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Abstract—In this paper, we consider an automatic-repeat-re-
quest (ARQ) retransmission protocol signaling over a block-fading
multiple-input–multiple-output (MIMO) channel. Unlike previous
work, we allow for multiple fading blocks within each transmission
(ARQ round), and we constrain the transmitter to fixed rate codes
constructed over complex signal constellations. In particular, we
examine the general case of average input-power-constrained con-
stellations with a fixed signaling alphabet of finite cardinality. This
scenario is a suitable model for practical wireless communications
systems employing orthogonal frequency division multiplexing
(OFDM) techniques over a MIMO ARQ channel. Two cases of
fading dynamics are considered, namely, short-term static fading
where channel fading gains change randomly for each ARQ round,
and long-term static fading where channel fading gains remain
constant over all ARQ rounds pertaining to a given message. As
our main result, we prove that for the block-fading MIMO ARQ
channel with a fixed signaling alphabet satisfying a short-term
power constraint, the optimal signal-to-noise ratio (SNR) ex-
ponent is given by a modified Singleton bound, relating all the
system parameters. To demonstrate the practical significance of
the theoretical analysis, we present numerical results showing that
practical Singleton-bound-achieving maximum distance separable
codes achieve the optimal SNR exponent.

Index Terms—Automatic-repeat-request (ARQ) retransmission
protocols, block-fading channels, complex signal constellations,
incremental redundancy coding, multiple-input–multiple output
(MIMO) channels, throughput-diversity-delay tradeoff.
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I. INTRODUCTION

P RACTICALITIES of current data communication sys-
tems are driving the development of transmission schemes

with multiple layers of coding, in combination with adaptive
modulation. One of the most interesting such schemes is the
overlay of automatic-repeat-request (ARQ) retransmission
protocols, over the top of adaptive coding and modulation
for multiple-input–mutliple-output/orthogonal frequency di-
vision multiplexing (MIMO/OFDM) wireless links. In [1],
the fundamental diversity-multiplexing-delay tradeoff was
characterized for the MIMO ARQ channel, under the assump-
tion that Gaussian-distributed input signals are used. A more
general scenario based on resolution-constrained feedback was
considered in [2], where the corresponding diversity-multi-
plexing tradeoff was determined. The general formulation in
[2] includes the results for 1-bit ARQ feedback as a particular
instance. The definition of multiplexing gain, fundamental in
the formulation presented in [1]–[3], relies on coding schemes
with transmission rates that increase linearly with the logarithm
of the signal-to-noise ratio (SNR). Nonzero multiplexing gains
can only be achieved with continuous input constellations or
discrete constellations with cardinalities scaling with SNR. In
contrast, from a practical perspective, it is desirable to operate
at a fixed code rate and deal with small alphabet sizes; in this
case, focusing on the rate-diversity tradeoff.

In this paper, we consider an ARQ system signaling over a
block-fading MIMO channel with transmit antennas,
receive antennas, a maximum number of allowable ARQ
rounds, fading blocks per ARQ round, and subject to a
short-term average power constraint. The corresponding re-
ceiver is able to generate 1-bit repeat requests, limited by
the maximum number of allowable ARQ rounds, whenever an
error is detected in the decoded message. As in [1], we consider
two cases of fading statistics; for the short-term static fading
case, the channel fading gains change randomly for each ARQ
round, while for the long-term static fading case, the channel
fading gains remain constant over all ARQ rounds pertaining
to a given message, but change randomly for each message and
corresponding suite of ARQ rounds. This transmission scenario
is a suitable model for practical wireless communications
systems employing OFDM modulation over a MIMO ARQ
channel.

The block-fading MIMO ARQ channel was considered in
[1] for the case of (quasi-static fading), and the cor-
responding optimal diversity-multiplexing-delay tradeoff was
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derived for both short-term static and long-term static channel
fading statistics. It was further demonstrated that while the op-
timal diversity gain is an increasing function of the maximum
number of allowed ARQ rounds , the throughput of the system
becomes independent of for sufficiently large SNR, and is de-
termined by the rate of a single ARQ round . In addition,
it was proved in [4] that as both and grow large such
that their ratio remains fixed, vanishing error probability can be
achieved provided that , where denotes the ergodic
capacity of the channel. Furthermore, for any ratio strictly less
than , a finite average delay (in terms of ARQ rounds) can be
achieved.

