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Mismatched Decoding: Error Exponents,
Second-Order Rates and Saddlepoint Approximations
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Abstract— This paper considers the problem of channel coding
with a given (possibly suboptimal) maximum-metric decoding
rule. A cost-constrained random-coding ensemble with multiple
auxiliary costs is introduced, and is shown to achieve error expo-
nents and second-order coding rates matching those of constant-
composition random coding, while being directly applicable to
channels with infinite or continuous alphabets. The number of
auxiliary costs required to match the error exponents and second-
order rates of constant-composition coding is studied, and is
shown to be at most two. For independent identically distributed
random coding, asymptotic estimates of two well-known non-
asymptotic bounds are given using saddlepoint approximations.
Each expression is shown to characterize the asymptotic behavior
of the corresponding random-coding bound at both fixed and
varying rates, thus unifying the regimes characterized by error
exponents, second-order rates, and moderate deviations. For fixed
rates, novel exact asymptotics expressions are obtained to within
a multiplicative 1 + o(1) term. Using numerical examples, it is
shown that the saddlepoint approximations are highly accurate
even at short block lengths.

Index Terms— Mismatched decoding, random coding, error
exponents, second-order coding rate, channel dispersion, normal
approximation, saddlepoint approximation, exact asymptotics,
maximum-likelihood decoding, finite-length performance.

I. INTRODUCTION

INFORMATION-theoretic studies of channel coding typi-
cally seek to characterize the performance of coded com-

munication systems when the encoder and decoder can be
optimized. In practice, however, optimal decoding rules are
often ruled out due to channel uncertainty and implementation
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constraints. In this paper, we consider the mismatched decod-
ing problem [1]–[8], in which the decoder employs maximum-
metric decoding with a metric which may differ from the
optimal choice.

The problem of finding the highest achievable rate possible
with mismatched decoding is open, and is generally believed
to be difficult. Most existing work has focused on achievable
rates via random coding; see Section I-C for an outline.
The goal of this paper is to present a more comprehensive
analysis of the random-coding error probability under various
ensembles, including error exponents [9, Ch. 5], second-order
coding rates [10]–[12], and refined asymptotic results based
on the saddlepoint approximation [13].

A. System Setup

The input and output alphabets are denoted by X and Y
respectively. The conditional probability of receiving an
output vector y = (y1, . . . , yn) given an input vector
x = (x1, . . . , xn) is given by

W n(y|x) �
n∏

i=1

W (yi |xi ) (1)

for some transition law W (y|x). Except where stated
otherwise, we assume that X and Y are finite, and thus the
channel is a discrete memoryless channel (DMC). The encoder
takes as input a message m uniformly distributed on the set
{1, . . . ,M}, and transmits the corresponding codeword x(m)

from a codebook C = {x(1), . . . , x(M)}. The decoder receives
the vector y at the output of the channel, and forms the
estimate

m̂ = arg max
j∈{1,...,M}

qn(x( j ), y), (2)

where qn(x, y) �
∏n

i=1 q(xi , yi ). The function q(x, y) is
assumed to be non-negative, and is called the decoding metric.
In the case of a tie, a codeword achieving the maximum in
(2) is selected uniformly at random. It should be noted that
maximum-likelihood (ML) decoding is a special case of (2),
since it is recovered by setting q(x, y) = W (y|x).

An error is said to have occurred if m̂ differs from m.
A rate R is said to be achievable if, for all δ > 0, there exists
a sequence of codes Cn of length n with M ≥ en(R−δ) and
vanishing error probability pe(Cn). An error exponent E(R)
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is said to be achievable if there exists a sequence of codebooks
Cn of length n and rate R such that

lim inf
n→∞ − 1

n
log pe(Cn) ≥ E(R). (3)

We let p̄e(n,M) denote the average error probability with
respect to a given random-coding ensemble which will be clear
from the context. The random-coding error exponent Er (R) is
said to exhibit ensemble tightness if

lim
n→∞ − 1

n
log p̄e(n, enR) = Er (R). (4)

B. Notation

The set of all probability distributions on an alphabet X is
denoted by P(X ), and the set of all empirical distributions
on a vector in X n (i.e. types [14, Sec. 2] [15]) is denoted by
Pn(X ). The type of a vector x is denoted by P̂x(·). For a
given Q ∈ Pn(X ), the type class T n(Q) is defined to be the
set of sequences in X n with type Q.

The probability of an event is denoted by P[·], and the
symbol ∼ means “distributed as”. The marginals of a joint
distribution PXY (x, y) are denoted by PX (x) and PY (y).
We write PX = ˜PX to denote element-wise equality between
two probability distributions on the same alphabet. Expectation
with respect to a joint distribution PXY (x, y) is denoted by
EP [·], or E[·] when the associated probability distribution
is understood from the context. Similar notations IP (X; Y )
and I (X; Y ) are used for the mutual information. Given a
distribution Q(x) and conditional distribution W (y|x), we
write Q × W to denote the joint distribution Q(x)W (y|x).

For two positive sequences fn and gn, we write
fn

.= gn if limn→∞ 1
n log fn

gn
= 0 and we write fn ≤̇ gn if

lim supn→∞ 1
n log fn

gn
≤0. We write fn �gn if limn→∞ fn

gn
=1,

and we make use of the standard asymptotic notations O(·),
o(·), �(·), �(·) and ω(·).

We denote the tail probability of a zero-mean unit-variance
Gaussian variable by Q(·), and we denote its functional inverse
by Q−1(·). All logarithms have base e, and all rates are in units
of nats except in the examples, where bits are used. We define
[c]+ = max{0, c}, and denote the indicator function by 1{·}.

C. Overview of Achievable Rates

Achievable rates for mismatched decoding have been
derived using the following random-coding ensembles:

1) the i.i.d. ensemble, in which each symbol of each
codeword is generated independently;

2) the constant-composition ensemble, in which each code-
word is drawn uniformly from the set of sequences with
a given empirical distribution;

3) the cost-constrained ensemble, in which each codeword
is drawn according to an i.i.d. distribution conditioned
on an auxiliary cost constraint being satisfied.

While these ensembles all yield the same achievable rate under
ML decoding, i.e. the mutual information, this is not true under
mismatched decoding.

The most notable early works on mismatched decoding are
by Hui [2] and Csiszár and Körner [1], who used constant-
composition random coding to derive the following achievable
rate for mismatched DMCs, commonly known as the LM rate:

ILM(Q) = min
P̃XY

IP̃ (X; Y ), (5)

where the minimization is over all joint distributions satisfying

˜PX (x) = Q(x) (6)
˜PY (y) =

∑

x

Q(x)W (y|x) (7)

EP̃ [log q(X,Y )] ≥ EQ×W [log q(X,Y )]. (8)

This rate can equivalently be expressed as [7]

ILM(Q) � sup
s≥0,a(·)

E

[

log
q(X,Y )sea(X)

E[q(X ,Y )sea(X) | Y ]

]

, (9)

where (X,Y, X) ∼ Q(x)W (y|x)Q(x̄).
Another well-known rate in the literature is the generalized

mutual information (GMI) [3], [7], given by

IGMI(Q) = min
P̃XY

D
(

˜PXY ‖Q × ˜PY
)

, (10)

where the minimization is over all joint distributions satisfying
(7) and (8). This rate can equivalently be expressed as

IGMI(Q) � sup
s≥0

E

[

log
q(X,Y )s

E[q(X,Y )s | Y ]
]

. (11)

Both (10) and (11) can be derived using i.i.d. random coding,
but only the latter has been shown to remain valid in the case
of continuous alphabets [3].

The GMI cannot exceed the LM rate, and the latter can be
strictly higher even after the optimization of Q. Motivated by
this fact, Ganti et al. [7] proved that (9) is achievable in the
case of general alphabets. This was done by generating a num-
ber of codewords according to an i.i.d. distribution Q, and then
discarding all of the codewords for which

∣

∣

1
n

∑n
i=1 a(xi) −

EQ [a(X)]∣∣ exceeds some threshold. An alternative proof is
given in [16] using cost-constrained random coding.

In the terminology of [7], (5) and (10) are primal expres-
sions, and (9) and (11) are the corresponding dual expressions.
Indeed, the latter can be derived from the former using
Lagrange duality techniques [5], [17].

For binary-input DMCs, a matching converse to the LM rate
was reported by Balakirsky [6]. However, in the general
case, several examples have been given in which the rate is
strictly smaller than the mismatched capacity [4], [5], [8].
In particular, Lapidoth [8] gave an improved rate using
multiple-access coding techniques. See [18], [19] for more
recent studies of multiuser coding techniques, [20] for a study
of expurgated exponents, and [21] for multi-letter converse
results.

D. Contributions

Motivated by the fact that most existing work on mis-
matched decoding has focused on achievable rates, the main
goal of this paper is to present a more detailed analysis of the
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random-coding error probability. Our main contributions are
as follows.

1) In Section II, we present a generalization of the cost-
constrained ensemble in [9, Ch 7.3], [16] to include
multiple auxiliary costs. This ensemble serves as an
alternative to constant-composition codes for improv-
ing the performance compared to i.i.d. codes, while
being applicable to channels with infinite or continuous
alphabets.

2) In Section III, an ensemble-tight error exponent is given
for the cost-constrained ensemble. It is shown that the
exponent for the constant-composition ensemble [1] can
be recovered using at most two auxiliary costs, and
sometimes fewer.

3) In Section IV, an achievable second-order coding rate is
given for the cost-constrained ensemble. Once again, it
is shown that the performance of constant-composition
coding can be matched using at most two auxiliary
costs, and sometimes fewer. Our techniques are shown
to provide a simple method for obtaining second-order
achievability results for continuous channels.

4) In Section V, we provide refined asymptotic results for
i.i.d. random coding. For two non-asymptotic random-
coding bounds introduced in Section II, we give
saddlepoint approximations [13] that can be computed
efficiently, and that characterize the asymptotic behavior
of the corresponding bounds as n → ∞ at all positive
rates (possibly varying with n). In the case of fixed
rates, the approximations recover the prefactor growth
rates obtained by Altuğ and Wagner [22], along with a
novel characterization of the multiplicative O(1) terms.
Using numerical examples, it is shown that the approx-
imations are remarkably accurate even at small block
lengths.

II. RANDOM-CODING BOUNDS AND ENSEMBLES

Throughout the paper, we consider random coding in which
each codeword X(i) (i = 1, . . . ,M) is independently gen-
erated according to a given distribution PX . We will fre-
quently make use of the following theorem, which provides
variations of the random-coding union (RCU) bound given by
Polyanskiy et al. [11].

Theorem 1. For any codeword distribution PX (x) and con-
stant s ≥ 0, the random-coding error probability p̄e satisfies

1

4
rcu(n,M) ≤ p̄e(n,M) ≤ rcu(n,M) ≤ rcus(n,M), (12)

where

rcu(n,M) � E
[

min
{

1,

(M − 1)P[qn(X,Y ) ≥ qn(X,Y ) | X,Y ]}] (13)

rcus(n,M) � E

[

min
{

1, (M − 1)
E[qn(X,Y)s | Y ]

qn(X,Y )s

}

]

(14)

with (X,Y , X) ∼ PX(x)W n(y|x)PX(x̄).

Proof: Similarly to [11], we obtain the upper bound rcu
by writing

p̄e(n,M) ≤ P

[ ⋃

i 
=m

{

qn(X (i),Y ) ≥ qn(X,Y )
}

]

(15)

= E

[

P

[ ⋃

i 
=m

{

qn(X(i),Y ) ≥ qn(X,Y )
}

∣∣∣ X,Y
]]

(16)

≤ rcu(n,M), (17)

where (15) follows by upper bounding the random-coding
error probability by that of the decoder which breaks ties
as errors, and (17) follows by applying the truncated union
bound. To prove the lower bound in (12), it suffices to show
that each of the upper bounds in (15) and (17) is tight to
within a factor of two. The matching lower bound to (15)
follows since whenever a tie occurs it must be between at
least two codewords [23], and the matching lower bound
to (17) follows since the union is over independent events
[24, Lemma A.2]. We obtain the upper bound rcus by applying
Markov’s inequality to the inner probability in (13).

We consider the cost-constrained ensemble characterized by
the following codeword distribution:

PX (x) = 1

μn

n∏

i=1

Q(xi )1
{

x ∈ Dn
}

, (18)

where

Dn �
{

x :
∣∣∣∣
1

n

n∑

i=1

al(xi )− φl

∣∣∣∣ ≤ δ

n
, l = 1, . . . , L

}

, (19)

and where μn is a normalizing constant, δ is a positive
constant, and for each l = 1, . . . , L, al(·) is a real-valued
function on X , and φl � EQ [al(X)]. We refer to each
function al(·) as an auxiliary cost function, or simply a cost.
Roughly speaking, each codeword is generated according to
an i.i.d. distribution conditioned on the empirical mean of
each cost function al(x) being close to the true mean. This
generalizes the ensemble studied in [9, Sec. 7.3], [16] by
including multiple costs.

