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Abstract—This correspondence presents a simple method to accu-
rately compute the error probability of bit-interleaved coded modulation
(BICM). Thanks to the binary-input output-symmetric (BIOS) nature
of the channel, the pairwise error probability (PEP) is equal to the tail
probability of a sum of random variables with a particular distribution.
This probability is in turn computed with a saddlepoint approximation. Its
precision is numerically validated for coded transmission over standard
Gaussian noise and fully interleaved fading channels for both convolutional
and turbo-like codes.

Index Terms—Additive white Gaussian noise (AWGN) channel, bit-inter-
leaved coded modulation (BICM), error probability, saddlepoint approxi-
mation, Gaussian approximation, fading channel.

I. INTRODUCTION

Bit-interleaved coded modulation (BICM) was introduced by Ze-
havi [1] as a pragmatic coding scheme for spectrally efficient modu-
lations. Under the assumption of sufficient bit interleaving at the en-
coder output, it was later extensively studied by Caire et al. [2], who
suggested that the system essentially behaves as a memoryless binary-
input output-symmetric (BIOS) channel. This consideration allows for
an easy calculation of channel capacity (average mutual information)
and cutoff rate for arbitrary modulation alphabets and symbol labelings.
However, the analysis of error probabilities in [2] was either not tight
or exceedingly complex to compute. In this correspondence, we elab-
orate on their methods and obtain a simple and very accurate method
to estimate the error probability.

II. ERROR PROBABILITY ANALYSIS

A. Channel Model

We study coded modulation over Gaussian noise channels. The dis-
crete-time received signal can be expressed as

yk =
p
SNRhkxk + zk; k = 1; . . . ; L (1)

where yk is the (complex-valued, i.e., yk 2 C) kth received sample,
hk 2 C is the kth fading attenuation, xk 2 C is the transmitted signal
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at time k, and zk 2 C is the kth noise sample, assumed to be complex
Gaussian independent and identically distributed (i.i.d.) �NC(0; 1).
BICM codewords xxx = (x1; . . . ; xL) are obtained by bit interleaving
the codewords ccc = (c1; . . . ; cN) of the code C, each of dimension K
information bits and length N , and mapping over the signal constel-
lation X with the labeling rule � : f0; 1gM ! X ;M = log2 jX j.
The corresponding trasnsmission rate is R = KM

N
bits per channel

use. The average received signal-to-noise ratio is SNR. We denote the
vector of received symbols by yyy = (y1; . . . ; yL). The standard additive
white Gaussian noise (AWGN) and fully interleaved Rayleigh-fading
channels are obtained from (1) by simply letting hk = 1 and hk �
NC(0; 1), respectively.1 The operation is depicted in Fig. 1.

B. Error Probability Under ML Decoding

For maximum-likelihood (ML) decoding, the error probability of
linear binary codes over BIOS channels is accurately given by the
union bound in the region above the cutoff rate [3]. Let Ad denote
the number of codewords in C with Hamming weight d. In the region
above the cutoff rate, the codeword error probability is very closely
upper-bounded by

Pe �
d

AdPEP(d;�;X ; SNR) (2)

where PEP(d;�;X ; SNR) is the pairwise error probability (PEP) for
two codewords differing in d bits.2 Estimating the error probability
reduces therefore to computing the PEP. Assuming that codeword ccc
was transmitted, the probability of choosing a candidate codeword ccc0

at Hamming distance d from ccc is given by

PEP(d; �;X ; SNR) = Pr(Pr(ccc0 j yyy) > Pr(ccc j yyy) j ccc)

= Pr
i

log
Pr(c0i j yk(i))
Pr(ci j yk(i)) > 0 j ccc

where we have used that the ith bit depends only its corresponding
channel output yk(i). The random elements in the channel output in-
clude the noise and fading realizations z and h, respectively, the par-
ticular modulation symbol x, and the bit position in the binary label
m. In order to avoid cumbersome notation, we group them in a vector
V �

= (z; h; x;m); V depends on the modulation alphabet X , the la-
beling �, and SNR. Taking into account that only the bit positions for
which c0i 6= ci must be considered, the PEP is given by

PEP(d; �;X ; SNR) = Pr

d

j=1

�j > 0 (3)

where we have defined a new random variable, denoted by �, the a
posteriori log-likelihood ratio, as

� = log
Pr(ĉ = �c j V)
Pr(ĉ = c j V) : (4)

Thanks to the presence of the interleaver [2], the variables � can be
considered, to a practical extent, i.i.d. Furthermore, due to the sym-

1We assume perfect channel state information (CSI) at the receiver. However,
the extension of technique described here to the nonperfect CSI case is straight-
forward.

2Similarly, the bit-error probability P is given by the right-hand side of (2)
with A replaced by ~A = A ;A being the number of codewords
in C with output Hamming weight d and input weight i.
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Fig. 1. Channel interfaces: standard nonbinary symbols at channel level, or at demodulator level, with binary symbols.

metry of the channel output,3 their distribution does not depend on the
value of c, and we can safely assume that the all-zero codeword has
been transmitted.