In [5], the case of and (fixed delay and quasi-
static fading) was considered, enforcing a more structured class
of fixed-rate codes based on concatenated coded modulation
schemes constructed from a given fixed and finite signal constel-
lation with signal-space rotations. The corresponding rate-diver-
sity tradeoff (zero multiplexing gain) was derived following the
approach in [6].

The main contribution of our work is to derive the optimal
tradeoff between throughput, diversity gain, and delay of the
block-fading MIMO ARQ channel, enforcing a fixed signaling
constellation of finite cardinality that does not change with time
and/or the transmitted message. This constraint was also im-
posed in [5], and is significantly stronger than the constraint ap-
plied in [1]. Our main contribution is, therefore, an extension of
the results in [1], using the approach in [5] as the class of codes
considered has more structure and thus is more suited to prac-
tical implementation. Conversely, our main contribution also
generalizes the result of [5] for the quasi-static MIMO channel
to the block-fading MIMO ARQ channel, using the approach
developed in [1]. Furthermore, we generalize the results in [1]
and [5], by allowing for multiple fading blocks within each
transmission (ARQ round).

The throughput-diversity-delay tradeoff is captured by the
SNR exponent (diversity gain) defined as

where denotes the probability that the transmitted mes-
sage is decoded incorrectly as a function of the SNR . As ex-
pected from the results in [6], the optimal SNR exponent derived
here is given by a modified version of the Singleton bound [7],
relating the cardinality of the signal constellation, the rate of a
single ARQ round , the maximum number of ARQ rounds

, and the number of fading blocks per ARQ round . The
relation to the Singleton bound naturally leads us to investi-
gate the role of Singleton-bound-achieving maximum-distance
separable (MDS) codes [6] for the block-fading MIMO ARQ
channel. To demonstrate the practical implications of our re-
sults, some examples are presented with corresponding error
rate and throughput performances for practical coding schemes
with iterative decoding. Our examples illustrate that the op-
timal SNR exponent can be achieved with practical MDS coding
schemes.

The following notation is used in this paper. Sets are denoted
by calligraphic fonts with the complement denoted by super-
script . The exponential equality indicates that

. The exponential inequality and are
similarly defined. and denote componentwise inequality of

and , respectively. denotes the identity matrix, vector/ma-
trix transpose is denoted by (e.g., ), and is the Frobe-
nius norm. is the indicator function, and denotes the
smallest integer greater than , while denotes the largest in-
teger less than or equal to .

This paper is organized as follows. In Section II, we define the
system model, and in Section III, we review relevant ARQ per-
formance measures. In Section IV, we review the concepts of in-
formation accumulation and outage probability, while the main
theorems of the paper, detailing the throughput-diversity-delay
tradeoff, are presented in Section V. To demonstrate the prac-
tical relevance of the results, numerical examples are included
in Section VI, showing that MDS codes achieve the tradeoff.
Concluding remarks are summarized in Section VII, while the
details of the proofs have been collected in the Appendix.

II. SYSTEM MODEL

In this section, we describe the block-fading MIMO ARQ
channel model and coded modulation schemes under consider-
ation.

A. Channel Model

Consider a block-fading MIMO ARQ system with
transmit antennas and receive antennas. We investigate
the use of a simple stop-and-wait ARQ protocol where the
maximum number of ARQ rounds is denoted by . Each ARQ
round consists of independent block-fading periods, each of
length (coherence time/bandwidth) in channel uses. Hence,
each ARQ round spans channel uses. Fig. 1 shows the
overall system model. We write the received signal at the th
block and th ARQ round as

(1)

where , , and
denote the transmitted signal matrix, received signal

matrix, the noise matrix, and the channel fading gain matrix, re-
spectively. The main difference with the model in [1] is that each
ARQ round is allowed to have independent fading blocks,
as opposed to a single one as in [1]. We define
as the vectors containing the transmitted symbols of each an-
tenna at ARQ round , block , and time , which are such that

.
Both the elements of the channel fading gain matrix and

the elements of the noise matrix are assumed indepen-
dent identically distributed (i.i.d.) zero mean complex circularly
symmetric complex Gaussian with variance per di-
mension. We assume perfect receiver-side channel state infor-
mation (CSI), namely, the channel coefficients are assumed to be
perfectly known to the receiver. The transmitter does not know
the channel realization, but knows the channel statistics. We ob-
tain the long-term static model of [1] by letting
for all in (1), namely, all ARQ rounds undergo the same
MIMO block-fading channel. This models well a slowly varying
MIMO OFDM ARQ system with subcarriers or groups
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Fig. 1. MIMO ARQ system model. (a) Block diagram of ARQ. (b) Channel at ARQ round �. (c) Codeword structure.