The cost functions {al(·)}L
l=1 in (18) should not be viewed

as being chosen to meet a system constraint (e.g. power lim-
itations). Rather, they are introduced in order to improve the
performance of the random-coding ensemble itself. However,
system costs can be handled similarly; see Section VI for
details. The constant δ in (19) could, in principle, vary with
l and n, but a fixed value will suffice for our purposes.

In the case that L = 0, it should be understood that Dn

contains all x sequences. In this case, (18) reduces to the i.i.d.
ensemble, which is characterized by

PX (x) =
n∏

i=1

Q(xi ). (20)

A less obvious special case of (18) is the constant-composition
ensemble, which is characterized by

PX(x) = 1

|T n(Qn)|1
{

x ∈ T n(Qn)
}

, (21)
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where Qn is a type such that maxx |Qn(x)− Q(x)| ≤ 1
n . That

is, each codeword is generated uniformly over the type class
T n(Qn), and hence each codeword has the same composition.
To recover this ensemble from (18), we replace Q by Qn and
choose the parameters L = |X |, δ < 1 and

al(x) = 1{x = l}, l = 1, . . . , |X |, (22)

where we assume without loss of generality that X =
{1, . . . , |X |}.

The following proposition shows that the normalizing con-
stant μn in (18) decays at most polynomially in n. When |X |
is finite, this can easily be shown using the method of types.
In particular, choosing the functions given in the previous
paragraph to recover the constant-composition ensemble, we
have μn ≥ (n + 1)−(|X |−1) [14, p. 17]. For the sake of
generality, we present a proof which applies to more general
alphabets, subject to minor technical conditions. The case
L = 1 was handled in [9, Ch. 7.3].

Proposition 1. Fix an input alphabet X (possibly infinite or
continuous), an input distribution Q ∈ P(X ) and the auxil-
iary cost functions a1(·), . . . , aL(·). If EQ [al(X)2] < ∞ for
l = 1, . . . , L, then there exists a choice of δ > 0 such that the
normalizing constant in (18) satisfies μn = �(n−L/2).

Proof: This result follows from the multivariate local limit
theorem in [25, Cor. 1], which gives asymptotic expressions
for probabilities of i.i.d. random vectors taking values in sets of
the form (19). Let � denote the covariance matrix of the vector
[a1(X), . . . , aL(X)]T . We have by assumption that the entries
of � are finite. Under the additional assumption det(�) > 0,
[25, Cor. 1] states that μn = �(n−L/2) provided that δ is at
least as high as the largest span of the al(X) (X ∼ Q) which
are lattice variables.1 If all such variables are non-lattice, then
δ can take any positive value.

It only remains to handle the case det(�) = 0. Suppose that
� has rank L ′ < L, and assume without loss of generality that
a1(·), . . . , aL ′(·) are linearly independent. Up to sets whose
probability with respect to Q is zero, the remaining costs
aL ′+1(·), . . . , aL(·) can be written as linear combinations of
the first L ′ costs. Letting α denote the largest magnitude of the
scalar coefficients in these linear combinations, we conclude
that x ∈ Dn provided that

∣

∣

∣

∣

1

n

n
∑

i=1

al(xi )− φl

∣

∣

∣

∣

≤ δ

αL ′n
(23)

for l = 1, . . . , L ′. The proposition follows by choosing δ to
be at least as high as αL ′ times the largest span of the al(X)
which are lattice variables, and analyzing the first L ′ costs
analogously to the case that det(�) > 0.

In accordance with Proposition 1, we henceforth assume
that the choice of δ for the cost-constrained ensemble is such
that μn = �(n−L/2).

1 We say that X is a lattice random variable with offset γ and span h if its
support is a subset of {γ + ih : i ∈ Z}, and the same cannot remain true by
increasing h.

III. RANDOM-CODING ERROR EXPONENTS

Error exponents characterize the asymptotic exponential
behavior of the error probability in coded communication
systems, and can thus provide additional insight beyond capac-
ity results. In the matched setting, error exponents were studied
by Fano [26, Ch. 9], and later by Gallager [9, Ch. 5] and
Csiszár-Körner [14, Ch. 10]. The ensemble tightness of
the exponent (cf. (4)) under ML decoding was studied by
Gallager [27] and D’yachkov [28] for the i.i.d. and constant-
composition ensembles respectively.

In this section, we present the ensemble-tight error exponent
for cost-constrained random coding, yielding results for the
i.i.d. and constant-composition ensembles as special cases.

A. Cost-Constrained Ensemble

We define the sets

S({al}) �
{

PXY ∈ P(X × Y) :
EP [al(X)] = φl (l = 1, . . . , L)

}

(24)

T (PXY , {al}) �
{

˜PXY ∈ P(X × Y) :
EP̃ [al(X)] = φl (l = 1, . . . , L), ˜PY = PY ,

EP̃ [log q(X,Y )] ≥ EP [log q(X,Y )]
}

, (25)

where the notation {al} is used to denote dependence on
a1(·), . . . , aL(·). The dependence of these sets on Q (via
φl = EQ [al(X)]) is kept implicit.

Theorem 2. The random-coding error probability for the
cost-constrained ensemble in (18) satisfies

lim
n→∞ − 1

n
log p̄e(n, enR) = Ecost

r (Q, R, {al}), (26)

where

Ecost
r (Q, R, {al}) � min

PXY ∈S({al })
min

P̃XY ∈T (PXY ,{al })
D(PXY ‖Q × W ) + [

D( ˜PXY ‖Q × PY )− R
]+
. (27)

Proof: See Appendix A.
The optimization problem in (27) is convex when the

input distribution and auxiliary cost functions are fixed. The
following theorem gives an alternative expression based on
Lagrange duality [17].

Theorem 3. The error exponent in (27) can be expressed as

Ecost
r (Q, R, {al}) = max

ρ∈[0,1] Ecost
0 (Q, ρ, {al})− ρR, (28)

where

Ecost
0 (Q, ρ, {al}) � sup

s≥0,{rl },{rl }

− log E

[

(

E
[

q(X ,Y )se
∑L

l=1 rl (al(X)−φl ) | Y
]

q(X,Y )se
∑L

l=1 rl (al(X)−φl )

)ρ
]

(29)

and (X,Y, X ) ∼ Q(x)W (y|x)Q(x̄).
Proof: See Appendix B.

The derivation of (28)–(29) via Theorem 2 is useful for
proving ensemble tightness, but has the disadvantage of being
applicable only in the case of finite alphabets. We proceed
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by giving a direct derivation which does not prove ensemble
tightness, but which extends immediately to more general
alphabets provided that the second moments associated with
the cost functions are finite (see Proposition 1). The extension
to channels with input constraints is straightforward; see
Section VI for details.

Using Theorem 1 and applying min{1, α} ≤ αρ (ρ ∈ [0, 1])
to rcus in (14), we obtain2

p̄e(n,M) ≤ 1

μ
1+ρ
n

Mρ
∑

x∈Dn,y

Qn(x)W n(y|x)

×
(

∑
x̄∈Dn

Qn(x̄)qn(x̄, y)s

qn(x, y)s

)ρ

, (30)

where Qn(x) �
∏n

i=1 Q(xi ). From (19), each codeword
x ∈ Dn satisfies

er(an
l (x)−nφl )e|r |δ ≥ 1 (31)

for any real number r , where an
l (x) �

∑n
i=1 al(xi ). Weaken-

ing (30) by applying (31) multiple times, we obtain

p̄e(n,M) ≤ eρ
∑

l (|rl |+|rl |)δ

μ
1+ρ
n

Mρ
∑

x∈Dn,y

Qn(x)W n(y|x)

×
(

∑
x̄∈Dn

Qn(x̄)qn(x̄, y)se
∑

l rl (an
l (x̄)−nφl )

qn(x, y)se
∑

l rl (an
l (x)−nφl )

)ρ

, (32)

where {rl} and {rl} are arbitrary. Further weakening (32) by
replacing the summations over Dn with summations over all
sequences, and expanding each term in the outer summation
as product from i = 1 to n, we obtain

p̄e(n,M) ≤ eρ
∑

l (|rl |+|rl |)δ

μ
1+ρ
n

Mρ

(

∑

x,y

Q(x)W (y|x)

×
(∑

x̄ Q(x̄)q(x̄, y)se
∑

l r l (al (x̄)−φl )

q(x, y)se
∑

l rl (al (x)−φl)

)ρ)n

. (33)

Since μn decays to zero subexponentially in n (cf. Proposi-
tion 1), we conclude that the prefactor in (33) does not affect
the exponent. Hence, and setting M = enR , we obtain (28).

The preceding analysis can be considered a refinement of
that of Shamai and Sason [16], who showed that an achievable
error exponent in the case that L = 1 is given by

Ecost′
r (Q, R, a1) � max

ρ∈[0,1] Ecost′
0 (Q, ρ, a1)− ρR, (34)

where

Ecost′
0 (Q, ρ, a1)� sup

s≥0
− log E

[(

E[q(X ,Y )sea1(X) | Y ]
q(X,Y )sea1(X)

)ρ]

.

(35)

By setting r1 = r1 = 1 in (29), we see that Ecost
r with L = 1

is at least as high as Ecost′
r . In Section III-C, we show that the

former can be strictly higher.

2In the case of continuous alphabets, the summations should be replaced
by integrals.

B. i.i.d. and Constant-Composition Ensembles

Setting L = 0 in (29), we recover the exponent of Kaplan
and Shamai [3], namely

E iid
r (Q, R) � max

ρ∈[0,1] E iid
0 (Q, ρ)− ρR, (36)

where

E iid
0 (Q, ρ) � sup

s≥0
− log E

[

(

E
[

q(X ,Y )s | Y
]

q(X,Y )s

)ρ
]

. (37)

In the special case of constant-composition random cod-
ing (see (21)–(22)), the constraints EP̃ [al(X)] = φl for
l = 1, . . . , |X | yield PX = Q and ˜PX = Q in (24) and
(25) respectively, and thus (27) recovers Csiszár’s exponent
for constant-composition coding [1]. Hence, the exponents of
[1], [3] are tight with respect to the ensemble average.

We henceforth denote the exponent for the constant-
composition ensemble by Ecc

r (Q, R). We claim that

Ecc
r (Q, R) = max

ρ∈[0,1] Ecc
0 (Q, ρ) − ρR, (38)

where

Ecc
0 (Q, ρ) = sup

s≥0,a(·)

E

[

− log E

[(

E
[

q(X ,Y )sea(X) | Y
]

q(X,Y )sea(X)

)ρ ∣
∣

∣

∣

X

]

]

. (39)

To prove this, we first note from (22) that
∑

l

rl(al(x)− φl) =
∑

x̃

rx̃ (1{x = x̃} − Q(x̃)) (40)

= r(x)− φr , (41)

where (40) follows since φl = EQ [1{x = l}] = Q(l), and (41)
follows by defining r(x) � rx and φr � EQ [r(X)]. Defining
r(x) and φr similarly, we obtain the following E0 function
from (29):

Ecc
0 (Q, ρ) � sup

s≥0,r(·),r(·)
− log

∑

x,y

Q(x)W (y|x)

×
(∑

x̄ Q(x̄)q(x̄, y)ser(x̄)−φr

q(x, y)ser(x)−φr

)ρ

(42)

≤ sup
s≥0,r(·),r(·)

−
∑

x

Q(x) log
∑

y

W (y|x)

×
(∑

x̄ Q(x̄)q(x̄, y)ser(x̄)−φr

q(x, y)ser(x)−φr

)ρ

(43)

= sup
s≥0,r(·)

−
∑

x

Q(x) log
∑

y

W (y|x)

×
(∑

x̄ Q(x̄)q(x̄, y)ser(x̄)

q(x, y)ser(x)

)ρ

, (44)

where (43) follows from Jensen’s inequality, and (44) follows
by using the definitions of φr and φr to write

−
∑

x

Q(x) log

(

e−φr

er(x)−φr

)ρ

=−
∑

x

Q(x) log

(

1

er(x)

)ρ

. (45)
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Renaming r(·) as a(·), we see that (44) coincides with (39).
It remains to show that equality holds in (43). This is easily
seen by noting that the choice

r(x) = 1

ρ
log

∑

y

W (y|x)
(∑

x̄ Q(x̄)q(x̄, y)ser(x̄)

q(x, y)s

)ρ

(46)

makes the logarithm in (43) independent of x , thus ensuring
that Jensen’s inequality holds with equality.

The exponent E iid
r (Q, R) is positive for all rates below

IGMI(Q) [3], whereas Ecc
r recovers the stronger rate ILM(Q).

Similarly, both Ecost
r (L = 1) and Ecost′

r recover the LM rate
provided that the auxiliary cost is optimized [16].

C. Number of Auxiliary Costs Required

We claim that

E iid
r (Q, R) ≤ Ecost

r (Q, R, {al}) ≤ Ecc
r (Q, R). (47)

The first inequality follows by setting rl = r l = 0 in (29), and
the second inequality follows by setting r(x) = ∑

l rlal(x) and
r(x) = ∑

l r lal(x) in (29), and upper bounding the objective
by taking the supremum over all r(·) and r(·) to recover
Ecc

0 in the form given in (42). Thus, the constant-composition
ensemble yields the best error exponent of the three ensembles.