It should be noted that this formulation is simply a restatement of
the results in [2] with a different notation. In particular, the exact de-
pendence of the error probability on the modulation symbol or the bit
index is dropped, or rather considered another random variable similar
to the noise or fading realizations. Fig. 1 shows the location of � in the
communication channel, after the demodulator.

The a posteriori probabilities used in the computation of � are given
by

Pr(ĉ = c j V) �
= Pr(ĉ = c j z; h; x;m)

/
x2X

exp(�jy �
p
SNRhxj2) (5)

where Xm

c is the subset of signal constellation points with mth binary
label position equal to c.

In [2], three alternative methods were given to compute
PEP(d; �;X ; SNR): the Bhattacharyya-union bound (B-UB),
the BICM bound, and the expurgated BICM union bound (ex-UB). Of
these, the B-UB will be analyzed later. The BICM bound was used as
a means to derive the tighter expurgated bound and, therefore, we do
not analyze it further. It is interesting to note that a careful examination
of the expression for the expurgated bound in [2] reveals that it is
equal to (4) restricting the sum in (5) to one single term, the nearest
neighbor. Proceeding directly from the assumption of a memoryless
BIOS channel, their derivation can be significantly shortened. Further-
more, for non-Gray labeling, the effect of the other neighbors is not
negligible, and thus the ex-UB may not be accurate [2].

C. Log-Likelihood Ratio Distribution

For some BIOS channels, the ratio � has a known and easily man-
ageable distribution. For example, for the binary-symmetric channel
(BSC) � is a binomial random variable. For the binary-input AWGN
channel with signal-to-noise ratio SNR, � is normally distributed
N (�4SNR; 8SNR). A little algebra shows that for binary-input
Rayleigh-fading channels, the density is two-sided exponential

f�(�) =
1

4 SNR(1+SNR)

� exp ��

2
1+sign(�)

1 + SNR

SNR
: (6)

Even though a closed-form expression for the density of � for BICM
seems difficult to obtain, it is nevertheless simple to evaluate it by com-
puter simulation if required.

3For signal constellations X that lead to a BICM channel which is not sym-
metric, the channel can be rendered BIOS by using the mapping � and its com-
plement �� with probability 1=2 [2].

In estimates of tail probabilities, the cumulant transform �(s) (or
cumulant generating function) of a random variable � is a more con-
venient representation than the density. The transform is given by

�(s)
�
= logE[es�] (7)

with s 2 C [4]. Using the definition of �, we rewrite �(s) as

�(s) = logEV
Pr(ĉ = 1 j V)
Pr(ĉ = 0 j V)

s

(8)

where the subscript V indicates that the expectation is taken with re-
spect to all nuisance parameters V = (z; x; h;m). This expectation
can be easily evaluated by numerical integration using the Gauss–Her-
mite (for the AWGN channel) and a combination of the Gauss–Hermite
and Gauss–Laguerre (for the fading channel) quadrature rules, which
are tabulated in [5].

It will also prove convenient to define the saddlepoint ŝ as the value
for which �0(ŝ) = 0. It can be shown that this point exists and is
unique [6]. For BIOS channels, symmetry dictates that the saddlepoint
is placed at ŝ = 1=2, with no need to carry an explicit numerical min-
imization step [7].

Fig. 2 shows the computer-simulated density of � for 16-QAM over
an AWGN channel and 8-PSK over a Rayleigh-fading channel with
SNR = 12 dB and SNR = 7 dB, respectively. In both cases, the la-
beling is Gray. For the sake of comparison, Fig. 2 also shows the distri-
bution of a Gaussian random variable with distribution N (�4
; 8
),
with 
 = ��(ŝ). It should be noted that this Gaussian approximation
is valid in the tail of the distribution, rather at the mean as would be
the case for the standard Gaussian approximation N (E[�];E[�2] �
E[�]2). It is remarkable how close the tails are to the tail of a Gaussian
random variable for the case of AWGN. For the Rayleigh fading, the
density inherits the exponential behavior of the binary-input case, and
the Gaussian approximation to the tail is somewhat less accurate.

D. Gaussian Approximation

The preceding discussion suggests approximating the PEP by

PEP(d; �;X ; SNR) ' Q( �2d�(ŝ)) (9)

a result which was heuristically introduced in [8]. The approximation in
(9) corresponds as well to the zeroth-order term in the Lugannani–Rice
formula [9] (see also [10]).

E. Bhattacharyya Union Bound

The Bhattacharyya bound [7] can be used to upperbound the PEP as

PEP(d; �;X ; SNR) � ed�(ŝ) (10)

= EV
Pr(ĉ = 1 j V)
Pr(ĉ = 0 j V)

d

: (11)

Notice that this coincides with the Chernoff bound as ŝ = 1=2. Using
this in (2) we obtain the B-UB proposed in [2].
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Fig. 2. Density of the a posteriori log-likelihood ratio �: empirical distribution (solid line, computer simulated) and Gaussian approximation to the tail
(dash-dotted) for 16-QAM/8-PSK, Gray mapping, and AWGN/Rayleigh fading.

