 1)l
(24)

≤ 2qn−αk

(r − 1)αk
. (25)

Now choose

r = (q − 1)

q
b −

√
2κ(q − 1)b ln b

q
, (26)

where κ > log(2q)
log b will be specified later. Using this r in (23),

and noting that n = kb, we have

∑
l≥αk

M(r, l) ≤ 2qkb−αk

(r − 1)αk (27)

= 2qkb

(b(q − 1))αk
(

1 −
√

2κq ln b
(q−1)b − q

(q−1)b

)αk .

(28)

For l < αk, we use the looser bound

M(r, l) ≤
(

k

k − l

) [
q

r−1∑
t=0

(q − 1)t
(

b − 1

t

)]k−l

qbl, (29)

which is obtained as follows. We first choose the (k − l)
segments with at most r runs. Then, a segment with t runs is
determined by the choice of the first symbol, and the starting
positions and values of the next (t − 1) runs. There are q
choices for the first symbol,

(b−1
t−1

)
choices for the starting

position of the next (t − 1) runs, and (q − 1)t−1 choices for
the values of these runs. Therefore, the number of possible
length b sequences with at most r runs is q

∑r
t=1

(b−1
t−1

)
(q −

1)t−1 = q
∑r−1

t=0

(b−1
t

)
(q − 1)t . We then obtain (29) by noting

that: i) there are (k − l) segments with at most r runs, and
ii) there are at most qbl choices for the remaining l segments.

We write the right hand side of (29) as

(
k

k − l

) [
q

r−1∑
t=0

(q − 1)t
(

b − 1

t

)]k−l

qbl

=
(

k

k − l

) [
qb+1

r−1∑
t=0

(
1 − 1

q

)t (
1

q

)b−t (
b − 1

t

)]k−l

qbl

(30)

≤ 2kqbk+k−l

[
r−1∑
t=0

(
1 − 1

q

)t (
1

q

)b−t (
b − 1

t

) ]k−l

. (31)

It is shown in Appendix A that

r−1∑
t=0

(
1 − 1

q

)t (
1

q

)b−t (
b − 1

t

)
≤ 1

bκ
. (32)

Using (32) to bound (31), and then substituting in (29),
we obtain

M(r, l) ≤ 2kqbk+k−l

bκ(k−l)
. (33)

Summing over 0 ≤ l < αk and considering κ > log(2q)
log b ,

we obtain
∑
l<αk

M(r, l) ≤ 2kq(b+1)k

bκk

∑
l<αk

(
bκ

q

)l

(34)

≤ 2kq(b+1−α)k+1

bκ(1−α)k
. (35)

Combining the bounds in (28) and (35), we have

M =
k∑

l=0

M(r, l) (36)

≤ 2qkb

(b(q − 1))αk
(

1 −
√

2κq ln b
(q−1)b − q

(q−1)b

)αk

+ 2kq(b+1−α)k+1

bκ(1−α)k
(37)

≤ 2 max{T1, T2} (38)

where

T1 = 2qkb

(b(q − 1))αk
(

1 −
√

2κq ln b
(q−1)b − q

(q−1)b

)αk , (39)

T2 = 2kq(b+1−α)k+1

bκ(1−α)k
. (40)

Therefore the rate can be bounded as

R = log M

kb
≤ 1

kb
+ max

{
log T1

kb
,

log T2

kb

}
. (41)

From (39) and (40), we have

log T1

kb
≤ log2 q − α log2(b(q − 1))

b

− α

b
log2

(
1 −

√
2κq ln b

(q − 1)b
− q

(q − 1)b

)
+ 1

kb
,

(42)
log T2

kb
≤ log2 q − κ(1 − α) log2 b

b
+ (1 − α) log2 q

b

+ 1

b
+ log2 q

kb
. (43)

Now choose α and κ as follows:

α = 1 − 1
3
√

b
, (44)

κ = α

1 − α

log2(b(q − 1))

log2 b
(45)

=
(

3
√

b − 1
) log2(b(q − 1))

log2 b
. (46)

Note that we have α → 1 and 2κq ln b
(q−1)b → 0 as b → ∞. Using

the fact that ln(1/(1 − x)) ≤ 2 x for x ∈ (0, 1/2] in (42), we
have the following bound on T1 for sufficiently large b:

log T1

kb
≤ log2 q − α log2(b(q − 1))

b
+ 1

kb
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+ 2α

b ln 2

(√
2κq ln b

(q − 1)b
+ q

(q − 1)b

)
(47)

= log2 q − log2(b(q − 1))

b
+ log2(b(q − 1))

b4/3

+ 1

kb
+ 2α

b ln 2

(√
2κq ln b

(q − 1)b
+ q

(q − 1)b

)
.

Also substituting the values of α, κ from (44) and (46) in (43),
we have
log T2

kb
≤ log2 q − log2(b(q − 1))

b
+ 1

b
+ log2(b(q − 1))

b4/3

+ log2 q

b4/3 + log2 q

kb
. (48)

Finally, substituting the values of α, κ into the last term in (48),
it can be seen that this term is O(

√
ln b/b4/3), which yields

the desired result.