In this subsection, we study the number of auxiliary costs
required for cost-constrained random coding to achieve Ecc

r .
Such an investigation is of interest in gaining insight into the
codebook structure, and since the subexponential prefactor
in (33) grows at a slower rate when L is reduced (see
Proposition 1). Our results are summarized in the following
theorem.

Theorem 4. Consider a DMC W and input distribution Q.

1) For any decoding metric, we have

sup
a1(·),a2(·)

Ecost
r (Q, R, {a1, a2}) = Ecc

r (Q, R) (48)

max
Q

sup
a1(·)

Ecost′
r (Q, R, a1) = max

Q
Ecc

r (Q, R). (49)

2) If q(x, y) = W (y|x) (ML decoding), then

sup
a1(·)

Ecost
r (Q, R, a1) = Ecc

r (Q, R) (50)

sup
a1(·)

Ecost′
r (Q, R, a1) = E iid

r (Q, R) (51)

max
Q

E iid
r (Q, R) = max

Q
Ecc

r (Q, R). (52)

Proof: We have from (47) that Ecost
r ≤ Ecc

r . To obtain
the reverse inequality corresponding to (48), we set L = 2,
r1 = r2 = 1 and r2 = r1 = 0 in (29). The resulting objective
coincides with (42) upon setting a1(·) = r(·) and a2(·) = r(·).

To prove (49), we note the following observation from
Appendix C: Given s > 0 and ρ > 0, any pair (Q, a)
maximizing the objective in (39) must satisfy the property that
the logarithm in (39) has the same value for all x such that
Q(x) > 0. It follows that the objective in (39) is unchanged
when the expectation with respect to X is moved inside the
logarithm, thus yielding the objective in (35).

We now turn to the proofs of (50)–(52). We claim that,
under ML decoding, we can write Ecc

0 as

Ecc
0 (Q, ρ) = sup

a(·)

− log
∑

y

(

∑

x

Q(x)W (y|x) 1
1+ρ ea(x)−φa

)1+ρ
, (53)

where φa � EQ [a(X)]. To show this, we make use of the
form of Ecc

0 given in (42), and write the summation inside the
logarithm as

∑

y

(

∑

x

Q(x)W (y|x)1−sρe−ρ(r(x)−φr )

)

×
(

∑

x̄

Q(x̄)W (y|x̄)ser(x̄)−φr

)ρ

. (54)

Using Hölder’s inequality in an identical fashion to
[9, Ex. 5.6], this summation is lower bounded by

∑

y

(

∑

x

Q(x)W (y|x) 1
1+ρ er(x)−φr

)1+ρ
(55)

with equality if and only if s = 1
1+ρ and r(·) = −ρr(·).

Renaming r(·) as a(·), we obtain (53). We can clearly achieve
Ecc

r using L = 2 with the cost functions r(·) and r(·).
However, since we have shown that one is a scalar multiple
of the other, we conclude that L = 1 suffices.

A similar argument using Hölder’s inequality reveals that
the objective in (35) is maximized by s = 1

1+ρ and a1(·) =
0, and the objective in (37) is maximized by s = 1

1+ρ ,
thus yielding (51). Finally, combining (49) and (51), we
obtain (52).

Theorem 4 shows that the cost-constrained ensemble recov-
ers Ecc

r using at most two auxiliary costs. If either the input
distribution or decoding rule is optimized, then L = 1 suffices
(see (49) and (50)), and if both are optimized then L = 0
suffices (see (52)). The latter result is well-known [15] and
is stated for completeness. While (49) shows that Ecost

r and
Ecost′

r coincide when Q is optimized, (50)–(51) show that the
former can be strictly higher for a given Q even when L = 1,
since Ecc

r can exceed E iid
r even under ML decoding [15].

D. Numerical Example

We consider the channel defined by the entries of the
|X | × |Y| matrix

⎡

⎣

1 − 2δ0 δ0 δ0
δ1 1 − 2δ1 δ1
δ2 δ2 1 − 2δ2

⎤

⎦ (56)

with X = Y = {0, 1, 2}. The mismatched decoder chooses
the codeword which is closest to y in terms of Hamming
distance. For example, the decoding metric can be taken to
be the entries of (56) with δi replaced by δ ∈ (0, 1

3 ) for
i = 1, 2, 3. We let δ0 = 0.01, δ1 = 0.05, δ2 = 0.25 and Q =
(0.1, 0.3, 0.6). Under these parameters, we have IGMI(Q) =
0.387, ILM(Q) = 0.449 and I (X; Y ) = 0.471 bits/use.
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Fig. 1. Error exponents for the channel defined in (56) with δ0 = 0.01,
δ1 = 0.05, δ2 = 0.25 and Q = (0.1, 0.3, 0.6). The mismatched decoder uses
the minimum Hamming distance metric. The corresponding achievable rates
IGMI(Q), ILM(Q) and I (X; Y ) are respectively marked on the horizontal
axis.

We evaluate the exponents using the optimization software
YALMIP [29]. For the cost-constrained ensemble with L = 1,
we optimize the auxiliary cost. As expected, Fig. 1 shows that
the highest exponent is Ecc

r . The exponent Ecost
r (L = 1) is

only marginally lower than Ecc
r , whereas the gap to Ecost′

r is
larger. The exponent E iid

r is not only lower than each of the
other exponents, but also yields a worse achievable rate. In the
case of ML decoding, Ecc

r exceeds E iid
r for all R < I (X; Y ).

IV. SECOND-ORDER CODING RATES

In the matched setting, the finite-length performance limits
of a channel are characterized by M∗(n, ε), defined to be the
maximum number of codewords of length n yielding an error
probability not exceeding ε for some encoder and decoder. The
problem of finding the second-order asymptotics of M∗(n, ε)
for a given ε was studied by Strassen [10], and later revisited
by Polyanskiy et al. [11] and Hayashi [12], among others. For
DMCs, we have under mild technical conditions that

log M∗(n, ε) = nC − √
nV Q−1(ε)+ O(log n), (57)

where C is the channel capacity, and V is known as the
channel dispersion. Results of the form (57) provide a quan-
tification of the speed of convergence to the channel capacity
as the block length increases.

In this section, we present achievable second-order coding
rates for the ensembles given in Section I, i.e. expansions of
the form (57) with the equality replaced by ≥. To distinguish
between the ensembles, we define M iid(Q, n, ε), Mcc(Q, n, ε)
and Mcost(Q, n, ε) to be the maximum number of codewords
of length n such that the random-coding error probability does
not exceed ε for the i.i.d., constant-composition and cost-
constrained ensembles respectively, using the input distribu-
tion Q. We first consider the discrete memoryless setting, and
then discuss more general memoryless channels.

A. Cost-Constrained Ensemble

A key quantity in the second-order analysis for ML decod-
ing is the information density, given by

i(x, y) � log
W (y|x)

∑

x Q(x)W (y|x) , (58)

where Q is a given input distribution. In the mismatched
setting, the relevant generalization of i(x, y) is

is,a(x, y) � log
q(x, y)sea(x)

∑

x̄ Q(x̄)q(x̄, y)sea(x̄)
, (59)

where s ≥ 0 and a(·) are fixed parameters. We write
i n
s,a(x, y) �

∑n
i=1 is,a(xi , yi ) and similarly Qn(x) �∏n

i=1 Q(xi ) and an(x) �
∑n

i=1 a(xi). We define

Is,a(Q) � E[is,a(X,Y )] (60)

Us,a(Q) � Var[is,a(X,Y )] (61)

Vs,a(Q) � E
[

Var[is,a(X,Y ) | X]], (62)

where (X,Y ) ∼ Q × W . From (9), we see that the LM rate
is equal to Is,a(Q) after optimizing s and a(·).

We can relate (60)–(62) with the E0 functions defined in
(35) and (39). Letting Ecost′

0 (Q, ρ, s, a) and Ecc
0 (Q, ρ, s, a)

denote the corresponding objectives with fixed (s, a) in place

of the supremum, we have Is,a = ∂Ecost′
0
∂ρ

∣

∣

∣

ρ=0
= ∂Ecc

0
∂ρ

∣

∣

∣

ρ=0
,

Us,a = − ∂2 Ecost′
0

∂ρ2

∣

∣

∣

ρ=0
, and Vs,a = − ∂2 Ecc

0
∂ρ2

∣

∣

∣

ρ=0
. The latter

two identities generalize a well-known connection between the
exponent and dispersion in the matched case [11, p. 2337].

The main result of this subsection is the following theorem,
which considers the cost-constrained ensemble. Our proof
differs from the usual proof using threshold-based random-
coding bounds [10], [11], but the latter approach can also be
used in the present setting [30]. Our analysis can be interpreted
as performing a normal approximation of rcus in (14).

Theorem 5. Fix the input distribution Q and the parameters
s ≥ 0 and a(·). Using the cost-constrained ensemble in (18)
with L = 2 and

a1(x) = a(x) (63)

a2(x) = EW (·|x)[is,a(x,Y )], (64)

the following expansion holds:

log Mcost(Q, n, ε)≥nIs,a(Q)−
√

nVs,a(Q)Q−1(ε)+O(log n).

(65)
Proof: Throughout the proof, we make use of the random

variables (X,Y, X ) ∼ Q(x)W (y|x)Q(x̄) and (X,Y , X) ∼
PX(x)W n(y|x)PX(x̄). Probabilities, expectations, etc. con-
taining a realization x of X are implicitly defined to be
conditioned on the event X = x.

We start with Theorem 1 and weaken rcus in (14) as follows:

rcus(n,M)

= E

[

min

{

1, (M − 1)

∑
x̄∈Dn

PX(x̄)qn(x̄,Y )s

qn(X,Y)s

}]

(66)

≤ E

[

min

{

1,Me2δ

∑
x̄∈Dn

PX(x̄)qn(x̄,Y)sean(x̄)

qn(X,Y)sean(X)

}]

(67)
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≤ E

[

min

{

1,
Me2δ

μn

∑
x̄ Qn(x̄)qn(x̄,Y)sean(x̄)

qn(X,Y )sean(X)

}]

(68)

= P

[

i n
s,a(X,Y )+ log U ≤ log

Me2δ

μn

]

(69)

≤ P

[

i n
s,a(X,Y )+ log U ≤ log

Me2δ

μn
∩ X ∈ An

]

+ P
[

X /∈ An
]

(70)

≤ max
x∈An

P

[

i n
s,a(x,Y )+ log U ≤ log

Me2δ

μn

]

+ P
[

X /∈ An
]

,

(71)

where (67) follows from (31), (68) follows by substituting the
random-coding distribution in (18) and summing over all x̄
instead of x̄ ∈ Dn , and (69) follows from the definition of i n

s,a
and the identity

E[min{1, A}] = P[A ≥ U ], (72)

where A is an arbitrary non-negative random variable, and
U is uniform on (0, 1) and independent of A. Finally, (70)
holds for any set An by the law of total probability.

We treat the cases Vs,a(Q) > 0 and Vs,a(Q) = 0 separately.
In the former case, we choose

An =
{

x ∈ Dn :
∣∣∣
1

n
vn

s,a(x)− Vs,a(Q)
∣∣∣ ≤ ζ

√
log n

n

}

, (73)

where ζ is a constant, and vn
s,a(x) �

∑n
i=1 vs,a(xi ) with

vs,a(x) � VarW (·|x)[is,a(x,Y )]. (74)

Using this definition along with that of Dn in (19) and the
cost function in (64), we have for any x ∈ An that

∣

∣

∣E[i n
s,a(x,Y)] − nIs,a(Q)

∣∣∣ ≤ δ (75)
∣

∣

∣Var[i n
s,a(x,Y )] − nVs,a(Q)

∣∣∣ ≤ ζ
√

n log n. (76)

Since log U has finite moments, this implies
∣

∣

∣E[i n
s,a(x,Y )+ log U ] − nIs,a(Q)

∣∣∣ = O(1) (77)
∣

∣

∣Var[i n
s,a(x,Y )+ log U ] − nVs,a(Q)

∣∣∣ = O
(
√

n log n
)

. (78)

Using (18) and defining X ′ ∼ Qn(x′), we have

P
[

X /∈ An
] ≤ 1

μn
P
[

X ′ /∈ An
]

. (79)

We claim that there exists a choice of ζ such that the right-
hand side of (79) behaves as O

( 1√
n

)

, thus yielding

P
[

X /∈ An
] = O

(

1√
n

)

. (80)

Since Proposition 1 states that μn = �(n−L/2), it suf-
fices to show that P[X ′ /∈ An] can be made to behave
as O(n−(L+1)/2). This follows from the following moderate
deviations result of [31, Thm. 2]: Given an i.i.d. sequence
{Zi }n

i=1 with E[Zi ] = μ and Var[Zi ] = σ 2 > 0, we have

P
[∣

∣

1
n

∑n
i=1 Zi −μ

∣

∣ > ησ
√

log n
n

] � 2
η
√

2π log n
n−η2/2 provided

that E[Zη
2+2+δ

i ] < ∞ for some δ > 0. The latter condition is

always satisfied in the present setting, since we are considering
finite alphabets.