F. Saddlepoint Approximation

In the Appendix I, we present the derivation of the saddlepoint ap-
proximation and of an estimate of the approximation error to the PEP.
Even though the derivation in the Appendix is uniformly valid for all
values of the saddlepoint ŝ, including small values of ŝ, in our case this
is not required as ŝ = 1=2. Keeping only the first-order term in the
asymptotic series, the PEP can be approximated by

PEP(d; �;X ; SNR) =
1

2�d�00(ŝ)ŝ
ed�(ŝ) 1 +O(d�00(ŝ))�1

(12)

where the term O(d�00(ŝ))�1 decays fast as a power of (d�00(ŝ))�1.
The effect of the correction is found to be negligible in practical cal-
culations, which implies that we need not sum over any more terms in
the asymptotic series and we may then drop the O( ) term.

The exponent is the same as for the Bhattacharyya bound, in accor-
dance to the asymptotic optimality of the latter, and coincides as well
with the exponential decay of the Gaussian approximation. Note that
efficient computation of the second derivative �00(ŝ)

�00(ŝ) =
E[�2eŝ�]

E[eŝ�]

=
1

E[eŝ�]
EV log

Pr(ĉ = 1 j V)

Pr(ĉ = 0 j V)

2
Pr(ĉ = 1 j V)

Pr(ĉ = 0 j V)

(13)

can again be performed using Gaussian quadrature rules.
It is worthwhile remarking that the method advocated in [2] to com-

pute this probability for the expurgated union bound (UB) was the use
of integration in the complex plane. It can be seen 4 that the saddlepoint

4With the caveat indicated at the end of Section II-B on the metrics (5).

method is an alternative to the complex-plane integration. Instead of di-
rectly computing the integral, its value is very accurately approximated
with a method of significantly lower complexity.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we show some numerical results that illustrate the ac-
curacy of the proposed methods as well as its asymptotic behavior. In
particular, we show the following: the B-UB, the saddlepoint approx-
imation (12) union bound (SP-UB), the Gaussian approximation tan-
gential-sphere bound (GA-TSB) [8],5 and the simulation of the bit-error
rate (BER sim). For every block of information bits a different bit in-
terleaver is randomly generated.

A. AWGN Channel

Figs. 3 and 4 show the bit-error probability as a function ofEb=N0 =
SNR=R for the aforementioned methods and for convolutional and
repeat–accumulate (RA) codes with 16-QAM in the AWGN channel
with no fading. In Fig. 3, we use the optimum 64-state and rate-1=2
convolutional code with Gray and set partitioning mappings and in Fig.
4 an RA code [12] of rate 1=4 with Gray mapping.

The performance at medium-to-high signal-to-noise ratio is very
well approximated by both the Gaussian and the saddlepoint ap-
proximations, for all considered labelings and codes. Note that the
performance estimate in the case of set-partitioning labeling remark-
ably improves the bound presented in [2]. In essence, this can be
traced back to the accuracy of the Gaussian approximation to the tail
of the log-likelihood ratios �, already discussed in Section II-C. The
B-UB yields the correct decay of the bit error curve but it remains
at a fixed gap from the true bit error probability. The accuracy of

5This is the standard tangential sphere bound [11] for a binary-input AWGN
channel with SNR = ��(ŝ).
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Fig. 3. Comparison of simulation and saddlepoint and Gaussian approximations on the BER of BICM with a 64-state, rate-1=2 convolutional code with 16-QAM
modulation with Gray and set partitioning mapping.

Fig. 4. Comparison of simulation and saddlepoint and Gaussian approximations on the BER of BICM with a RA code of rate 1=4 with 16-QAM modulation and
Gray mapping, K = 1024 information bits, 20 iterations of belief propagation decoding the AWGN channel.

the union bound-based approximations for the RA code ensemble
appears only in the error floor region, since the union bound is not
tight for random-like codes for SNR below the corresponding cutoff
rate. Nevertheless, the GA-TSB yields a fairly good estimate of the
waterfall behavior of the error curve also for low SNR.

In all cases, the decay of the bit error for increasing signal-to-noise
ratio seems to be of exponential nature. Appendix III proves the asymp-
totic validity of this conjecture and shows that

lim
SNR!1

�(ŝ)

SNR
= �

d
2
min

4
(14)

where dmin is the minimum Euclidean distance of the constellation. As
outlined in the proof, at large SNR, BICM behaves as a binary modu-
lation with distance dmin, regardless of the mapping. This result con-
firms that BICM preserves the properties of the underlying binary code
and that for large SNR the error probability decays exponentially with
SNR as e

� d SNR. In this line, Fig. 5 shows � �(ŝ)
SNR

for 16-QAM
with Gray and set partitioning mappings in the AWGN channel. The

asymptotic value is
d

4
= 0:1, as established by the preceding result.