IV. SEGMENTED DELETION CORRECTING CODES

In this section, we show how to construct a segment-by-
segment zero-error code for the segmented deletion channel.
For simplicity, we first introduce binary codes and explain the
binary decoder. We then highlight the differences in the non-
binary case.

If the decoder knew the segment boundaries, then simply
using a VT code for each segment would suffice. Since the
segment boundaries are not known, recall from the example
in (1) that this approach is inadequate if segment-by-segment
decoding is to be used. Our construction chooses a subset of
a VT code for each segment, with prefixes determined by the
last symbol of the previous segment.

A. Binary Code Construction

For 0 ≤ a ≤ b, define the following sets.

A0
a �

{
S ∈ {0, 1}b : syn(S) = a, s1s2 = 00

}
,

A1
a �

{
S ∈ {0, 1}b : syn(S) = a, s1s2 = 11

}
. (49)

For c ∈ {0, 1}, the set Ac
a ⊆ VTa(b) is the set of VT codewords

that start with prefix cc. We now choose the sets with the
largest number of codewords, i.e., we choose A0

a0
and A1

a1
where we define

a0 = arg max
0≤a≤b

|A0
a |, a1 = arg max

0≤a≤b
|A1

a |. (50)

By defining Ms = min{|A0
a0

|, |A1
a1

|}, we can now construct
A0 ⊆ A0

a0
by choosing any Ms sequences from A0

a0
; similarly

construct A1 ⊆ A1
a1

by choosing any Ms sequences from A1
a1

.
The sets A0 and A1 are subsets of the VT codes VTa0(b)
and VTa1(b), containing sequences starting with 00 and 11,
respectively.

Finally, the overall code of length n = kb is constructed by
choosing a codeword for each segment from either A0 or A1.
The codeword for the first segment is chosen from A0. The
codeword for segment i = 2, . . . , k is chosen as follows: if the
last code bit in segment (i − 1) equals 0, then the codeword
for segment i is chosen from A1; otherwise it is chosen
from A0.

B. Rate

The rate of the above codes can be bounded from below as

R ≥ 1 − 1

b
log2(b + 1) − 2

b
. (51)

Indeed, there are 2b−2 binary sequences of length b whose first
two bits equal 0. Each of these sequences belongs to exactly
one of the sets A0

0, . . . ,A0
b. Therefore, the largest among these

(b + 1) sets will contain at least 2b−2/(b + 1) sequences and
thus,

|A0
a0

| ≥ 2b−2

b + 1
. (52)

A similar argument gives the same lower bound for |A1
a1

|,
hence

Ms ≥ 2b−2

b + 1
. (53)

Taking logarithms gives (51).
From (51), we see that the rate penalty with respect to

VT codes is at most 2
b due to the prefix of length 2. As an

example, for b = 16 our code has 964 codewords, while the
greedy algorithm described in [1], gives 740; this is reduced to
652 when the search is restricted to VT codes. More examples
are reported in Table I.

C. Decoding

Thanks to the segment-by-segment code construction,
decoding will also proceed segment by segment. Decoding
proceeds in the following simple steps.

In order to decode segment i , for i = 1, . . . , k, assume that
the first i − 1 segments have been decoded correctly. Thus the
decoder knows the correct starting position of segment i in Y ;
we denote it by pi + 1.

By examining the last bit of segment (i − 1), the decoder
learns the correct syndrome for the codeword in segment i ,
i.e., either a0 or a1; recall that segment 1 was drawn from A0.
Without loss of generality, assume it is a0; the decoding for
a1 is identical.

1) The decoder computes the VT syndrome

â = syn
(
Y (pi + 1 : pi + b)

)
(54)

and compares it to the correct syndrome (assumed to
be a0). There are two possibilities:

a) â = a0: The decoder concludes that there is no
deletion in segment i . This is because if there was a
deletion in segment i , then Y (pi +1: pi +b) cannot
have VT syndrome a0 unless Y (pi +1: pi +b) = Si

— indeed, if Y (pi +1: pi +b) = Si , then both these
length b sequences would have syndrome a0 and
Y (pi +1: pi+b−1) as a subsequence, contradicting
the property of VT codes in (11).
In this case, the decoder outputs Ŝi = Y

(
pi + 1 :

pi + b
)
. The starting position of the next segment

in Y is pi + b + 1.
b) â = a0: The decoder knows there is a deletion in

segment i and feeds Y
(

pi + 1 : pi + b − 1
)

to the
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VT decoder to recover the codeword. The output
of the VT decoder is the decoded segment Ŝi . The
starting position of the next segment in Y is pi +b.

2) The decoder now checks the last bit of the decoded
segment ŝi,b . If ŝi,b = 0, the decoder knows that segment
(i + 1) has been drawn from A1; otherwise it has been
drawn from A0. Thus the decoder is now ready to
decode segment (i + 1).