We are now in a position to apply the Berry-Esseen theorem
for independent and non-identically distributed random vari-
ables [32, Sec. XVI.5]. The relevant first and second moments
are bounded in (77)–(78), and the relevant third moment is
bounded since we are considering finite alphabets. Choosing

log M = nIs,a(Q)− logμn − 2δ − ξn (81)

for some ξn , and also using (71) and (80), we obtain from the
Berry-Esseen theorem that

p̄e ≤ Q
(

ξn + O(1)
√

nVs,a(Q)+ O(
√

n log n)

)

+ O
( 1√

n

)

. (82)

By straightforward rearrangements and a first-order Taylor
expansion of the square root function and the Q−1 function,
we obtain

ξn ≤ √

nVs,a(Q)Q−1( p̄e)+ O
(
√

log n
)

. (83)

The proof for the case Vs,a(Q) > 0 is concluded by combining
(81) and (83), and noting from Proposition 1 that logμn =
O(log n).

In the case that Vs,a(Q) = 0, we can still make use of (77),
but the variance is handled differently. From the definition in
(62), we in fact have Var[is,a(x,Y )] = 0 for all x such that
Q(x) > 0. Thus, for all x ∈ Dn we have Var[i n

s,a(x,Y )] = 0
and hence Var[i n

s,a(x,Y )+ log U ] = O(1). Choosing M as in
(81) and setting An = Dn , we can write (71) as

rcus(n,M) ≤ max
x∈Dn

P
[

i n
s,a(x,Y )+ log U − nIs,a(Q) ≤ −ξn

]

(84)

≤ O(1)

(ξn − O(1))2
, (85)

where (85) holds due to (77) and Chebyshev’s inequality
provided that ξn is sufficiently large so that the ξn − O(1)
term is positive. Rearranging, we see that we can achieve any
target value p̄e = ε with ξn = O(1). The proof is concluded
using (81).

Theorem 5 can easily be extended to channels with more
general alphabets. However, some care is needed, since the
moderate deviations result [31, Thm. 2] used in the proof
requires finite moments up to a certain order depending on
ζ in (73). In the case that all moments of is,a(X,Y ) are finite,
the preceding analysis is nearly unchanged, except that the
third moment should be bounded in the set An in (73) in the
same way as the second moment. An alternative approach is
to introduce two further auxiliary costs into the ensemble:

a3(x) = vs,a(x) (86)

a4(x) = E
[|is,a(x,Y )− Is,a(Q)|3

]

, (87)

where vs,a is defined in (74). Under these choices, the relevant
second and third moments for the Berry-Esseen theorem
are bounded within Dn similarly to (77). The only further
requirement is that the sixth moment of is,a(X,Y ) is finite
under Q × W , in accordance with Proposition 1.

We can easily deal with additive input constraints by han-
dling them similarly to the auxiliary costs (see Section VI
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for details). With these modifications, our techniques pro-
vide, to our knowledge, the most general known second-
order achievability proof for memoryless input-constrained
channels with infinite or continuous alphabets.3 In particular,
for the additive white Gaussian noise (AWGN) channel with a
maximal power constraint and ML decoding, setting s = 1 and
a(·) = 0 yields the achievability part of the dispersion given by
Polyanskiy et al. [11], thus providing a simple alternative to
the proof therein based on the κβ bound.

B. i.i.d. and Constant-Composition Ensembles

The properties of the cost-constrained ensemble used in
the proof of Theorem 5 are also satisfied by the constant-
composition ensemble, so we conclude that (65) remains true
when Mcost is replaced by Mcc. However, using standard
bounds on μn in (71) (e.g. [14, p. 17]), we obtain a third-order
O(log n) term which grows linearly in |X |. In contrast, by
Proposition 1 and (81), the cost-constrained ensemble yields
a third-order term of the form − L

2 log n + O(1), where L is
independent of |X |.

The second-order asymptotic result for i.i.d. coding does
not follow directly from Theorem 5, since the proof requires
the cost function in (64) to be present. However, using similar
arguments along with the identities E[i n

s (X,Y )] = nIs(Q) and
Var[i n

s (X,Y )] = nUs(Q) (where X ∼ Qn), we obtain

log M iid(Q, n, ε) ≥ nIs(Q)− √

nUs(Q)Q−1(ε)+ O(1)

(88)

for s ≥ 0, where Is(Q) and Us(Q) are defined as in (60)–(61)
with a(·) = 0. Under some technical conditions, the O(1) term
in (88) can be improved to 1

2 log n+ O(1) using the techniques
of [33, Sec. 3.4.5]; see Section V-C for further discussion.

C. Number of Auxiliary Costs Required

For ML decoding (q(x, y) = W (y|x)), we immediately
see that a1(·) in (63) is not needed, since the parameters
maximizing Is,a(Q) in (60) are s = 1 and a(·) = 0, thus
yielding the mutual information.

We claim that, for any decoding metric, the auxiliary cost
a2(·) in (64) is not needed in the case that Q and a(·) are
optimized in (65). This follows from the following observa-
tion proved in Appendix C: Given s > 0, any pair (Q, a)
which maximizes Is,a(Q) must be such that EW (·|x)[is,a(x,Y )]
has the same value for all x such that Q(x) > 0. Stated
differently, the conditional variance Vs,a(Q) coincides with
the unconditional variance Us,a(Q) after the optimization of
the parameters, thus generalizing the analogous result for
ML decoding [11].

We observe that the number of auxiliary costs in each
case coincides with that of the random-coding exponent (see
Section III-C): L = 2 suffices in general, L = 1 suffices if the
metric or input distribution is optimized, and L = 0 suffices
is both are optimized.

3Analogous results were stated in [12], but the generality of the
proof techniques is unclear. In particular, the quantization arguments on
page 4963 therein require that the rate of convergence from I (Xm ; Y ) to
I (X; Y ) is sufficiently fast, where Xm is the quantized input variable with a
support of cardinality m.

V. SADDLEPOINT APPROXIMATIONS

Random-coding error exponents can be thought of as pro-
viding an estimate of the error probability of the form pe ≈
e−nEr (R). More refined estimates can be obtained having the
form pe ≈ αn(R)e−nEr (R), where αn(R) is a subexponential
prefactor. Early works on characterizing the subexponential
prefactor for a given rate under ML decoding include those of
Elias [23] and Dobrushin [34], who studied specific channels
exhibiting a high degree of symmetry. More recently, Altuğ
and Wagner [22], [35] obtained asymptotic prefactors for
arbitrary DMCs.

In this section, we take an alternative approach based on
the saddlepoint approximation [13]. Our goal is to provide
approximations for rcu and rcus (see Theorem 1) which are
not only tight in the limit of large n for a fixed rate, but also
when the rate varies. In particular, our analysis will cover the
regime of a fixed target error probability, which was studied
in Section IV, as well as the moderate deviations regime,
which was studied in [36] and [37]. We focus on i.i.d. random
coding, which is particularly amenable to a precise asymptotic
analysis.

A. Preliminary Definitions and Results

Analogously to Section IV, we fix Q and s > 0 and define
the quantities

is(x, y) � log
q(x, y)s

∑

x̄ Q(x̄)q(x̄, y)s
(89)

i n
s (x, y) �

n
∑

i=1

is(xi , yi ) (90)

Is(Q) � E[is(X,Y )] (91)

Us(Q) � Var[is(X,Y )], (92)

where (X,Y ) ∼ Q×W . We write rcus in (14) (with PX = Qn)
as

rcus(n,M) = E

[

min
{

1, (M − 1)e−in
s (X,Y)

}

]

. (93)

We let

E iid
0 (Q, ρ, s) � − log E

[

e−ρis (X,Y )
]

(94)

denote the objective in (37) with a fixed value of s in place
of the supremum. The optimal value of ρ is given by

ρ̂(Q, R, s) � arg max
ρ∈[0,1]

E iid
0 (Q, ρ, s) − ρR. (95)

and the critical rate is defined as

Rcr
s (Q) � sup

{

R : ρ̂(Q, R, s) = 1
}

. (96)

Furthermore, we define the following derivatives associated
with (95):

c1(Q, R, s) � R − ∂E iid
0 (Q, ρ, s)

∂ρ

∣

∣

∣

∣

ρ=ρ̂(Q,R,s)
(97)

c2(Q, R, s) � −∂
2 E iid

0 (Q, ρ, s)

∂ρ2

∣

∣

∣

∣

ρ=ρ̂(Q,R,s)
. (98)
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The following properties of the above quantities are analo-
gous to those of Gallager for ML decoding [9, pp. 141–143],
and can be proved in a similar fashion:

1) For all R ≥ 0, we have c2(Q, R, s) > 0 if Us(Q) > 0,
and c2(Q, R, s) = 0 if Us(Q) = 0. Furthermore, we
have c2(Q, Is(Q), s) = Us(Q).

2) If Us(Q) = 0, then Rcr
s (Q) = Is(Q).

3) For R ∈ [

0, Rcr
s (Q)

)

, we have ρ̂(Q, R, s) = 1 and
c1(Q, R, s) < 0.

4) For R ∈ [

Rcr
s (Q), Is (Q)

]

, ρ̂(Q, R, s) is strictly decreas-
ing in R, and c1(Q, R, s) = 0.

5) For R > Is(Q), we have ρ̂(Q, R, s) = 0 and
c1(Q, R, s) > 0.

Throughout this section, the arguments to ρ̂, c1, etc. will be
omitted, since their values will be clear from the context.

The density function of a N(μ, σ 2) random variable is
denoted by

φ(z;μ, σ 2) � 1√
2πσ 2

e− (z−μ)2
2σ2 . (99)

When studying lattice random variables (see Footnote 1 on
Page 2650) with span h, it will be useful to define

φh(z;μ, σ 2) � h√
2πσ 2

e− (z−μ)2
2σ2 , (100)

which can be interpreted as an approximation of the integral
of φ( · ;μ, σ 2) from z to z + h when h is small.

B. Approximation for rcus(n,M)

In the proof of Theorem 6 below, we derive an approxima-
tion r̂cus of rcus taking the form

r̂cus(n,M) � αn(Q, R, s)e−n(E iid
0 (Q,ρ̂,s)−ρ̂R), (101)

where R = 1
n log M , and the prefactor αn varies depending on

whether is(X,Y ) is a lattice variable. In the non-lattice case,
the prefactor is given by

αnl
n (Q, R, s) �

ˆ ∞

0
e−ρ̂zφ(z; nc1, nc2)dz

+
ˆ 0

−∞
e(1−ρ̂)zφ(z; nc1, nc2)dz. (102)

In the lattice case, it will prove convenient to deal with
R − is(X,Y ) rather than is(X,Y ). Denoting the offset and
span of R − is(X,Y ) by γ and h respectively, we see that
n R − i n

s (X,Y ) has span h, and its offset can be chosen as

γn � min
{

nγ + ih : i ∈ Z, nγ + ih ≥ 0
}

. (103)

The prefactor for the lattice case is given by

αl
n(Q, R, s) �

∞
∑

i=0

e−ρ̂(γn+ih)φh(γn + ih; nc1, nc2)

+
−1
∑

i=−∞
e(1−ρ̂)(γn+ih)φh(γn + ih; nc1, nc2), (104)

and the overall prefactor in (101) is defined as

αn �
{
αnl

n is(X,Y ) is non-lattice

αl
n R − is(X,Y ) has offset γ and span h.

(105)

While (102) and (104) are written in terms of integrals and
summations, both prefactors can be computed efficiently to a
high degree of accuracy. In the non-lattice case, this is easily
done using the identity
ˆ ∞

a
ebzφ(z;μ, σ 2)dz = eμb+ 1

2σ
2b2

Q
(a − μ− bσ 2

σ

)

. (106)

In the lattice case, we can write each of the summations in
(104) in the form

∑

i

eb0+b1i+b2i2 = e
− b2

1
4b2

+b0
∑

i

e
b2(i+ b1

2b2
)2
, (107)

where b2 < 0. We can thus obtain an accurate approximation
by keeping only the terms in the sum such that i is sufficiently
close to − b1

2b2
. Overall, the computational complexity of the

saddlepoint approximation is similar to that of the exponent
alone.

Theorem 6. Fix an input distribution Q and parameter
s > 0 such that Us(Q) > 0. For any sequence {Mn} such
that Mn → ∞, we have

lim
n→∞

r̂cus(n,Mn )

rcus(n,Mn )
= 1. (108)

Proof: See Appendix E.
A heuristic derivation of the non-lattice version of r̂cus was

provided in [38]; Theorem 6 provides a formal derivation,
along with a treatment of the lattice case. It should be noted
that the assumption Us(Q) > 0 is not restrictive, since in the
case that Us(Q) = 0 the argument to the expectation in (93) is
deterministic, and hence rcus can easily be computed exactly.