In the Gaussian approximation, the quantity � �(ŝ)
SNR

can be interpreted
as the SNR scaling with respect to SNR when using BICM [8] and
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Fig. 5. Cumulant limits:� and for 16-QAM modulation with Gray and set partitioning mapping in the AWGN channel and � (ŝ) for 16-QAM and
8-PSK with Gray mapping in the Rayleigh-fading channel.

thus, the asymptotic scaling depends only on the signal constellation
X (through its minimum distance) and not on the labeling �.

As shown in Appendix I, the second-order cumulant evaluated at the
saddlepoint �00(ŝ) plays an important role in assessing the error of the
approximation. Appendix III also shows that

lim
SNR!1

�00(ŝ)

SNR
= 2d2min: (15)

Fig. 5 also shows � (ŝ)
SNR

for 16-QAM with Gray and set partitioning
mappings in the AWGN channel. The limit coincides with the above
result, and implies that, in the AWGN channel, the saddlepoint approx-
imation becomes more and more accurate as SNR grows.

B. Fully Interleaved Rayleigh Fading Channel

Figs. 6 and 7 show the estimates of the bit error probability for
convolutional and RA codes, respectively, in a fully interleaved
AWGN channel with Rayleigh fading. Fig. 6 shows two cases, a
rate-2=3, 8-state optimum code over 8-PSK, and the rate-1=2, 64-state
optimum code over 16-QAM both with Gray mapping. Fig. 7 shows
the performance of an RA code of rate 1=4 with Gray mapping and
16-QAM modulation.

Similarly to the AWGN case, the three approximations to the error
rate give the correct slope of the decay with SNR at medium-to-high
signal-to-noise ratio, while the horizontal shift of the curves is different.
All approximations are close to the simulated value, but now only the
saddlepoint approximation gives an accurate estimate. As we saw in
Section II-C, the tail of the log-likelihood ratio � in the fading channel
is approximately exponential, rather than Gaussian, and this shape is
not correctly tracked by the Gaussian approximation. On the contrary,

the saddlepoint approximation is able to “learn” the shape of the vari-
able. As evidenced by the results of 16-QAM with the 64-state convolu-
tional code, this effect becomes less apparent for more powerful codes
with large minimum distance, since the sum in (3) contains more terms
and its tail is closer to a Gaussian. Again, the GA-TSB yields the most
accurate estimate of the error probability in the low-SNR region. The
accuracy of the UB-based approximations for the RA code ensemble
is accurate in the error floor region.

Note also that BICM preserves the properties of the underlying bi-
nary code for fully interleaved Rayleigh-fading channels as well, as
the error probability decays as an inverse power of SNR. Appendix III
shows that in the limit for large SNR the rate of decay varies as

lim
SNR!1

�(ŝ)

log SNR
= �1 (16)

and that

lim
SNR!1

�00(ŝ) = 8 (17)

confirming that BICM indeed behaves as a binary modulation and thus,
the asymptotic performance depends on the Hamming distance of the
code rather than on the Euclidean distance. Fig. 5 also shows �00(ŝ) as
a function of SNR for 16-QAM and 8-PSK with Gray mapping in the
fully interleaved Rayleigh-fading channel. As expected, the limit value
is 8, and does not depend on the modulation.

IV. CONCLUSION

In this correspondence, we have presented a simple method to com-
pute a tight approximation to the error probability of BICM. This prob-
ability is found to correspond in a natural way to the tail probability
of a sum of independent random variables, which is calculated using
the saddlepoint approximation. The exact form of the approximation
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Fig. 6. Comparison of simulation and saddlepoint and Gaussian approximations on the bit error rate of BICM with a 8-state, rate-2=3 convolutional code with
8-PSK modulation and a 64-state, rate-1=2 convolutional code with 16-QAM, both with Gray mapping.

Fig. 7. Comparison of simulation and saddlepoint and Gaussian approximations on the bit error rate of BICM with a Repeat-and-Accumulate code of rate 1=4
with 16-QAM modulation and Gray mapping, K = 512 information bits, 20 iterations of belief propagation decoding the fully-interleaved Rayleigh fading
channel.

is new since, as opposed to the usual formulas, it is uniformly valid
for all values of the saddlepoint. The proposed method benefits from
simple numerical integration using Gaussian quadratures for noise and
fading averaging. We have verified the validity of the approximation
for both, convolutional and turbo-like code ensembles with BICM, over

AWGN and fully interleaved Rayleigh-fading channels. In both cases,
the asymptotic behavior of BICM mimics that of binary modulation.
This simple technique constitutes a powerful tool to the analysis of
finite-length BICM. Furthermore, being simpler and tighter than the
original bounds in [2], it shows a wide range of practical applications.
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APPENDIX I
DERIVATION OF THE SADDLEPOINT APPROXIMATION