D. Non-Binary Code Construction

We now construct segmented deletion correcting codes for
alphabet size q > 2. For a = 0, . . . , b − 1, and c = 0, . . . ,
q − 1, define following sets:

A j
a,c �

{
S ∈ X b : syn(AS) = a, sum(S) = c,

s1, s2 ∈ X \ { j}}, (55)

for j = 0, . . . , q − 1. Now for each j = 0, . . . , q − 1 define

{a j , c j } = arg max
0≤a≤b−1
0≤c≤q−1

|A j
a,c|. (56)

Similarly to the binary case, the sets A j
a j ,c j for 0 ≤ j ≤ q −1

are used to construct the codebook. Choose the first segment
from A0

a0,c0
. For encoding i th segment (i > 1) we choose a

word from A j
a j ,c j if j is the last symbol of segment i − 1.

The size each set A j
a j ,c j , for 0 ≤ j ≤ q − 1, can be bounded

from below as

Ms ≥ qb−2(q − 1)2

qb
. (57)

Indeed, for any j ∈ {0, (q − 1)}, there are qb−2(q − 1)2

sequences of length b with the first two symbols are not equal
to j . Each of these symbols belong to one of the sets A j

a,c,
where 0 ≤ a ≤ b−1, and 0 ≤ c ≤ q −1. Therefore the largest
set has size at least qb−2(q−1)2

qb . This gives a lower bound on
the rate

R ≥ log2 q − 1

b
log2 b − 1

b
log2 q − 2

b
log2

(
q

q − 1

)
. (58)

Decoding proceeds in a similar way to the binary case. The
main difference is that instead of computing (54), the decoder
computes

â = syn(AZ ), ĉ = sum(Z) (59)

where

Z = Y (pi + 1 : pi + b). (60)

Then, the conditions in cases 1) a) and 1) b) are replaced
by {â = a0 and ĉ = c0} and by {â = a0 or ĉ = c0},
respectively.

V. SEGMENTED INSERTION CORRECTING CODES

A. Binary Code Construction

As in the deletion case, we define a subset of VT codewords
such that upon decoding a segment, there is no ambiguity

in the starting position of the next segment. We define the
following set of sequences

Aa �
{

S ∈ {0, 1}b : syn(S) = a, s1s2 = 01, s3s4 = 01,

S = 011 · · · 1
}

(61)

and

a0 = arg max
0≤a≤b

|Aa |. (62)

Similarly to the previous section, the sets Aa ⊆ VTa(b) are
sets of VT codewords with a prefix of a certain form. Our
code is thus the maximal code in this family, i.e., C = Ak

a0
.

In contrast to the deletion case, the codeword for each segment
is drawn from the same set Aa0 .

In order to find the size of the code, we use similar
arguments to those in the previous section. There are 2b−2

sequences with prefix 01, out of which 2b−4 are removed
because they have prefix 0101; 01 · · · 1 is excluded from Aa

by construction. Each of the 2b−2 −2b−4−1 sequences belong
to exactly one of the sets A0, . . . ,Ab . Therefore, the largest
of these b + 1 sets will have size at least

|Aa0 | ≥ 2b−2 − 2b−4 − 1

b + 1
. (63)

This yields the following lower bound for the rate for b ≥ 6:

R ≥ 1 − 1

b
log2(b + 1) − 2.5

b
. (64)

Hence the rate penalty is at most 2.5
b due to the added

constraints on the prefix.

B. Decoding

Decoding proceeds on a segment-by-segment basis, and as
in the case of deletions, the code structure ensures that before
decoding segment i , the previous (i − 1) segments have been
correctly decoded. Thus the decoder knows the correct starting
position of segment i in Y ; as before, denote it by pi + 1.

1) The decoder computes the VT syndrome

â = syn
(
Y (pi + 1 : pi + b)

)
(65)

and compares it to the correct syndrome a0. There are
two possibilities:

a) â = a0: The decoder knows that there has been
an insertion in this segment and feeds Y

(
pi +

1 : pi + b + 1
)

to the VT decoder to recover
the codeword. The output of the VT decoder is
the decoded segment Ŝi . The decoder proceeds
decoding segment i + 1, skipping step 2. The
starting position in Y for decoding segment i + 1
is pi + b + 2.

b) â = a0: The decoder concludes that there is no
insertion in Y

(
pi + 1 : pi + b

)
. This is because

if there was an insertion in segment i , then Y (pi +
1 : pi + b) cannot have VT syndrome a0 unless
Y (pi + 1 : pi + b) = Si — indeed, if Y (pi + 1 :
pi + b) = Si , then both these length b sequences
would have syndrome a0 and Y (pi +1 : pi +b +1)
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as a supersequence, which contradicts the property
of VT codes in (11).
In this case, the decoder outputs Ŝi = Y

(
pi + 1 :

pi + b
)
.