In the case that the rate R is fixed, simpler asymptotic
expressions can be obtained. In Appendix D, we prove the
following (here fn � gn denotes the relation limn→∞ fn

gn
= 1):

• If R ∈ [0, Rcr
s (Q)) or R > Is(Q), then

αn(Q, R, s) � 1. (109)

• If R = Rcr
s (Q) or R = Is(Q), then

αn(Q, R, s) � 1

2
. (110)

• If R ∈ (Rcr
s (Q), Is (Q)), then

αnl
n (Q, R, s) � 1√

2πnc2ρ̂(1 − ρ̂)
(111)

αl
n(Q, R, s) � h√

2πnc2

×
(

e−ρ̂γn

(

1

1 − e−ρ̂h

)

+ e(1−ρ̂)γn

(

e−(1−ρ̂)h

1 − e−(1−ρ̂)h

))

.

(112)

The asymptotic prefactors in (109)–(112) are related to the
problem of exact asymptotics in the statistics literature,
which seeks to characterize the subexponential prefactor for
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probabilities that decay at an exponential rate (see [39]).
These prefactors are useful in gaining further insight into
the behavior of the error probability compared to the error
exponent alone. However, there is a notable limitation which
is best demonstrated here using (111). The right-hand side
of (111) characterizes the prefactor to within a multiplicative
1 + o(1) term for a given rate, but it diverges as ρ̂ → 0
or ρ̂ → 1. Thus, unless n is large, the estimate obtained by
omitting the higher-order terms is inaccurate for rates slightly
above Rcr

s (Q) or slightly below Is(Q).
In contrast, the right-hand side of (102) (and similarly

(104)) remains bounded for all ρ̂ ∈ [0, 1]. Furthermore,
as Theorem 6 shows, this expression characterizes the true
behavior of rcus to within a multiplicative 1 + o(1) term not
only for fixed rates, but also when the rate varies with the
block length. Thus, it remains suitable for characterizing the
behavior of rcus even when the rate approaches Rcr

s (Q) or
Is(Q). In particular, this implies that r̂cus gives the correct
second-order asymptotics of the rate for a given target error
probability (see (88)). More precisely, the proof of Theorem
6 reveals that r̂cus = rcus + O

( 1√
n

)

, which implies (via a

Taylor expansion of Q−1 in (88)) that the two yield the same
asymptotics for a given error probability up to the O(1) term.

C. Approximation for rcu(n,M)

In the proof of Theorem 1, we obtained rcus from rcu using
Markov’s inequality. In this subsection we will see that, under
some technical assumptions, a more refined analysis yields a
bound which is tighter than rcus , but still amenable to the
techniques of the previous subsection.

1) Technical Assumptions: Defining the set

Y1(Q) �
{

y : q(x, y) 
= q(x̄, y) for some

x, x̄ such that Q(x)Q(x̄)W (y|x)W (y|x̄) > 0
}

,

(113)

the technical assumptions on (W, q, Q) are as follows:

q(x, y) > 0 ⇐⇒ W (y|x) > 0 (114)

Y1(Q) 
= ∅. (115)

When q(x, y) = W (y|x), (114) is trivial, and (115) is the
non-singularity condition of [22]. A notable example where
this condition fails is the binary erasure channel (BEC) with
Q = ( 1

2 ,
1
2

)

. It should be noted that if (114) holds but (115)
fails then we in fact have rcu = rcus for any s > 0, and hence
r̂cus also approximates rcu. This can be seen by noting that
rcus is obtained from rcu using the inequality 1{q ≥ q} ≤
( q

q

)s , which holds with equality when q
q ∈ {0, 1}.

2) Definitions: Along with the definitions in Section V-A,
we will make use of the reverse conditional distribution

˜Ps(x |y) � Q(x)q(x, y)s
∑

x̄ Q(x̄)q(x̄, y)s
, (116)

the joint tilted distribution

P∗
ρ̂,s(x, y) = Q(x)W (y|x)e−ρ̂is (x,y)

∑

x ′,y′ Q(x ′)W (y ′|x ′)e−ρ̂is (x ′,y′) , (117)

and its Y -marginal P∗
ρ̂,s(y), and the conditional variance

c3(Q, R, s) � E

[

Var
[

is(X
∗
s ,Y ∗

s )
∣

∣Y ∗
s

]

]

, (118)

where (X∗
s ,Y ∗

s ) ∼ P∗
ρ̂,s(y)

˜Ps(x |y). Furthermore, we define

Is �
{

is(x, y) : Q(x)W (y|x) > 0, y ∈ Y1(Q)
}

(119)

and let

ψs �
{

1 Is does not lie on a lattice
h

1−e−h
Is lies on a lattice with span h.

(120)

The set Is is the support of a random variable which will
appear in the analysis of the inner probability in (13). While
h in (120) can differ from h (the span of is(X,Y )) in general,
the two coincide whenever Y1(Q) = Y .

We claim that the assumptions in (114)–(115) imply that
c3 > 0 for any R and s > 0. To see this, we write

Var P̃s(·|y)[is(X, y)] = 0

⇐⇒ log
˜Ps(x |y)
Q(x)

is independent of x where ˜Ps(x |y) > 0

(121)

⇐⇒ q(x, y) is independent of x where Q(x)q(x, y) > 0

(122)

⇐⇒ y /∈ Y1(Q), (123)

where (121) and (122) follow from the definition of ˜Ps in (116)
and the assumption s > 0, and (123) follows from (114) and
the definition of Y1(Q) in (113). Using (89), (114) and (117),
we have

P∗
ρ̂,s(y) > 0 ⇐⇒

∑

x

Q(x)W (y|x) > 0. (124)

Thus, from (115), we have P∗
ρ̂,s(y) > 0 for some y ∈ Y1(Q),

which (along with (123)) proves that c3 > 0.
3) Main Result: The main result of this subsection is written

in terms of an approximation of the form

r̂cu∗
s (n,M) � βn(Q, R, s)e−n(E iid

0 (Q,ρ̂,s)−ρ̂R). (125)

Analogously to the previous subsection, we treat the lattice
and non-lattice cases separately, writing

βn �
{
βnl

n is(X,Y ) is non-lattice

β l
n R − is(X,Y ) has offset γ and span h,

(126)

where

βnl
n (Q, R, s) �

ˆ ∞

log
√

2πnc3
ψs

e−ρ̂zφ(z; nc1, nc2)dz

+ ψs√
2πnc3

ˆ log
√

2πnc3
ψs

−∞
e(1−ρ̂)zφ(z; nc1, nc2)dz (127)

β l
n(Q, R, s) �

∞
∑

i=i∗
e−ρ̂(γn+ih)φh(γn + ih; nc1, nc2)

+ ψs√
2πnc3

i∗−1
∑

i=−∞
e(1−ρ̂)(γn+ih)φh(γn + ih; nc1, nc2), (128)
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and where in (128) we use γn in (103) along with

i∗ � min

{

i ∈ Z : γn + ih ≥ log

√
2πnc3

ψs

}

. (129)

Theorem 7. Under the setup of Theorem 6 and the assump-
tions in (114)–(115), we have for any s > 0 that

rcu(n,Mn ) ≤ rcu∗
s (n,Mn)(1 + o(1)), (130)

where

rcu∗
s (n,M) � E

[

min

{

1,
Mψs√
2πnc3

e−in
s (X,Y )

}]

. (131)

Furthermore, we have

lim
n→∞

r̂cu∗
s (n,Mn)

rcu∗
s (n,Mn)

= 1. (132)

Proof: See Appendix F.
When the rate does not vary with n, we can apply the

same arguments as those given in Appendix D to obtain the
following analogues of (109)–(112):

• If R ∈ [0, Rcr
s (Q)), then

βn(Q, R, s) � ψs√
2πnc3

, (133)

and similarly for R = Rcr
s (Q) after multiplying the right-

hand side by 1
2 .

• If R ∈ (Rcr
s (Q), Is (Q)), then

βnl
n (Q, R, s) �

(

ψs√
2πnc3

)ρ̂ 1√
2πnc2ρ̂(1 − ρ̂)

(134)

β l
n(Q, R, s) �

(

ψs√
2πnc3

)ρ̂ h√
2πnc2

×
(

e−ρ̂γ ′
n

(

1

1 − e−ρ̂h

)

+ e(1−ρ̂)γ ′
n

(

e−(1−ρ̂)h

1 − e−(1−ρ̂)h

))

,

(135)

where γ ′
n � γn + i∗h − log

√
2πnc3
ψs

∈ [0, h) (see (129)).
• For R ≥ Is(Q), the asymptotics of βn coincide with those

of αn (see (109)–(110)).

When combined with Theorem 7, these expansions provide
an alternative proof of the main result of [22], along with a
characterization of the multiplicative �(1) terms which were
left unspecified in [22]. A simpler version of the analysis
in this paper can also be used to obtain the prefactors with
unspecified constants; see [40] for details.

Analogously to the previous section, in the regime of fixed
error probability we can write (132) more precisely as r̂cu∗

s =
rcu∗

s + O
( 1√

n

)

, implying that the asymptotic expansions of the

rates corresponding to rcu∗
s and r̂cu∗

s coincide up to the O(1)
term. From the analysis given in [33, Sec. 3.4.5], rcu∗

s yields
an expansion of the form (88) with the O(1) term replaced
by 1

2 log n + O(1). It follows that the same is true of r̂cu∗
s .

Fig. 2. i.i.d. random-coding bounds for the channel defined in (56)
with minimum Hamming distance decoding. The parameters are n = 60,
δ0 = 0.01, δ1 = 0.05, δ2 = 0.25 and Q = ( 1

3 ,
1
3 ,

1
3 ).

D. Numerical Examples

Here we provide numerical examples to demonstrate the
utility of the saddlepoint approximations given in this section.
Along with r̂cus and r̂cu∗

s , we consider (i) the normal approx-
imation, obtained by omitting the remainder term in (88),
(ii) the error exponent approximation pe ≈ e−nE iid

r (Q,R), and
(iii) exact asymptotics approximations, obtained by ignoring
the implicit 1 + o(1) terms in (112) and (135). We use the
lattice-type versions of the approximations, since we consider
examples in which is(X,Y ) is a lattice variable. We observed
no significant difference in the accuracy of each approximation
in similar non-lattice examples.

We consider the example given in Section III-D, using the
parameters δ0 = 0.01, δ1 = 0.05, δ2 = 0.25, and Q =
( 1

3 ,
1
3 ,

1
3 ). For the saddlepoint approximations, we approximate

the summations of the form (107) by keeping the 1000
terms4 whose indices are closest to − b1

2b2
. We choose the

free parameter s to be the value which maximizes the error
exponent at each rate. For the normal approximation, we
choose to s achieve the GMI in (11). Defining Rcr(Q) to be
the supremum of all rates such that ρ̂ = 1 when s is optimized,
we have IGMI(Q) = 0.643 and Rcr(Q) = 0.185 bits/use.

In Fig. 2, we plot the error probability as a function of
the rate with n = 60. Despite the fact that the block length is
small, we observe that rcus and r̂cu∗

s are indistinguishable at all
rates. Similarly, the gap from rcu to r̂cu∗

s is small. Consistent
with the fact that Theorem 7 gives an asymptotic upper bound
on rcu rather than an asymptotic equality, r̂cu∗

s lies slightly
above rcu at low rates. The error exponent approximation is
close to rcus at low rates, but it is pessimistic at high rates.
The normal approximation behaves somewhat similarly to
rcus , but it is less precise than the saddlepoint approximation,
particularly at low rates.

4The plots remained the same when this value was increased or decreased
by an order of magnitude.
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Fig. 3. Rate required to achieve a target error probability ε for the channel
defined in (56) with ML decoding. The parameters are ε = 10−8, δ0 = δ1 =
δ2 = δ = 0.1 and Q = ( 1

3 ,
1
3 ,

1
3 ).

To facilitate the computation of rcu and rcus at larger block
lengths, we consider the symmetric setup of δ0 = δ1 = δ2 =
δ = 0.1 and Q = ( 1

3 ,
1
3 ,

1
3

)

. Under these parameters, we have
I (X; Y ) = 0.633 and Rcr(Q) = 0.192 bits/use. In Fig. 3,
we plot the rate required for each random-coding bound and
approximation to achieve a given error probability ε = 10−8,
as a function of n. Once again, r̂cus is indistinguishable from
rcus , and similarly for r̂cu∗

s and rcu. The error exponent
approximation yields similar behavior to rcus at small block
lengths, but the gap widens at larger block lengths. The
exact asymptotics approximations are accurate other than a
divergence near the critical rate, which is to be expected from
the discussion in Section V-B. In contrast to similar plots with
larger target error probabilities (e.g. [11, Fig. 8]), the normal
approximation is inaccurate over a wide range of rates.