We wish to estimate the tail probability of Z , a continuous
random variable with density fZ(z). To Z we associate its cumu-
lant transform (or cumulant generating function) �(s), defined as
�(s) = logE[esZ ]; s 2 C. We shall be concerned with the case of
Z being the sum of M random variables Xi; Z = M

i=1Xi. For
independent Xi, it is immediate that the total cumulant transform is
the sum of the transforms for each component. In this case, the density
of Z and its tail probability (or equivalently its distribution) can be
recovered from �(s) by Fourier inversion [6]

fZ(z) =
1

2�j

j1

s=�j1

e�(s)�sz ds (18)

Pr(Z > z) =
1

2�j

j1

s=�j1

e�(s)�sz
ds

s
: (19)

In the following, we study the tail probability only and assume, without
loss of generality, that z > E[Z].

An application of Cauchy’s integral theorem allows us to move the
integration path to the right, from the imaginary axis to a line L =
(ŝ� j1; ŝ+ j1) that crosses the real axis at another point ŝ [13]. It
is most convenient to choose ŝ so that �0(ŝ) = z; this point is called
a saddlepoint, as complex-variable analytic functions do not reach ex-
treme points in their domain of analyticity [13]. This point exists and
is unique due to the convexity of �(s) [6].

Along the integration path s = ŝ+j�;�1 < � <1 and (s�ŝ) =
j�. Using this new variable of integration, we now expand the argument
of the exponential term in a Taylor series around ŝ

�(s)� sz = �(ŝ)� ŝz +
�00(ŝ)

2!
(j�)2 +R2(�) (20)

where we have used that the first derivative is zero and R2(�) is a
shorthand for the remaining terms in the expansion around ŝ

R2(�) =

1

`=3

�(`)(ŝ)

`!
(j�)`: (21)

In the following, we shall indistinctly refer to the `th-order derivative
as the `th-order cumulant. Equation (19) can be rewritten as

Pr(Z > z) =
1

2�
e�(ŝ)�ŝz

+1

�1

e� � eR (�) d�

ŝ+ j�

=
1

2�
e�(ŝ)�ŝz

+1

�1

e� � eR (�) ŝ� j�

ŝ2 + �2
d�

(22)

where we have multiplied numerator and denominator times a factor
ŝ � j�.

Using the Taylor expansion for the exponential, ez = 1

m=0
1
m!
zm,

we have now

(ŝ� j�)eR (�) = (ŝ� j�)

1

m=0

1

m!

1

`=3

�(`)(ŝ)

`!
(j�)`

m

=

1

m=0

~�m(j�)m =

1

m=0

�m�
m

where we have grouped the terms with common factor (j�)m, and
called the corresponding coefficient ~�m; similarly for �m, which in-
corporates the power of j into the coefficient. The symmetry of the
integrand (see (22)) implies that the integral of the terms with odd m
is zero; we need thus consider only the even values of m. The first few
terms are

�0 = ŝ; �2 = 0

�4 = �
�(3)(ŝ)

3!
+ ŝ

�(4)(ŝ)

4!

�6 =
�(5)(ŝ)

5!
� ŝ

�(6)(ŝ)

6!
� ŝ

1

2!

�(3)(ŝ)

3!

2

:

At this point, we normalize the cumulants. As the cumulants are all
linear terms in m, the number of random variables contributing to Z ,
we get rid of this dependence onm by dividing all cumulants by �00(ŝ)
and denote the normalized cumulant by ~�(`)(ŝ). The coefficients �m
become now a polynomial of �00(ŝ)

�4 = �
~�(3)(ŝ)

3!
�00(ŝ) + ŝ

~�(4)(ŝ)

4!
�00(ŝ)

�6 =
~�(5)(ŝ)

5!
�00(ŝ)� ŝ

~�(6)(ŝ)

6!
�00(ŝ)� ŝ

1

2!

~�(3)(ŝ)

3!

2

(�00(ŝ))2:

The degree of the polynomials will prove useful when tracking the var-
ious terms in the final expansion.

The next problem is the evaluation of integrals of the form

I(m) =
�m
2�

+1

�1

exp �
�00(ŝ)

2
�2

�m

ŝ2 + �2
d� (23)

where m is an even number. The value of this integral is given in (34),
in Appendix II. Setting �2 = 1

2
�00(ŝ) and � = ŝ we obtain

I(m) = �m
1 � 3 � � � (m� 1)

ŝ2 2�(�00(ŝ))m+1
f1 +O((�00(ŝ))�1)g: (24)

In particular, for m = 0 and discarding the O() term, we recover the
classical saddlepoint approximation

Pr(Z > z) '
1

2��00(ŝ)ŝ
e�(ŝ)�ŝz : (25)

Note that even though this equation loses its validity for small ŝ, we
may use the original (33) and show that the probability tends to 1=2
for ŝ ! 0

1

2�
�0
�

ŝ
erfc ŝ

�00(ŝ)

2
exp

1

2
ŝ2�00(ŝ)2

=
1

2
erfc ŝ

�00(ŝ)

2
exp

1

2
ŝ2�00(ŝ)2 : (26)

This yields an approximation which is uniformly valid for all values of
the saddlepoint [6].