2) If case 1.b) holds, the decoder has to check whether
ypi+b+1 could be an inserted bit at the very end of the
segment. To this end, the Y (pi + b + 1 : pi + b + 4) is
checked against the prefix conditions for segment i + 1
set in Aa0 .

a) If ypi+b+1 ypi+b+2 = 01: the decoder understands
that there is an irregularity caused by either an
insertion in ypi+b+1, or in ypi+b+2 or both. There-
fore it deletes ypi+b+1 and proceeds to decode
segment i + 1 starting from ypi+b+2.

b) If ypi+b+1 ypi+b+2 = 01, ypi+b+3 ypi+b+4 = 01,
then ypi+b+1 is the correct start of segment i + 1.

c) If ypi+b+1 ypi+b+2 = 01, ypi+b+3 ypi+b+4 = 01:
In this case, the decoder needs to decide among
three alternatives by decoding segment i + 1:

i) ypi+b+3 = 0 is an inserted bit in segment
i + 1 and no inserted bit in segment i ;
let Ỹ1 = ypi+b+1 ypi+b+2 ypi+b+4 · · · ypi+2b+1
denote the length b sequence resulting from
deleting ypi+b+3 from the received sequence.
If syn(Ỹ1) = a0 then Ŝi+1 = Ỹ1.

ii) ypi+b+4 = 1 is an inserted bit in segment i + 1
and no inserted bit in segment i ; let Ỹ2 =
ypi+b+1 ypi+b+2 ypi+b+3 ypi+b+5 · · · ypi+2b+1
denote the length b sequence resulting from
deleting ypi+b+4 from the received sequence.
If syn(Ỹ2) = a0 then Ŝi+1 = Ỹ2.

iii) ypi+b+1 = 0, ypi+b+2 = 1 are inserted
bits in segments i and i + 1, respectively;
let Ỹ3 = ypi+b+3 ypi+b+4 · · · ypi+2b+2 denote
the length b sequence resulting from deleting
ypi+b+1, ypi+b+2 from the received sequence.
If syn(Ỹ3) = a0 then Ŝi+1 = Ỹ3.

When Y (bi +1: bi +4) = 0101, we now show that the three
cases listed in step 2.c) are mutually exclusive, and hence only
one of them will give a matching VT syndrome. What needs
to be checked is that the syndromes of Ỹ1, Ỹ2, Ỹ3 will all be
different. From the very properties of VT codes we know that
syn(Ỹ1) = syn(Ỹ2). Now find that

syn(Ỹ1) − syn(Ỹ3) (mod(b + 1)) (66)

=
b∑

j=1

j ỹ1, j −
b∑

j=1

j ỹ3, j (mod(b + 1)) (67)

= 5 +
pi +2b+1∑

j=pi+b+5

y j − 2 − bypi+2b+2 (mod(b + 1)) (68)

= 3 + wH
(
Y (pi + b + 5 : pi + 2b + 1)

)
+ ypi+2b+2 (mod(b + 1)) (69)

= 0 (70)

where wH (Z) denotes the Hamming weight of sequence Z .
The last step of (70) holds because

3 + wH
(
Y (pi + b + 5 : pi + 2b + 1)

)
+ ypi+2b+2 (mod(b + 1)) (71)

can equal to 0 only if wH
(
Y (pi + b + 5 : pi + 2b + 1)

) =
b − 3 and ypi+2b+2 = 1, implying that both Ỹ1 = Ỹ3 =
011 · · ·1. Since this sequence has been explicitly excluded
from the codebook, we always have strict inequality, and hence
syn(Ỹ1) = syn(Ỹ3). Furthermore, since

syn(Ỹ2) − syn(Ỹ3) = syn(Ỹ1) − syn(Ỹ3) − 1 (72)

is always non-zero, we conclude that there is no ambiguity at
the decoder.

C. The Liu–Mitzenmacher Conditions for
Binary Segmented Codes

Liu and Mitzenmacher [1] specified three conditions such
that any set of binary sequences satisfying these conditions
is a zero-error code for both the segmented insertion channel
and the segmented deletion channel. We list these conditions in
Appendix B, and show that the segmented insertion correcting
code Aa0 described in Sec. V-A satisfies these conditions. This
shows that the segmented insertion correcting code can also
be used for the segmented deletion channel, with the decoder
proposed in [1]. The deletion correcting code described in
Section IV has a slightly higher rate than the insertion cor-
recting code in in Sec. V-A. Moreover, the construction for
the deletion case is more direct and can be generalized to non-
binary alphabets and the segmented insertion-deletion channel.

However, the binary deletion correcting code proposed
in Sec. IV-A (or more precisely, the combined set of
codewords A0

a ∪ A1
a) cannot be guaranteed to satisfy the

Liu-Mitzenmacher conditions. Therefore, the construction in
Sec. IV-A may not be a zero-error code for the segmented
insertion channel, even with an optimal decoder.

It was conjectured in [1] that the rate and size of the
maximal code satisfying the three sufficient conditions grows
with b. As our insertion correcting code Aa0 satisfies the
sufficient conditions, the lower bounds on its rate and size
given in (63) and (64) confirm this conjecture.