VI. DISCUSSION AND CONCLUSION

We have introduced a cost-constrained ensemble with mul-
tiple auxiliary costs which yields similar performance gains
to constant-composition coding, while remaining applicable
in the case of infinite or continuous alphabets. We have
studied the number of auxiliary costs required to match the
performance of the constant-composition ensemble, and shown
that the number can be reduced when the input distribution or
decoding metric is optimized. Using the saddlepoint approxi-
mation, refined asymptotic estimates have been given for the
i.i.d. ensemble which unify the regimes of error exponents,
second-order rates and moderate deviations, and provide accu-
rate approximations of the random-coding bounds.

Extension to Channels With Input Constraints

Suppose that each codeword x is constrained to satisfy
1
n

∑n
i=1 c(xi) ≤ � for some (system) cost function c(·).

The i.i.d. ensemble is no longer suitable, since in all non-
trivial cases it has a positive probability of producing code-
words which violate the constraint. On the other hand,
the results for the constant-composition ensemble remain
unchanged provided that Q itself satisfies the cost constraint,
i.e.

∑

x Q(x)c(x) ≤ �.
For the cost-constrained ensemble, the extension is less

trivial but still straightforward. The main change required is
a modification of the definition of Dn in (19) to include a
constraint on the quantity 1

n

∑n
i=1 c(xi ). Unlike the auxiliary

costs in (19), where the sample mean can be above or below
the true mean, the system cost of each codeword is constrained
to be less than or equal to its mean. That is, the additional
constraint is given by

1

n

n
∑

i=1

c(xi ) ≤ φc �
∑

x

Q(x)c(x), (136)

or similarly with both upper and lower bounds (e.g. − δ
n ≤

1
n

∑n
i=1 c(xi) − φc ≤ 0). Using this modified definition of

Dn , one can prove the subexponential behavior of μn in
Proposition 1 provided that Q is such that φc ≤ �, and
the exponents and second-order rates for the cost-constrained
ensemble remain valid under any such Q.

APPENDIX

A. Proof of Theorem 2

The proof is similar to that of Gallager for the constant-
composition ensemble [15], so we omit some details. The
codeword distribution in (18) can be written as

PX (x) = 1

μn

n∏

i=1

Q(xi )1
{

P̂x ∈ Gn
}

, (137)

where P̂x is the empirical distribution (type) of x, and Gn is
the set of types corresponding to sequences x ∈ Dn (see (19)).
We define the sets

Sn(Gn) �
{

PXY ∈ Pn(X × Y) : PX ∈ Gn
}

(138)

Tn(PXY ,Gn) �
{

˜PXY ∈ Pn(X × Y) : ˜PX ∈ Gn,

˜PY = PY ,EP̃ [log q(X,Y )] ≥ EP [log q(X,Y )]}.
(139)

We have from Theorem 1 that p̄e
.= rcu. Expanding rcu in

terms of types, we obtain

p̄e
.=

∑

PXY ∈Sn(Gn)

P
[

(X,Y) ∈ T n(PXY )
]

× min

{

1, (M−1)
∑

P̃XY ∈Tn(PXY ,Gn)

P
[

(X, y) ∈ T n(P̃XY )
]

}

,

(140)

where y denotes an arbitrary sequence with type PY .
From Proposition 1, the normalizing constant in (137)

satisfies μn
.= 1, and thus we can safely proceed from

(140) as if the codeword distribution were PX = Qn. Using
the property of types in [15, Eq. (18)], it follows that the
two probabilities in (140) behave as e−nD(PXY ‖Q×W ) and
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e−nD( P̃XY ‖Q×PY ) respectively. Combining this with the fact
that the number of joint types is polynomial in n, we obtain
p̄e

.= e−nEr,n (Q,R,Gn), where

Er,n(Q, R,Gn) � min
PXY ∈Sn(Gn)

min
P̃XY ∈Tn(PXY ,Gn)

D(PXY ‖Q × W )+ [

D( ˜PXY ‖Q × PY )− R
]+
. (141)

Using a simple continuity argument (e.g. see [28, Eq. (30)]),
we can replace the minimizations over types by minimiza-
tions over joint distributions, and the constraints of the form
|EP [al(X)] − φl | ≤ δ

n can be replaced by EP [al(X)] = φl .
This concludes the proof.

B. Proof of Theorem 3

Throughout the proof, we make use of Fan’s mini-
max theorem [41], which states that mina supb f (a, b) =
supb mina f (a, b) provided that the minimum is over a com-
pact set, f (·, b) is convex in a for all b, and f (a, ·) is concave
in b for all a. We make use of Lagrange duality [17] in a
similar fashion to [5, Appendix A]; some details are omitted
to avoid repetition with [5].

Using the identity [α]+ = maxρ∈[0,1] ρα and Fan’s minimax
theorem, the expression in (27) can be written as

Ecost
r (Q, R, {al }) = max

ρ∈[0,1] Êcost
0 (Q, ρ, {al})− ρR, (142)

where

Êcost
0 (Q, ρ, {al}) � min

PXY ∈S({al})
min

P̃XY ∈T (PXY ,{al })
D(PXY ‖Q × W )+ ρD( ˜PXY ‖Q × PY ). (143)

It remains to show that Êcost
0 = Ecost

0 . We will show this by
considering the minimizations in (143) one at a time. We can
follow the steps of [5, Appendix A] to conclude that

min
P̃XY ∈T (PXY ,{al })

D( ˜PXY ‖Q × PY ) = sup
s≥0,{rl }

∑

x,y

PXY (x, y) log
q(x, y)s

∑

x̄ Q(x̄)q(x̄, y)se
∑

l rl (al(x̄)−φl )
, (144)

where s and {r l} are Lagrange multipliers. It follows that the
right-hand side of (143) equals

min
PXY ∈S({al})

sup
s≥0,{rl }

∑

x,y

PXY (x, y)

(

log
PXY (x, y)

Q(x)W (y|x)

+ ρ log
q(x, y)s

∑

x̄ Q(x̄)q(x̄, y)se
∑

l r l (al (x̄)−φl )

)

. (145)

Since the objective is convex in PXY and jointly concave
in (s, {r l}), we can apply Fan’s minimax theorem. Hence,
we consider the minimization of the objective in (145) over
PXY ∈ S({al}) with s and {r l} fixed. Applying the techniques
of [5, Appendix A] a second time, we conclude that this
minimization has a dual form given by

sup
{rl }

− log
∑

x,y

Q(x)W (y|x)
(∑

x̄ Q(x̄)q(x̄,y)se
∑

l r l (al (x̄)−φl )

q(x,y)se
∑

l rl (al(x)−φl )

)ρ

,

(146)

where {rl} are Lagrange multipliers. The proof is concluded
by taking the supremum over s and {r l}.

C. Necessary Conditions for the Optimal Parameters

1) Optimization of Ecc
0 (Q, ρ): We write the objective in

(39) as

Ecc
0 (Q, ρ, s, a) � ρ

∑

x

Q(x)a(x)−
∑

x

Q(x) log f (x),

(147)

where

f (x) �
∑

y

W (y|x)q(x, y)−ρs
(

∑

x̄

Q(x̄)q(x̄, y)sea(x̄)
)ρ

.

(148)

We have the partial derivatives

∂ f (x)

∂Q(x ′)
= ρg(x, x ′) (149)

∂ f (x)

∂a(x ′)
= ρQ(x ′)g(x, x ′), (150)

where

g(x, x ′) �
∑

y

W (y|x)q(x, y)−ρs

× ρ

(

∑

x̄

Q(x̄)q(x̄, y)sea(x̄)

)ρ−1

q(x ′, y)sea(x ′) (151)

We proceed by analyzing the necessary Karush-Kuhn-Tucker
(KKT) conditions [17] for (Q, a) to maximize Ecc

0 (Q, ρ, s, a).
The KKT condition corresponding to the partial derivative with
respect to a(x ′) is

ρQ(x ′)−
∑

x

Q(x)
ρQ(x ′)g(x, x ′)

f (x)
= 0, (152)

or equivalently

∑

x

Q(x)
g(x, x ′)

f (x)
= 1. (153)

Similarly, the KKT condition corresponding to Q(x ′) gives

ρa(x ′)− log f (x ′)− ρ
∑

x

Q(x)
g(x, x ′)

f (x)
− λ = 0 (154)

for all x ′ such that Q(x ′) > 0, where λ is the Lagrange
multiplier associated with the constraint

∑

x Q(x) = 1.
Substituting (153) into (154) gives

− log
(

f (x ′)e−ρa(x ′)) = λ+ ρ. (155)

Using the definition of f (·) in (148), we see that (155) implies
that the logarithm in (39) is independent of x .

2) Optimization of Is,a(Q): We write Is,a(Q) in (60) as

Is,a(Q) = s
∑

x,y

Q(x)W (y|x) log q(x, y)+
∑

x

Q(x)a(x)

−
∑

x,y

Q(x)W (y|x) log
∑

x̄

Q(x̄)q(x̄, y)sea(x̄)

(156)
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and analyze the KKT conditions associated with the maxi-
mization over (Q, a). We omit some details, since the steps
are similar to those above. The KKT condition for a(x ′) is

∑

x,y

Q(x)W (y|x) q(x ′, y)sea(x ′)
∑

x̄ Q(x̄)q(x̄, y)sea(x̄)
= 1, (157)

and the KKT condition for Q(x ′) gives

s
∑

y

W (y|x ′) log q(x ′, y)+ a(x ′)

−
∑

y

W (y|x ′) log
∑

x̄

Q(x̄)q(x̄, y)sea(x̄)

−
∑

x,y

Q(x)W (y|x) q(x ′, y)sea(x ′)
∑

x̄ Q(x̄)q(x̄, y)sea(x̄)
− λ = 0 (158)

for all x ′ such that Q(x ′) > 0, where λ is a Lagrange
multiplier. Substituting (157) into (158) and performing some
simple rearrangements, we obtain

∑

y

W (y|x ′) log
q(x ′, y)sea(x ′)

∑

x̄ Q(x̄)q(x̄, y)sea(x̄)
= λ+ 1. (159)

D. Asymptotic Behavior of the Saddlepoint Approximation

Here we prove the asymptotic relations given in
(109)–(112). We will make frequent use of the properties of
ρ̂, c1 and c2 given in Section V-A.

We first prove (109)–(110) in the non-lattice case. Suppose
that R < Rcr

s (Q), and hence ρ̂ = 1, c1 < 0 and c2 > 0.
Using (106) and the identity Q(z) ≤ 1

2 exp
(−z2

2

)

for z > 0,
it is easily verified that the first term in (102) decays to zero
exponentially fast. The second term is given by Q

(−c1

√

n
c2

)

,

which tends to one since limz→∞ Q(z) = 1. We thus obtain
(109). When R = Rcr

s (Q), the argument is similar except that
c1 = 0, yielding the following: (i) From (106), the first term
in (102) equals Q(

√
nc2)enc2/2 � 1√

2πnc2
, rather than decay-

ing exponentially fast, (ii) The second term in (102) equals
Q(0) = 1

2 , rather than one. For R > Is(Q) (respectively,
R = Is(Q)) the argument is similar with the roles of the
two terms in (102) reversed, and with ρ̂ = 0 and c1 > 0
(respectively, c1 = 0).

In the lattice case, the arguments in proving (109)–(110)
are similar to the non-lattice case, so we focus on (109) with
R < Rcr

s (Q). Similarly to the non-lattice case, it is easily
shown that the first summation in (104) decays to zero
exponentially fast, so we focus on the second. Since ρ̂ = 1,
the second summation is given by

−1
∑

i=−∞
φh(γn + ih; nc1, nc2)

= (1 + o(1))
∞
∑

i=−∞
φh(γn + ih; nc1, nc2) (160)

= 1 + o(1), (161)

where (160) follows since the added terms from i = 0 to ∞
contribute an exponentially small amount to the sum since
c1 < 0, and (161) is easily understood by interpreting the

right-hand side of (160) as approximating the integral over the
real line of a Gaussian density function via discrete sampling.
Since the sampling is done using intervals of a fixed size h but
the variance nc2 increases, the approximation improves with
n and approaches one.

Finally, we consider the case that R ∈ (Rcr
s (Q), Is(Q)), and

hence ρ̂ ∈ (0, 1), c1 = 0 and c2 > 0. In the non-lattice case,
we can substitute c1 = 0 and (106) into (104) to obtain

αn =e
1
2 nc2ρ̂

2
Q
(

ρ̂
√

nc2
)+e

1
2 nc2(1−ρ̂)2Q

(

(1 − ρ̂)
√

nc2
)

. (162)

Using the fact that Q(z)ez2/2 � 1
z
√

2π
as z → ∞, along with

the identity 1
ρ + 1

1−ρ = 1
ρ(1−ρ) , we obtain (111).