If required, higher order terms may be obtained by extending the
outlined procedure. The following term is given bym = 4, which gives
an extra term with leading coefficient (�00(ŝ))� . As �4 is a degree-1
polynomial of �00(ŝ), the term grows rather like (�00(ŝ))� . A careful
analysis of the remaining terms shows that there is only one additional
term with the same factor, namely, the one corresponding to the squared
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third cumulant in �6. Putting all this information back together, the
second-order saddlepoint approximation is given by

Pr(Z > z) ' 1

2��00(ŝ)ŝ
e
�(ŝ)�ŝx 1+

1

�00(ŝ)
� 1

ŝ2
� ~�(3)(ŝ)

2ŝ�00(ŝ)

+
�(4)(ŝ)

8�00(ŝ)
� 15

72

�(3)(ŝ)

�00(ŝ)

2

+O((�00(ŝ))�2) : (27)

This additional term in the expansion also serves as an estimate of the
error made by the approximation. In general, the first term of the ex-
pansion gives a very good approximation to the real tail probability,
with no need of considering extra terms.

APPENDIX II
SOME INTEGRALS AND EXPANSIONS OF INTEREST

The error complementary function is defined as

erfc(x) =
2

�

1

x

e
�t

dt:

Its asymptotic series is derived by integration by parts [13] and gives

erfc(x) =
e�x

x
p
�

1

m=0

(�1)m 1 � 3 � � � (2m� 1)

2mx2m
(28)

=
e�x

x
p
�

1� 1

2x2
+

1 � 3
22x4

� 1 � 3 � 5
23x6

+ � � � : (29)

Here the absolute error committed by truncating may be shown to be
smaller than the first neglected term. For large values of the parameter,
the approximation erfc(x) ' 1p

�x
e�x is valid. More precisely,

for values of x larger than 1, the relative error in approximating
erfc(x) exp(x2) by 1p

�x
is smaller than 25% (obtained by evaluation

of the formula, not with an estimate of the error).
An integral that appears often in our calculations is the following

[13]:

+1

�1
exp(��2x2) 1

�2 + x2
dx =

�

�
erfc(��) exp(�2�2): (30)

Note that we may easily apply the asymptotic expansion for erfc(x).
We will also evaluate integrals of the more general form

+1

�1
exp(��2x2) x2n

�2 + x2
dx (31)

where n is an integer. Their value is calculated as follows. First expand
the fraction in the integrand

x2n

�2 + x2
=

n

m=1

(�1)m�1�2(m�1)x2(n�m) + (�1)n �2n

�2 + x2
;

=

n�1

m=0

(�1)n�m�1�2(n�m�1)x2m + (�1)n �2n

�2 + x2

(32)

and then integrate term by term. Each term is seen to be the 2�th
moment of a normal random variable with zero mean and variance

(2�2)�1, whose value is 1 � 3 � � � (2� � 1)(2�2)�� [4]. Combining
these values back into (31) and after some algebraic manipulations we
get

n�1

m=0

(�1)n�m�1�2(n�m�1)
+1

�1
exp(��2x2)x2mdx

+ (�1)n�2n
+1

�1
exp(��2x2) 1

�2 + x2
dx

=

n�1

m=0

(�1)n�m�1�2(n�m�1)
p
�

�
1 � 3 � � � (2m� 1)(2�2)�m

+ (�1)n�2n�
�
erfc(��) exp(�2�2) (33)

=

n�1

m=0

(�1)n�m�1�2(n�m�1)
p
�

�
1 � 3 � � � (2m� 1)(2�2)�m

+ (�1)n�2n�
�

e�� �

��
p
�

�
1

m=0

(�1)m 1 � 3 � � � (2m� 1)

2m�2m�2m
exp(�2�2)

=

n�1

m=0

(�1)n�m�1�2(n�m�1)
p
�

�
1 � 3 � � � (2m� 1)(2�2)�m

+

1

m=0

(�1)n+m�2(n�1)
p
�

�

1 � 3 � � � (2m� 1)

2m�2m�2m

=

1

m=n

(�1)n+m�2(n�m�1)
p
�

�

1 � 3 � � � (2m� 1)

2m�2m
: (34)

In the last step, we exploit that the first n�1 terms in both summations
exactly cancel each other. As it is derived from the asymptotic expan-
sion of erfc(x), the formula inherits the former’s bound on error, that
is, the error by truncating the series is upper-bounded by the absolute
value of the following term.