D. Non-Binary Code Construction

For the segmented insertion channel with alphabet size
q > 2, we use prefix VT codes similar to those for the
binary case. In this case, however, we set a prefix of length 3.
This incurs a small penalty in rate with respect to the binary
code described in Section V-A, but results in a slightly simpler
decoder. Define the following sets for all a = 0, . . . , b−1 and
c = 0, . . . , q − 1:

Aa,c �
{

S ∈ X b : syn(AS) = a, sum(S) = c,

s1s2s3 = 001
}
. (73)

Now choose the largest set as the codebook, i.e., C = Aa0,c0

where

{a0, c0} = arg max
0≤a≤b−1
0≤c≤q−1

|Aa,c|. (74)
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TABLE II

STATE OF ypi +b+1 WHEN â = a0 AND ĉ = c0

Similar to the binary case, the number of codewords can be
bounded from below as

Ms ≥ qb−3

qb
, (75)

which gives the following lower bound on the rate:

R ≥ log2 q − 1

b
log2 b − 4

b
log2 q. (76)

Decoding proceeds in a similar manner to the binary case.
As the code is somewhat different from the binary one, we give
a few more details about the decoder. Assume that the first
(i − 1) segments have been decoded correctly, and let pi + 1
is the starting point of the i th segment. Let

Z = Y (pi + 1 : pi + b), (77)

and compute

â = syn(AZ ), ĉ = sum(Z). (78)

1) â = a0 or ĉ = c0: The decoder knows there has been
an insertion in the i th segment and feeds Y

(
pi + 1 :

pi +b +1
)

to the non-binary VT decoder to recover the
codeword. The output of the VT decoder is the decoded
segment Ŝi . The starting position of the next segment in
Y is pi + b + 2.

2) â = a0 and ĉ = c0: The decoder concludes that there is
no insertion in segment i and outputs Ŝi = Y

(
pi + 1 :

pi +b
)
. The decoder must then investigate the possibility

of an insertion at the very end of the i th segment in order
to find the correct starting point of the next segment.
This is done as follows. First, if the symbol ypi+b+1 is
not equal to 0, it is an insertion. The decoder deletes
the inserted symbol, and the starting position for the
next segment is (pi + b + 2). Next, if ypi+b+1 = 0 and
there is any symbol different from 0 or 1 in position
(pi +b+2) or (pi +b+3), it is an inserted symbol thanks
to the binary prefix. The decoder deletes the inserted
symbol and sets the starting position of the next segment
to (pi +b+1). If neither of these cases hold, the decoder
follows Table II.

VI. SEGMENTED INSERTION–DELETION

CORRECTING CODES

A. Binary Code Construction

Since we now have both insertion and deletions, the decoder
must first identify the type of edit in a segment prior to
correcting it. Define the following sets:

A0
a �

{
S ∈ {0, 1}b : syn(S) = a, s1s2s3s4s5 = 00111,

sb−2 = sb−1 = sb
}

(79)

A1
a �

{
S ∈ {0, 1}b : syn(S) = a, s1s2s3s4s5 = 11000,

sb−2 = sb−1 = sb
}
. (80)

As in previous sections, these are subsets of VT codewords
with certain constraints. In this case, in order to be able to
identify the edit type, both prefix and suffix constraints have
been added. Based on the above sets, we further define

a0 = arg max
0≤a≤b

|A0
a |, a1 = arg max

0≤a≤b
|A1

a| (81)

and Ms = min{|A0
a0

|, |A1
a1

|}. We construct the sets A0,A1 by
choosing Ms sequences from A0

a0
,A1

a1
, respectively. Finally,

the overall code of length n = kb is constructed by choosing
a codeword for each segment from either A0 or A1. The
codeword for the first segment is chosen from A0. For
i ∈ {2, . . . , k}, if the last bit of segment (i − 1) is 0, then
the codeword for segment i is drawn from A1 and otherwise
from A0.

The size and rate are lower-bounded using the same argu-
ments as in the previous sections. For b ≥ 7, we obtain

Ms ≥ 2b−7

b + 1
(82)

which yields a rate lower bound given by

R ≥ 1 − 1

b
log(b + 1) − 7

b
. (83)

Due to the prefix and suffix constraints, our segmented
insertion-deletion correcting codes have a rate penalty of at
most 7

b .

B. Decoding

As in the previous two cases, decoding proceeds segment-
by segment. We ensure that before decoding segment i ,
the previous (i −1) segments have all been correctly decoded.
Hence, the decoder knows the correct starting position in Y
for segment i , which is denoted by pi + 1. The decoder also
knows whether Si belongs to A0 or to A1. We discuss the case
where Si ∈ A0, so syn(Si ) = a0; the case where Si ∈ A1 is
similar, with the roles of the bits reversed.