We now turn to the lattice case. Setting c1 = 0 in (104)
yields

αn = h√
2πnc2

( ∞
∑

i=0

e
−ρ̂(γn+ih)− (γn +ih)2

2nc2

+
−1
∑

i=−∞
e
(1−ρ̂)(γn+ih)− (γn+ih)2

2nc2

)

. (163)

The two summations are handled in a nearly identical fashion,
so we focus on the first. Using the identity 1 − x ≤ e−x ≤ 1,
we can write

∣

∣

∣

∣

∞
∑

i=0

e
−ρ̂(γn+ih)− (γn+ih)2

2nc2 −
∞
∑

i=0

e−ρ̂(γn+ih)

∣

∣

∣

∣

≤
∞
∑

i=0

e−ρ̂(γn+ih) (γn + ih)2

2nc2
(164)

= O
(1

n

)

, (165)

where (165) follows since the summation
∑∞

i=0 e−ζ i p(i) is
convergent for any polynomial p(i) and ζ > 0. Furthermore,
we have from the geometric series that

∞
∑

i=0

e−ρ̂(γn+ih) = e−ρ̂γn

(

1

1 − e−ρ̂h

)

, (166)

We have thus weakened the first summation in (163) to the
first term in the sum in (112) (up to an O

( 1
n

)

remainder term).
The second term is obtained in a similar fashion.

E. Proof of Theorem 6

Since Mn → ∞ by assumption, we can safely replace Mn

by Mn + 1 without affecting the theorem statement. We begin
by considering fixed values of n, M and R = 1

n log M .
Using (93) and the identity in (72), we can can write

rcus(n,M + 1) = P

[

n R −
n

∑

i=1

is(Xi ,Yi ) ≥ log U

]

. (167)

This expression resembles the tail probability of an i.i.d. sum
of random variables, for which asymptotic estimates were
given by Bahadur and Rao [39] (see also [9, Appendix 5A]).
There are two notable differences in our setting which mean
that the results of [9], [39] cannot be applied directly. First,
the right-hand side of the event in (167) is random rather than



2662 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 5, MAY 2014

deterministic. Second, since we are allowing for rates below
Rcr

s (Q) or above Is(Q), we cannot assume that the derivative
of the moment generating function of R − is(X,Y ) at zero
(which we will shortly see equals c1 in (97)) is equal to zero.

1) Alternative Expressions for rcus: Let F(t) denote the
cumulative distribution function (CDF) of R − is(X,Y ), and
let Z1, . . . , Zn be i.i.d. according to the tilted CDF

FZ (z) = eE iid
0 (Q,ρ̂,s)−ρ̂R

ˆ z

−∞
eρ̂t d F(t). (168)

It is easily seen that this is indeed a CDF by writingˆ ∞

−∞
eρ̂t d F(t) = E

[

eρ̂(R−is (X,Y ))
] = e−(E iid

0 (Q,ρ̂,s)−ρ̂R),

(169)

where we have used (94). The moment generating function
(MGF) of Z is given by

MZ (τ ) � E
[

eτ Z] (170)

= eE iid
0 (Q,ρ̂,s)−ρ̂R

E
[

e(ρ̂+τ )(R−is (X,Y ))
]

(171)

= eE iid
0 (Q,ρ̂,s)e−(E iid

0 (Q,ρ̂+τ,s)−τ R), (172)

where (171) follows from (168), and (172) follows from (94).
We can now compute the mean and variance of Z in terms of
the derivatives of the MGF, namely

E[Z ] = d MZ

dτ

∣

∣

∣

τ=0
= c1 (173)

Var[Z ] = d2 MZ

dτ 2

∣

∣

∣

τ=0
− E[Z ]2 = c2, (174)

where c1 and c2 are defined in (97)–(98). Recall that
Us(Q) > 0 by assumption, which implies that c2 > 0 (see
Section V-A).

In the remainder of the proof, we omit the arguments
(Q, ρ̂, s) to E iid

0 . Following [39, Lemma 2], we can use (168)
to write (167) as follows:

rcus(n,M + 1)

=
˙

∑
i ti≥log u

d F(t1) · · · d F(tn)d FU (u) (175)

= e−n(E iid
0 −ρ̂R)

×
˙

∑
i zi ≥log u

e−ρ̂∑
i zi d FZ (z1) · · · d FZ (zn)d FU (u),

(176)

� Ine−n(E iid
0 −ρ̂R), (177)

where FU (u) is the CDF of U . We write the prefactor In as

In =
ˆ 1

0

ˆ ∞

log u
e−ρ̂zd Fn(z)d FU (u), (178)

where Fn is the CDF of
∑n

i=1 Zi . Since the integrand in
(178) is non-negative, we can safely interchange the order of
integration, yielding

In =
ˆ ∞

−∞

ˆ min{1,ez}

0
e−ρ̂zd FU (u)d Fn(z) (179)

=
ˆ ∞

0
e−ρ̂zd Fn(z)+

ˆ 0

−∞
e(1−ρ̂)zd Fn(z), (180)

where (180) follows by splitting the integral according to
which value achieves the min{·, ·} in (179). Letting F̂n denote
the CDF of

∑n
i=1 Zi−nc1√

nc2
, we can write (180) as

In =
ˆ ∞

− c1
√

n√
c2

e−ρ̂(z√nc2+nc1)d F̂n(z)

+
ˆ − c1

√
n√

c2

−∞
e(1−ρ̂)(z√nc2+nc1)d F̂n(z). (181)

2) Non-Lattice Case: Let �(z) denote the CDF of a zero-
mean unit-variance Gaussian random variable. Using the fact
that E[Z ] = c1 and Var[Z ] = c2 > 0 (see (173)–(174)), we
have from the refined central limit theorem in [32, Sec. XVI.4,
Thm. 1] that

F̂n(z) = �(z)+ Gn(z)+ F̃n(z), (182)

where F̃n(z) = o(n− 1
2 ) uniformly in z, and

Gn(z) � K√
n
(1 − z2)e− 1

2 z2
(183)

for some constant K depending only on the variance and third
absolute moment of Z , the latter of which is finite since we
are considering finite alphabets. Substituting (182) into (181),
we obtain

In = I1,n + I2,n + I3,n, (184)

where the three terms denote the right-hand side of (181) with
�, Gn and F̃n respectively in place of F̂n . Reversing the step
from (180) to (181), we see that I1,n is precisely αn in (102).
Furthermore, using dGn

dz = K√
n
(z3 − 3z)e− 1

2 z2
, we obtain

I2,n = K√
n

( ˆ ∞

− c1
√

n√
c2

e−ρ̂(z√nc2+nc1)(z3 − 3z)e− 1
2 z2

dz

+
ˆ − c1

√
n√

c2

−∞
e(1−ρ̂)(z√nc2+nc1)(z3 − 3z)e− 1

2 z2
dz

)

.

(185)

In accordance with the theorem statement, we must show that
I2,n = o(αn) and I3,n = o(αn) even in the case that R and ρ̂
vary with n. Let Rn = 1

n log Mn and ρ̂n = ρ̂(Q, Rn , s), and
let c1,n and c2,n be the corresponding values of c1 and c2.
We assume with no real loss of generality that

lim
n→∞ Rn = R∗ (186)

for some R∗ ≥ 0 possibly equal to ∞. Once the theorem is
proved for all such R∗, the same will follow for an arbitrary
sequence {Rn}.

Table I summarizes the growth rates αn , I2,n and I3,n for
various ranges of R∗, and indicates whether the first or second
integral (see (181) and (185)) dominates the behavior of each.
We see that I2,n = o(αn) and I3,n = o(αn) for all values of
R∗, as desired.

The derivations of the growth rates in Table I when R∗ /∈
{Rcr

s (Q), Is (Q)} are done in a similar fashion to Appendix D.
To avoid repetition, we provide details only for R∗ = Rcr

s (Q);
this is a less straightforward case whose analysis differs
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TABLE I

GROWTH RATES OF αn , I2,n AND I3,n WHEN THE RATE CONVERGES TO R∗

slightly from Appendix D. From Section V-A, we have ρ̂n →1
and c1,n → 0 from below, with c1,n < 0 only if ρ̂n = 1.

For any ρ̂ ∈ [0, 1], the terms e−ρ̂(·) and e(1−ρ̂)(·) in (185) are
both upper bounded by one across their respective ranges of
integration. Since the moments of a Gaussian random variable
are finite, it follows that both integrals are O(1), and thus
I2,n = O

( 1√
n

)

. The term I3,n is handled similarly, so it only

remains to show that αn = ω
( 1√

n

)

. In the case that ρ̂ = 1,

the second integral in (102) is at least 1
2 , since c1 ≤ 0. It only

remains to handle the case that c1 = 0 and ρ̂n → 1 with
ρ̂n < 1. For any δ > 0, we have ρ̂n ≥ 1 − δ for sufficiently
large n. Lower bounding αn by replacing 1 − ρ̂ by δ in the
second term of (102), we have similarly to (162) that

αn ≥ e
1
2 nc2δ

2
Q
(

δ
√

nc2
) � 1√

2πnc2δ
. (187)

Since δ is arbitrary, we obtain αn = ω
( 1√

n

)

, as desired.
3) Lattice Case: The arguments following (184) are essen-

tially identical in the lattice case, so we focus our attention
on obtaining the analogous expression to (184). Letting Pn(z)
denote the probability mass function (PMF) of

∑n
i=1 Zi , we

can write (180) as

In =
∑

z≥0

Pn(z)e
−ρ̂z +

∑

z<0

Pn(z)e
(1−ρ̂)z . (188)

Using the fact that E[Z ] = c1 and Var[Z ] = c2 > 0, we have
from the local limit theorem in [9, Eq. (5A.12)] that

Pn(z) = φh(z; nc1, nc2)+ P̃n(z), (189)

where φh is defined in (100), and P̃n(z) = o
( 1√

n

)

uniformly
in z. Thus, analogously to (184), we can write

In = I1,n + I2,n, (190)

where the two terms denote the right-hand side of (188)
with φh and P̃n(z) respectively in place of Pn(z). Using the
definition of γn in (103) and the fact that

∑

i Zi has the same
support as n R − i n

s (X,Y) (cf. (168)), we see that the first
summation in (188) is over the set {γn +ih : i ∈ Z, i ≥ 0}, and
the second summation is over the set {γn + ih : i ∈ Z, i < 0}.
It follows that I1,n = αn , and similar arguments to the
non-lattice case show that I2,n = o(αn).

F. Proof of Theorem 7

Throughout this section, we make use of the same notation
as Appendix E. We first discuss the proof of (132). Using the

definition of rcu∗
s , we can follow identical arguments to those

following (167) to conclude that

rcu∗
s (n,M) = Ine−n(E iid

0 (Q,ρ̂,s)−ρ̂R), (191)

where analogously to (178) and (180), we have

In =
ˆ 1

0

ˆ ∞

log
u
√

2πnc3
ψs

e−ρ̂zd Fn(z)d FU (u) (192)

=
ˆ ∞

log
√

2πnc3
ψs

e−ρ̂zd Fn(z)

+ ψs√
2πnc3

ˆ log
√

2πnc3
ψs

−∞
e(1−ρ̂)zd Fn(z). (193)

The remaining arguments in proving (132) follow those given
in Appendix E, and are omitted.

To prove (130), we make use of two technical lemmas,
whose proofs are postponed until the end of the section.
The following lemma can be considered a refinement of
[11, Lemma 47].

Lemma 1. Fix K > 0, and for each n, let (n1, . . . , nK ) be
integers such that

∑

k nk = n. Fix the PMFs Q1, . . . , QK on
a finite subset of R, and let σ 2

1 , . . . , σ
2
K be the corresponding

variances. Let Z1, . . . , Zn be independent random variables,
nk of which are distributed according to Qk for each k.
Suppose that mink σk > 0 and mink nk = �(n). Defining

I0 �
⋃

k : σk>0

{

z : Qk(z) > 0
}

(194)

ψ0 �
{

1 I0 does not lie on a lattice
h0

1−e−h0
I0 lies on a lattice with span h0,

(195)

the summation Sn �
∑

i Zi satisfies the following uniformly
in t:

E

[

e−Sn1
{

Sn ≥ t
}

]

≤ e−t
(

ψ0√
2πVn

+ o
( 1√

n

)

)

, (196)

where Vn � Var[Sn].
Roughly speaking, the following lemma ensures the exis-

tence of a high probability set in which Lemma 1 can be
applied to the inner probability in (13). We make use of the
definitions in (116)–(118), and we define the random variables

(X,Y , X, Xs) ∼ Qn(x)W n(y|x)Qn(x̄)P̃n
s (xs | y), (197)

where P̃n
s (x| y) �

∏n
i=1 P̃s(xi |yi). Furthermore, we write the

empirical distribution of y as P̂y , and we let PY denote the
PMF of Y .
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Lemma 2. Let the parameters s > 0 and ρ̂ ∈ [0, 1] be given.
If the triplet (W, q, Q) satisfies (114)–(115), then the set

Fn
ρ̂,s(δ) �

{

y : PY (y) > 0, max
y

∣∣P̂y(y)− P∗
ρ̂,s(y)

∣∣ ≤ δ
}

(198)

satisfies the following properties:

1) For any y ∈ Fn
ρ̂,s(δ), we have

Var
[

i n
s (Xs ,Y ) | Y = y

] ≥ n(c3 − r(δ)), (199)

where r(δ) → 0 as δ → 0.
2) For any δ > 0, we have

lim inf
n→∞ − 1

n
log

∑
x,y/∈Fn

ρ̂,s (δ)
Qn(x)W n(y|x)e−ρ̂in

s (x,y)

∑
x,y Qn(x)W n(y|x)e−ρ̂in

s (x,y)
>0.