APPENDIX III
CUMULANT TRANSFORM ASYMPTOTIC ANALYSIS

In this appendix, we show that in the limit for large SNR, BICM
behaves as a binary modulation with squared Euclidean distance

d
2
min

�
= min

x;x 2X
d
2(x; x0) = min

x;x 2X
jx � x

0j2:

In particular, we have that

lim
SNR!1

�(ŝ)

SNR
= �d2min

4
(35)

and

lim
SNR!1

�00(ŝ)
SNR

= 2d2min (36)

for the AWGN channel, and

lim
SNR!1

�(ŝ)

log SNR
= �1 (37)

and

lim
SNR!1

�
00(ŝ) = 8 (38)

for the fully interleaved Rayleigh-fading channel. In this appendix, and
without loss of generality, assume that s is real.
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A. AWGN Channel

Consider first the AWGN channel without fading. Then

lim
SNR!1

�(s)

SNR
= lim
SNR!1

1

SNR

� log Ez;x;m

x 2X e�j
p
SNR(x�x )+zj

x 2X e�j
p
SNR(x�x )+zj

s

:

We can upper-bound the term inside the expectation by upper-bounding
the sum at the numerator by jXj

2
and lower-bounding the sum at the

denominator by e�jzj . Then

x 2X e�j
p
SNR(x�x )+zj

x 2X e�j
p
SNR(x�x )+zj

s

�
jX j

2

s

e
sjzj (39)

and since

E e
sjzj

<1;

if s < 1, we can use the dominated convergence theorem [4]. Note
that since ŝ = 1

2
for BIOS channels, this restriction poses no practical

limitation to the validity of the result. We can then take the dominant
terms in the sums and write that

lim
SNR!1

�(s)

SNR

= lim
SNR!1

1

SNR
log Ez;x;m

e�j
p
SNR(x�x )+zj

e�jzj

s

where x0 denotes the signal constellation symbol closest to x in the
complementary set Xm

1 .
Then we have that

lim
SNR!1

�(s)

SNR

= lim
SNR!1

1

SNR

� log Ez;x;m e
�sj

p
SNR(x�x )+zj +sjzj

= lim
SNR!1

1

SNR

� log Ez;x;m e
�sSNRd (x;x )�2sRef

p
SNR(x�x )z g

= lim
SNR!1

1

SNR
log Ex;m e

�SNRd (x;x )(s�s )

= lim
SNR!1

1

SNR
log Ke�SNRd (s�s )

= �d2min(s� s
2)

where K may depend on the actual mapping rule. Note, however, that
the result does not. By letting s = ŝ = 1

2
, we then obtain that

lim
SNR!1

�(ŝ)

SNR
= �

d2min

4
:

Furthermore, at large SNR, the second-order cumulant behaves as

lim
SNR!1

�00(s)
SNR

= 2d2min

which again mimics the behavior of a binary modulation with squared
minimum distance d2min.

B. Fully Interleaved Rayleigh-Fading Channel

In the case of the fully interleaved fading channel, we have

lim
SNR!1

�(s)

log SNR
= lim

SNR!1
1

log SNR

� log Ez;h;x;m

x 2X e�j
p
SNRh(x�x )+zj

x 2X e�j
p
SNRh(x�x )+zj

s

:

The upper bound in (39) applies here as well and, then, for s < 1, the
dominated convergence theorem leads to

lim
SNR!1

�(s)

log SNR

= lim
SNR!1

1

log SNR
log Ez;h;x;m

e�j
p
SNRh(x�x )+zj

e�jzj

s

= lim
SNR!1

1

log SNR
log E
;x;m e

�SNR
d (x;x )(s�s )

where 

�
= jhj2 is the fading power and x0 denotes again the closest

point to x in the set Xm
1 . Averaging over the fading we get that

lim
SNR!1

�(s)

log SNR

= lim
SNR!1

1

log SNR
log Ex;m

1

1+SNRd2(x; x0)(s�s2)

= lim
SNR!1

1

log SNR
log

K

1+SNRd2min(s�s2)

=�1:

Therefore, since at large SNR

lim
SNR!1

�(s) = lim
SNR!1

log
K

1 + SNRd2min(s� s2)

we obtain that the second-order cumulant behaves as

lim
SNR!1

�
00(s)

= lim
SNR!1

2SNRd2min
1 + SNRd2min(s� s2)

+
SNRd2min(2s� 1)

1 + SNRd2min(s� s2)

2

:

By letting s = ŝ = 1
2
, it is easy to verify that at the saddlepoint

lim
SNR!1

�
00(ŝ) = 8 (40)

as in the binary case.
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On the Distribution of SINR for the MMSE MIMO
Receiver and Performance Analysis

Ping Li, Debashis Paul, Ravi Narasimhan, Member, IEEE, and
John Cioffi, Fellow, IEEE

Abstract—This correspondence studies the statistical distribution
of the signal-to-interference-plus-noise ratio (SINR) for the minimum
mean-square error (MMSE) receiver in multiple-input multiple-output
(MIMO) wireless communications. The channel model is assumed to
be (transmit) correlated Rayleigh flat-fading with unequal powers.
The SINR can be decomposed into two independent random variables:
SINR = SINR + , where SINR corresponds to the SINR for a
zero-forcing (ZF) receiver and has an exact Gamma distribution. This
correspondence focuses on characterizing the statistical properties of

using the results from random matrix theory. First three asymptotic
moments of are derived for uncorrelated channels and channels with
equicorrelations. For general correlated channels, some limiting upper
bounds for the first three moments are also provided. For uncorrelated
channels and correlated channels satisfying certain conditions, it is proved
that converges to a Normal random variable. A Gamma distribution
and a generalized Gamma distribution are proposed as approximations to
the finite sample distribution of . Simulations suggest that these approx-
imate distributions can be used to estimate accurately the probability of
errors even for very small dimensions (e.g., two transmit antennas).