The decoder computes the syndrome syn
(
Y (pi +1: pi +b)

)
,

and checks whether it equals a0. There are two possibilities:

1) syn
(
Y (pi + 1 : pi + b)

) = a0: This means that
there is an edit in this segment, we should identify
the type of edit and correct it. We show that can be
done without ambiguity by using the fact that three
last bits of each segment (suffix) are the same, and
considering prefix of the next segment. The decoder’s
decision for each combination of the three consecutive
bits (ypi+b−1, ypi +b, ypi+b+1) is listed in Table III.
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TABLE III

TYPE OF EDIT WHEN syn
(

Y (pi + 1 : pi + b)
)

= a0

Once the type of edit is known, the decoder corrects
the segment using the appropriate VT decoder. We now
justify the decisions listed in Table III.

a) If ypi+b−1 = ypi+b = ypi+b+1: The edit is an
insertion. To see this, assume by contradiction that
it was a deletion. Then at least one of ypi+b and
ypi+b+1 are the first bit of the prefix of Si+1, and
ypi+b−1 is a suffix bit of Si . This is not possible
because by construction, the first two prefix bits of
Si+1 must be different from the suffix bits of Si .

b) If ypi+b−1 = ypi+b = ypi+b+1: The edit is a dele-
tion. To see this, suppose that the edit was an
insertion; then the suffix condition can only be
satisfied if ypi+b+1 is the inserted bit. However,
this implies that syn

(
Y (pi + 1 : pi + b)

) = a0,
which is contradiction.

c) If ypi+b−1 = ypi+b+1 = ypi+b: The edit could be
either an insertion, or a deletion, according to the
rules in lines 3, 4, 5 of Table III. If the the edit is an
insertion, then ypi+b is the inserted bit, therefore
by omitting this bit, the sequence Z = [Y (pi +
1 : pi + b − 1), ypi+b+1] should have VT-syndrome
equal to a0. Therefore, if syn(Z) = a0, then the
edit is deletion; if syn(Z) = a0, we need to check
the prefix of the next segment to determine the type
of edit.
If syn(Z) = a0: If ypi+b+1 = ypi+b+2 = ypi+b+3,
then the edit in segment i is a deletion (it can
be verified that the prefix condition for segment
(i + 1) cannot otherwise be satisfied with at most
one edit),. In all other cases the edit in segment
i is insertion, with ypi+b being the inserted bit.
We observe that when syn(Z) = a0, Si = Z with
either type of edit, but the decoder needs to infer
the type of edit in order to guarantee the correct
starting position for the next segment.

d) If ypi+b−1 = ypi+b = ypi+b+1: In this case,
ypi+b−2 determines the type of edit: if ypi+b−2 =
ypi+b−1 the edit is a deletion, otherwise it is an
insertion. This can be seen by examining the suffix
condition: if the edit is an insertion then ypi+b−1 is
the inserted bit therefore ypi+b−2 belongs to suffix
of Si , hence ypi+b−2 = ypi+b = ypi+b+1. On the
other hand, if the edit is a deletion, then ypi+b−2
and ypi+b−1 belongs to suffix of Si , so they should
be equal.

TABLE IV

STATE OF ypi +b+1 WHEN syn(Y (pi + 1 : pi + b)) = a0

Hence we have shown that whenever syn
(
Y (pi +1: pi +

b)
) = a0, we can uniquely decode Si and determine the

correcting starting position for the next segment.
2) syn

(
Y (pi +1: pi +b)

) = a0: In this case, by combining
the arguments in step 1.a) of the deletion decoder and
step 1.b) of the insertion encoder, we conclude that
Ŝi = Y (pi + 1 : pi + b). To determine the correct
starting position for the next segment, we have to
investigate the possibility of an insertion at the end of
the block, i.e., determine whether ypi+b+1 is an inserted
bit. This can be done by examining the prefix of Si+1.
We consider five bits, Y (pi + b + 1 : pi + b + 5), and
for all 32 cases determine the state of ypi+b+1. For the
simplicity, assume that the last bit of Si is 1, so that the
prefix for Si+1 is 00111; the other case is identical, with
0 and 1 interchanged.
First, if ypi+b+1 = 1, then it is an inserted bit (this is
16 of the 32 cases). Table IV lists the type of edit for
each of the other cases when ypi+b+1 = 0. These are
justified below.

a) If Y (pi + b + 1 : pi + b + 5) = 011uv for some
bits u, v, then ypi+b+1 is not an insertion corre-
sponding to segment i : if it was inserted, then
decoding for segment (i + 1) would start with
the bits 11 . . ., which cannot be matched with the
prefix 00111 with only one edit. Hence the correct
starting position for decoding segment (i + 1) is
pi + b + 1.

b) If Y (pi + b + 1 : pi + b + 5) = 000uv, then
ypi+b+1 (or another 0 from the run) is an insertion
for segment i , as 000u does not match 0011
unless we remove a zero form the run.
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c) The cases Y (pi + b + 1 : pi + b + 5) = 01000,
01010, 00100 cannot occur as they cannot be
matched with the required prefix 00111 through
any valid edits for segment i + 1, whether or not
ypi+b+1 is inserted.