(200)
It should be noted that since the two statements of Lemma 2
hold true for any ρ̂ ∈ [0, 1], they also hold true when ρ̂ varies
within this range, thus allowing us to handle rates which vary
with n. Before proving the lemmas, we show how they are
used to obtain the desired result.

Proof of (130) Based on Lemmas 1–2: By upper bounding
M − 1 by M and splitting rcu (see (13)) according to whether
or not y ∈ Fn

ρ̂,s(δ), we obtain

rcu(n,M) ≤
∑

x,y∈Fn
ρ̂,s (δ)

Qn(x)W n(y|x)

× min
{

1,MP[i n
s (X, y) ≥ i n

s (x, y)]
}

+ M ρ̂
∑

x,y/∈Fn
ρ̂,s (δ)

Qn(x)W n(y|x)e−ρ̂in
s (x,y), (201)

where we have replaced qn by i n
s since each is a monotonically

increasing function of the other, and in the summation over
y /∈ Fn

ρ̂,s(δ) we further weakened the bound using Markov’s

inequality and min{1, ·} ≤ (·)ρ̂ . In order to make the inner
probability in (201) more amenable to an application of
Lemma 1, we follow [33, Sec. 3.4.5] and note that the
following holds whenever P̃n

s (x̄| y) > 0:

Qn(x̄) = Qn(x̄)
P̃n

s (x̄| y)

P̃n
s (x̄| y)

= P̃n
s (x̄| y)e−in

s (x̄,y). (202)

For a fixed sequence y and a constant t , summing (202) over
all x̄ such that i n

s (x̄, y) ≥ t yields

P[i n
s (X, y) ≥ t] = E

[

e−in
s (Xs ,Y)1

{

i n
s (X s,Y ) ≥ t

}

∣∣∣ Y = y
]

(203)

under the joint distribution in (197).
We now observe that (203) is of the same form as the left-

hand side of (196). We apply Lemma 1 with Qk given by
the PMF of is(Xs , yk) under Xs ∼ ˜Ps( · |yk), where yk is
the k-th output symbol for which

∑

x Q(x)W (y|x) > 0. The
conditions of the lemma are easily seen to be satisfied for
sufficiently small δ due to the definition of Fn

ρ̂,s(δ) in (198),

the assumption in (115), and (123). We have from (196), (199)
and (203) that

P
[

i n
s (X, y) ≥ t

] ≤ ψs√
2πn(c3 − r(δ))

e−t (1 + o(1)) (204)

for all y ∈ Fn
ρ̂,s(δ) and sufficiently small δ. Here we have used

the fact that ψ0 in (195) coincides with ψs in (120), which
follows from (123) and the fact that ˜Ps(x |y) > 0 if and only
if Q(x)W (y|x) > 0 (see (114) and (116)).

Using the uniformity of the o(1) term in t in (204)
(see Lemma 1), taking δ → 0 (and hence r(δ) → 0), and
writing

min{1, fn(1 + ζn)} ≤ (1 + |ζn|)min{1, fn}, (205)

we see that the first term in (201) is upper bounded by
rcu∗

s (n,M)(1 + o(1)). To complete the proof of (130), we
must show that the second term in (201) can be incorporated
into the multiplicative 1 + o(1) term. To see this, we note
from (125) and (132) that the exponent of rcu∗

s is given
by E iid

0 (Q, ρ̂, s) − ρ̂R. From (94), the denominator in the
logarithm in (200) equals e−nE iid

0 (Q,ρ̂,s). Combining these
observations, the second part of Lemma 2 shows that the
second term in (201) decays at a faster exponential rate than
rcu∗

s , thus yielding the desired result.
Proof of Lemma 1: The proof makes use of the local limit

theorems given in [42, Thm. 1] and [43, Sec. VII.1, Thm. 2]
for the non-lattice and lattice cases respectively. We first
consider the summation S′

n �
∑n′

i=1 Zi , where we assume
without loss of generality that the first n′ = �(n) indices
correspond to positive variances, and the remaining n − n′
correspond to zero variances. We similarly assume that σk > 0
for k = 1, . . . , K ′, and σk = 0 for k = K ′ + 1, . . . , K .
We clearly have Var[S′

n] = Var[Sn] = Vn .
We first consider the non-lattice case. We claim that the

conditions of the lemma imply the following local limit
theorem given in [42, Thm. 1]:

P
[

S′
n ∈ [z, z + η)

] = η√
2πVn

e− (z−μ′
n )

2

2Vn + o
( 1√

n

)

(206)

uniformly in z, where μ′
n � E[S′

n], and η > 0 is arbitrary.
To show this, we must verify the technical assumptions of
[42, p. 593]. First, [42, Cond. (α)] states that there exists
Zmax < ∞ and c > 0 such that

1

Var[Z ]E
[

(Z − E[Z ])21{|Z − E[Z ]| ≤ Zmax}
]

> c (207)

under Z ∼ Qk and each k = 1, . . . , K ′. This is trivially
satisfied since we are considering finite alphabets, which
implies that the support of each Qk is bounded. The Lindeberg
condition is stated in [42, Cond. (γ )], and is trivially satisfied
due to the assumption that nk = �(n) for all k. The only non-
trivial condition is [42, Cond. (β)], which can be written as
follows in the case of finite alphabets: For any given lattice,
there exists δ > 0 such that

1

log Vn

n′
∑

i=1

P[Zi is not δ-close to a lattice point] → ∞.

(208)
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Since we are considering the case that I0 does not lie on a
lattice, we have for sufficiently small δ that the summation
grows linearly in n, whereas log Vn only grows as log n. We
have thus shown that the technical conditions of [42] are
satisfied, and hence (206) holds.

Upper bounding the exponential term in (206) by one, and
noting that Sn − S′

n has zero variance, we obtain

P
[

Sn ∈ [z, z + η)
] ≤ η√

2πVn
+ o

( 1√
n

)

(209)

uniformly in z. We can now prove the lemma similarly to
[11, Lemma 47] by writing

E

[

e−Sn1
{

Sn ≥ t
}

]

≤
∞
∑

l=0

e−t−lη
P

[

t + lη ≤ Sn ≤ t + (l + 1)η
]

(210)

≤
∞
∑

l=0

e−t−lη
(

η√
2πVn

+ o
( 1√

n

)

)

(211)

= e−t
(

η

(1 − e−η)
√

2πVn
+ o

( 1√
n

)

)

, (212)

where (212) follows by evaluating the summation using the
geometric series. The proof is concluded by taking η → 0
and using the identity limη→0

η
1−e−η = 1. The uniformity of

(196) in t follows from the uniformity of (209) in z.
In the lattice case, the argument is essentially unchanged,

but we instead use the local limit theorem given in
[43, Sec. VII.1, Thm. 2], which yields

P[S′
n = z] = h0√

2πVn
e− (z−μ′

n )
2

2Vn + o
( 1√

n

)

(213)

uniformly in z on the lattice corresponding to S′
n (with span

h0). The remaining arguments are identical to the non-lattice
case, with η = h0 instead of η → 0.

Proof of Lemma 2: We obtain (199) by using the definitions
of c3 and Fn

ρ̂,s(δ) (see (118) and (198)) to write

Var[i n
s (Xs ,Y) | Y = y]

=
∑

y

n P̂y(y)Var[is(Xs,Y ) | Y = y] (214)

≥
∑

y

n(P∗
ρ̂,s(y)− δ)Var[is(Xs,Y ) | Y = y] (215)

= n
(

c3 − o(δ)
)

, (216)

where (Xs |Y = y) ∼ ˜Ps( · | y). To prove the second property,
we perform an expansion in terms of types in the same way as
Appendix A to conclude that the exponent of the denominator
in the logarithm in (200) is given by

min
PXY

∑

x,y

PXY (x, y) log

(

PXY (x, y)

Q(x)W (y|x)e
ρ̂is (x,y)

)

. (217)

Similarly, using the definition of Fn
ρ̂,s(δ) in (198), the exponent

of the numerator in the logarithm in (200) is given by

min
PXY : maxy |PY (y)−P∗

ρ̂,s (y)|>δ
∑

x,y

PXY (x, y) log

(

PXY (x, y)

Q(x)W (y|x)e
ρ̂is (x,y)

)

. (218)

A straightforward evaluation of the KKT conditions
[17, Sec. 5.5.3] yields that (217) is uniquely minimized by
P∗
ρ̂,s , defined in (117). On the other hand, P∗

ρ̂,s does not

satisfy the constraint in (218), and thus (218) is strictly greater
than (217). This concludes the proof of (200).

REFERENCES

[1] I. Csiszár and J. Körner, “Graph decomposition: A new key to coding
theorems,” IEEE Trans. Inf. Theory, vol. 27, no. 1, pp. 5–12, Jan. 1981.

[2] J. Hui, “Fundamental issues of multiple accessing,” Ph.D. dissertation,
Dept. Comput. Sci., MIT, Cambridge, MA, USA, 1983.

[3] G. Kaplan and S. Shamai, “Information rates and error exponents of
compound channels with application to antipodal signaling in a fading
environment,” Arch. Elek. Über., vol. 47, no. 4, pp. 228–239, 1993.

[4] I. Csiszár and P. Narayan, “Channel capacity for a given decoding
metric,” IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 35–43, Jan. 1995.

[5] N. Merhav, G. Kaplan, A. Lapidoth, and S. Shamai, “On information
rates for mismatched decoders,” IEEE Trans. Inf. Theory, vol. 40, no. 6,
pp. 1953–1967, Nov. 1994.

[6] V. Balakirsky, “A converse coding theorem for mismatched decoding
at the output of binary-input memoryless channels,” IEEE Trans. Inf.
Theory, vol. 41, no. 6, pp. 1889–1902, Nov. 1995.

[7] A. Ganti, A. Lapidoth, and E. Telatar, “Mismatched decoding revisited:
General alphabets, channels with memory, and the wide-band limit,”
IEEE Trans. Inf. Theory, vol. 46, no. 7, pp. 2315–2328, Nov. 2000.

[8] A. Lapidoth, “Mismatched decoding and the multiple-access channel,”
IEEE Trans. Inf. Theory, vol. 42, no. 5, pp. 1439–1452, Sep. 1996.

[9] R. Gallager, Information Theory and Reliable Communication.
New York, NY, USA: Wiley, 1968.

[10] V. Strassen, “Asymptotische Abschätzungen in Shannon’s Informa-
tionstheorie,” in Proc. Trans. 3rd Prague Conf. Inf. Theory, 1962,
pp. 689–723.

[11] Y. Polyanskiy, V. Poor, and S. Verdú, “Channel coding rate in the
finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5,
pp. 2307–2359, May 2010.

[12] M. Hayashi, “Information spectrum approach to second-order coding
rate in channel coding,” IEEE Trans. Inf. Theory, vol. 55, no. 11,
pp. 4947–4966, Nov. 2009.

[13] J. L. Jensen, Saddlepoint Approximations. Oxford, U.K.: Oxford Univ.
Press, 1995.

[14] I. Csiszár and J. Körner, Information Theory: Coding Theorems for
Discrete Memoryless Systems. Cambridge. U.K.: Cambridge Univ. Press,
2011.

[15] R. Gallager. (2013). Fixed Composition Arguments and Lower
Bounds to Error Probability [Online]. Available: http://web.mit.edu/
gallager/www/notes/notes5.pdf

[16] S. Shamai and I. Sason, “Variations on the Gallager bounds, con-
nections, and applications,” IEEE Trans. Inf. Theory, vol. 48, no. 12,
pp. 3029–3051, Dec. 2002.

[17] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[18] A. Somekh-Baruch. (2013). On achievable rates for channels with
mismatched decoding. Submitted to IEEE Trans. Inf. Theory [Online].
Available: http://arxiv.org/abs/1305.0547

[19] J. Scarlett, A. Martinez, and A. Guillén i Fàbregas. (2013). Multiuser
coding techniques for mismatched decoding. Submitted to IEEE Trans.
Inf. Theory [Online]. Available: http://arxiv.org/abs/1311.6635

[20] J. Scarlett, L. Peng, N. Merhav, A. Martinez, and
A. Guillén i Fàbregas. (2013). Expurgated random-coding ensembles:
Exponents, refinements and connections. Submitted to IEEE Trans. Inf.
Theory [Online]. Available: http://arxiv.org/abs/1307.6679

[21] A. Somekh-Baruch. (2013). A general formula for the mismatch
capacity. Submitted to IEEE Trans. Inf. Theory [Online]. Available:
http://arxiv.org/abs/1309.7964
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