Index Terms—Asymptotic distributions, channel correlation, error prob-
ability, Gamma approximation, minimum mean square error (MMSE) re-
ceiver, multiple-input multiple-output (MIMO) system, random matrix,
signal-to-interference-plus-noise ratio (SINR).

I. INTRODUCTION

This study considers the following signal and channel model in a
multiple-input multiple-output (MIMO) system:

yr =
1p
m
HHHWWWRRRttt PPP xt + nc =

1p
m
HHHxt + nc (1)
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where xt 2 p is the (normalized) transmitted signal vector and yr 2
m is the received signal vector. Here p is the number of transmit an-

tennas and m is the number of receive antennas. HHHWWW 2 m�p con-
sists of independent and odentically distributed (i.i.d.) standard com-
plex Normal entries. RRRttt 2 p�p is the transmitter correlation ma-
trix. PPP = diag[~c1; ~c2; . . . ; ~cp] 2 p�p; ~ck = ck

m
p

, where ck is the
signal-to-noise ratio (SNR) for the kth spatial stream. This definition

of SNR is consistent with [1, Sec. 7.4]. HHH = HHHWWWRRRttt PPP 2 m�p

is treated as the channel matrix. nc 2 m is the complex noise vector
and is assumed to have zero mean and identity covariance. Note that the
power matrixPPP has terms involving the variance of the noise. The cor-
relation matrixRRRt and power matrix PPP are assumed to be nonrandom.
Also, we restrict our attention to p � m.

We consider the popular linear minimum mean-square error
(MMSE) receiver. Conditional on the channel matrixHHH , the signal-to-
interference-plus-noise ratio (SINR) on the kth spatial stream can be
expressed as (e.g., [1]–[6])

SINRk =
1

MMSEk
� 1 =

1

IIIp +
1
m
HHH
y
HHH

�1

kk

� 1 (2)

where IIIp is a p�p identity matrix, andHHHy is the Hermitian transpose of
HHH . Note that (2), in the same form as equation (7.49) of [1], is derived
based on the second-order statistics of the input signals, not restricted
to binary signals.

For binary inputs, Verdú [4, eq. (6.47)] provides the exact formula
for computing the bit-error rate (BER) (also see [7]). Conditional onHHH ,
this BER formula requires computing 2p�1 Q-functions. To compute
BER unconditionally, we need to sample HHH enough times (e.g., 105)
to get a reliable estimate. When p � 32 (or p � 64), the computations
become intractable [4], [8].

Recently, study of the asymptotic properties of multiuser receivers
(e.g., [2]–[4], [6], [8]–[11]) has received a lot of attention. Works that
relate directly to the content of this correspondence include Tse and
Hanly [11] and Verdú and Shamai [6], who independently derived the
asymptotic first moment of SINR for uncorrelated channels. Tse and
Zeitouni [3] proved the asymptotic Normality of SINR for the equal
power case, and commented on the possibility of extending the result
to the unequal powers scenario. Zhang et al. [12] proved the asymptotic
Normality of the multiple-access interference (MAI), which is closely
related to SINR. Guo et al. [8] proved the asymptotic Normality of the
decision statistics for a variety of linear multiuser receivers. [8] con-
sidered a general power distribution and corresponding unconditional
asymptotic behavior.

Based on the asymptotic Normality results, Poor and Verdú [2] (also
in [4], [8]) proposed using the limiting BER (denoted by BER1) for
binary modulations, which is a single Q-function

BER1 = Q( E(SINRk)1) =
1

p
E(SINR )

e
�t =2

dt (3)

where E(SINRk)1 denotes the asymptotic first moment of SINRk .
Equation (3) is convenient and accurate for large dimensions.

However, its accuracy for small dimensions is of some concern.
For instance, [8] compared the asymptotic BER with simulation
results, which showed that even with p = 64 there existed significant
discrepancies. In general, (3) will underestimate the true BER. For
example, in our simulations, when m = 16; p = 8; SNR = 15 dB, the
asymptotic BER given by (3) is roughly 1

10000
of the exact BER. In

current practice, code-division multiple-access (CDMA) channels with
m; p between 32 and 64 are typical and in multiple-antenna systems
arrays of 4 antennas are typical but arrays with 8 to 16 antennas would
be feasible in the near future [9]. Therefore, it would be useful if
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