d) If Y (pi + b + 1 : pi + b + 5) = 01001 , then
ypi+b+1 is an insertion for segment i as this is the
only option consistent with the prefix 00111.

e) If Y (pi + b + 1 : pi + b + 5) = 0011u or 01011,
then ypi+b+1 = 0 is not an insertion for segment i ,
and is the starting bit for decoding segment (i +1).

f) If Y (pi + b + 1 : pi + b + 5) = 00101, we need
to compare the VT syndromes of two sequences
to determine the status of ypi+b+1. We will also
decode Si+1 in the process. If ypi+b+1 = 0 is
inserted, then ypi+b+3 = 1 should also be inserted,
therefore Si+1 = Z1 where Z1 = [00, Y (pi +b+5:
pi +2b+2)]. On the other hand, if ypi+b+1 is not
inserted then ypi+b+4 = 0 should be an inserted
bit, therefore, Si+1 = Z2 where Z2 = [001, Y (pi +
b + 5 : pi + 2b + 1)]. However, Z1 and Z2 will
always produce different syndromes and only one
of them will be equal to a0, the correct syndrome
for segment (i +1). Thus we can correctly identify
whether ypi+b+1 was an insertion for segment
i or not.

Hence we have shown that whenever syn(Y (pi +1: pi +
b)) = a0, we can uniquely decode Si and determine the
correcting starting position for the next segment.

The decoding algorithm described above was simulated in
Matlab to confirm that the code is indeed zero-error. The
Matlab files for implementing the codes proposed for all three
binary segmented edit models are available at [15].

C. Non-Binary Code Construction

We now construct segmented insertion-deletion correcting
codes for alphabet size q > 2. For a = 0, . . . , b − 1, and
c = 0, . . . , q − 1, define following sets:

A0
a,c �

{
S ∈ X b : syn(AS) = a, sum(S) = c,

s1s2s3s4s5 = 00111, sb−2 = sb−1 = sb
}
, (84)

A1
a,c �

{
S ∈ X b : syn(AS) = a, sum(S) = c,

s1s2s3s4s5 = 11000, sb−2 = sb−1 = sb
}
. (85)

For j = 0, 1 define

{a j , c j } = arg max
0≤a≤b−1
0≤c≤q−1

|A j
a,c|. (86)

We use the sets A0
a0,c0

and A1
a1,c1

to construct the codebook
by alternating depending on the last symbol of the previous
segment. We set Ms = min{A0

a0,c0
,A1

a1,c1
} and construct the

sets A0,A1 by choosing Ms sequences from A0
a0,c0

,A1
a1,c1

,
respectively. The codeword for the first segment is chosen
from A0. For i ∈ {2, . . . , k}, if the last symbol of segment
(i − 1) is an even number, then the codeword for segment i
is drawn from A1; if the last symbol of segment (i − 1) is an
odd number, the codeword is drawn from A0.

The number of codewords per segment satisfies

Ms ≥ qb−7

qb
(87)

and thus a lower bound on the rate is

R ≥ log2 q − 1

b
log2 b − 8

b
log2 q. (88)

The decoding is almost identical to the binary case. As with
previous decoders, to decode segment i , it is assumed that
the first (i − 1) segments have been decoded correctly. Let
Z = Y (pi + 1 : pi + b), where pi + 1 is the starting position
of the i th segment. Compute

â = syn(AZ ), ĉ = sum(Z). (89)

The decoder checks whether {â = a0 and ĉ = c0} or {â =
a0 or ĉ = c0}. In the first case, the decoder sets Ŝi = Y (pi +
1 : pi + b) and in order to find the starting point of segment
i+1, follows the same case breakdown as in the binary decoder
(see case 2 of the binary decoder). On the other hand, if {â =
a0 or ĉ = c0}, thanks to the prefix-suffix code structure being
the same as the binary one, the decoder follows exactly the
same case breakdown (see case 1 of the binary decoder) in
order to identify the type of edit and correct it.

VII. CONCLUSION

We have considered three segmented edit channel models
and proposed zero-error codes for each of them over alphabets
of size q ≥ 2. The proposed codes are constructed using
carefully chosen subsets of VT codes, and can be decoded in
a segment-by-segment fashion in linear time. The rate scaling
for the codes is shown to be the same as that of the maximal
code; the upper bound of Theorem 17 shows that the rate
penalty is of order 1/b.

One direction for future work is to obtain tighter non-
asymptotic upper and lower bounds on the cardinality of
these codes. For tighter upper bounds, the linear programming
technique from [16] is a promising approach. For tighter lower
bounds, one approach would be to use the known formulas for
the cardinality of VT codes [2], and adapt them to our setting
where prefix and/or suffix constraints are added.

APPENDIX

A. Proof of (32)

Let U be a Binomial
(

b, q−1
q

)
random variable, with mean

μ = b(q−1)
q . Then, using a standard Chernoff bound for a

binomial random variable (see, for example [17, Th. 4.5]),
we have for any � > 0:

P(U ≤ μ(1 − �)) ≤ exp

(−μ�2

2

)
. (90)

Choosing � =
√

2κq ln b
(q−1)b , we have

μ(1 − �) = b(q − 1)

q
−

√
2κ(q − 1)b ln b

q
(91)

= r, (92)
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where r is defined in (26). Using this in (90), we obtain

P(U ≤ r) = P(U ≤ μ(1 − �)) (93)

≤ exp

(−μ�2

2

)
(94)

= b−κ, (95)

where the last equality is obtained by substituting the values
of μ and �. Finally, note that

P(U ≤ r) ≥ P(U ≤ (r − 1))

=
r−1∑
t=0

(
1 − 1

q

)t (
1

q

)b−t (
b

t

)
(96)

≥
r−1∑
t=0

(
1 − 1

q

)t (
1

q

)b−t (
b − 1

t

)
. (97)

Combining (97) and (95) yields the desired inequality.

B. The Liu–Mitzenmacher Conditions

Let I1(X) denote the set of all sequences obtained by adding
one bit to the binary sequence X . Then C ⊆ {0, 1}b is a binary
zero-error code for both the segmented insertion channel and
the segmented deletion channel (with segment length b) if the
following conditions are satisfied.

1) For any U, V ∈ C, with U = V , I1(U) ∩ I1(V ) = ∅;
2) For any U, V ∈ C, with U = V , prefix(I1(U))∩

suffix(I1(V )) = ∅;
3) Any string of the form y∗(zy)∗ or y∗(zy)∗z, where

y, z ∈ {0, 1}, is not in C.
Here prefix(X) denotes the subsequence of X obtained exclud-
ing the last bit, suffix(X) the subsequence obtained excluding
the first bit, and X∗ is the regular expression notation referring
to 0 or more copies of sequence X . The set prefix(I1(U)) is
defined as {prefix(X) : X ∈ I1(U)}. The set suffix(I1(V )) is
defined similarly.

We now show that the insertion correcting code Aa0 defined
in Sec. V-A satisfies these conditions. Since Aa0 is a subset
of a VT code and is hence a single insertion correcting code,
the first condition is satisfied.

We next verify the third condition. All the codewords in
Aa0 start with 01. It is easy to see that any sequence starting
with 01 and violating the third condition in either of the two
ways must have 0101 as its first four bits. But these sequences
are excluded from Aa0 , so each codeword in Aa0 satisfies the
third condition.

It remains to prove that the second condition is satisfied.
Assume towards contradiction that there exist codewords
U, V ∈ Aa0 such that U = V and the set W =
prefix(I1(U)) ∩ suffix(I1(V )) is non-empty. Suppose that the
sequence Z ∈ W , and Z1 ∈ I1(U) and Z2 ∈ I1(V ) are length
(b +1) sequences such that that Z = prefix(Z1) = suffix(Z2).

Since U ∈ Aa0 and Z1 ∈ I1(U), prefix(Z1) will start with
a 0, unless the inserted bit in Z1 is a 1 and is inserted exactly
at the beginning of U , i.e., unless Z1 = [1, U ]. Also, since
Z2 ∈ I1(V ), suffix(Z2) will start with 1 unless Z2 is obtained
by adding a bit at the beginning of V , i.e. Z2 = [h, V ], for
h ∈ {0, 1}. Since Z = prefix(Z1) = suffix(Z2), clearly one of

the above two cases should hold. First, assume that Z starts
with 1 and therefore we have Z1 = [1, U ]. Now since U ∈ Aa0

starts with 01, we have

Z = prefix(Z1) (98)

= Z1(1 : b) (99)

= [1, U(1 : b − 1)] (100)

= [101, U(3 : b − 1)]. (101)

Now we also know that Z = suffix(Z2), so suffix(Z2) =
[101, U(3 : b − 1)]. Now, notice that Z2 ∈ I1(V ) and first bit
of V is 0, so the first two bits of Z2 cannot be 11. We therefore
have

Z2 = [0101, U(3 : b − 1)]. (102)

But we know that V ∈ Aa0 cannot start with 0101, so either
the third or the fourth bit in Z2 is the inserted bit. Therefore,
we know that

V = [01z, U(3 : b − 1)], (103)

for z ∈ {0, 1}. We also know that

U = [01, U(3 : b − 1), ub], (104)

where ub ∈ {0, 1}. But this contradicts condition 1 (which
has already been verified) because we obtain the same length
(b + 1) sequence by: i) inserting ub to the end of V , and
ii) inserting z after the second bit of U .

Next consider the second case where Z starts with a 0.
As explained above, we then have Z2 = [h, V ], and hence,
Z = suffix(Z2) = V . Therefore prefix(Z1) = V , so one can
obtain Z1 by adding the last bit of Z1 to V . Therefore Z1 ∈
I1(U) ∩ I1(V ), which is a contradiction. This completes the
proof that Aa0 satisfies all the three conditions.
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