of correlated subcarriers. On the other hand, when the matrices
are i.i.d. from block to block and from ARQ round to ARQ

round, (1) corresponds to the short-term static model of [1]. To
keep the presentation general, and since (1) encompasses both

models, we will index the channel matrices according to ARQ
round and block as in the short-term static model. We will out-
line the changes for the long-term static model whenever nec-
essary.
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Therefore, the channel model corresponding to ARQ round
becomes

(2)

where

One channel use of the equivalent model (2) corresponds to
channel uses. In a similar way to the previous model, we define
the vectors for as

The receiver attempts to decode following the reception of
an ARQ round. If the received codeword can be decoded, the
receiver sends back a 1-bit acknowledgment signal to the trans-
mitter via a zero-delay and error-free feedback link. The trans-
mission of the current codeword ends immediately following the
acknowledgment signal and the transmission of the next mes-
sage in the queue starts. If an error is detected in the received
codeword before the th ARQ round, then the receiver requests
another ARQ round by sending back a 1-bit negative acknowl-
edgment along the perfect feedback path. However, a decision
must be made at the end of the th ARQ round regardless of
whether errors are detected. The ARQ acknowledgment feed-
back can be interpreted as 1-bit CSI information of avail-
able at the transmitter [1], [2]. In general, the optimal ARQ de-
coder makes use of all available coded blocks and corresponding
channel state information up to the current ARQ round in the
decoding process. This leads to the concept of information ac-
cumulation, where individual ARQ rounds are combined, along
with any other side information. We hence introduce the ARQ
channel model up to the th ARQ round, completely analogous
to (1), but allowing for a more concise notation. In particular,
we have that

(3)

where

That is, , , and are simply collections of the received,
code, and noise matrices, respectively, available at the end of the
th ARQ round, concatenated into block column matrices. The

new channel matrix is a block diagonal ma-
trix with the diagonal blocks composed of the respective channel
state during each block-fading period up to ARQ round . In the

case of long-term static model, . Note

that a channel use of the equivalent model (3) corresponds to
channel uses of the real channel (1).

B. Encoding

In this section, we discuss the specific construction of the
space-time ARQ codewords. Consider a set of uniformly dis-
tributed information messages . The information mes-
sage to be transmitted is passed through a space-time coded
modulation encoder with codebook and code
rate , where and

is the code rate of a single ARQ round. Therefore,
and , where

is the set of possible information messages. We denote the
codeword corresponding to information message by .
The rate codeword can be partitioned into a sequence of
space-time coded matrices, denoted . According
to the previously described model, we have that

We consider a short-term average power constraint, namely,
the transmitted codewords are normalized in energy such that

, where the average is over all codewords.
Therefore, together with the model assumptions in the previous
section, in (1)–(3) represents the average SNR per receive an-
tenna.

In this paper, we analyze space-time coded modulation
schemes constructed over fixed discrete signal sets. In partic-
ular, we consider that is obtained as the concatenation of a
classical coded modulation scheme constructed
over a complex-plane signal set [8]
with a unit rate linear dispersion space-time modulator [9].
Let denote a codeword of of length and

the number of bits conveyed in one symbol of ,
namely, . Because the linear dispersion space-time
modulator has unit rate, we have that .

To allow for a general case, we consider that the linear dis-
persion space-time modulator spreads the symbols of over
the transmit antennas and the fading blocks. In particular,
we consider that the codewords of , of length
are partitioned into vectors of length each, denoted by

such that . For every
, the vectors are multiplied by the unit rate

generator matrix of the linear dispersion space-time modulator
to form

(4)

where is the vector representation of
the portion of codeword of transmitted at ARQ round .
Without any loss in generality, we consider that is a rotation
matrix [10]–[13], i.e., is unitary [14]. Note that introduction
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of the linear dispersion space-time modulator rotation matrix
increases the decoding complexity compared to the unrotated
case where . This is because now the components of
depend on each other, since induces a change of the refer-
ence axis for detection [10]–[13]. This implies that the detection
problem is of dimension .

To allow for further flexibility, we consider the case where
the linear dispersion space-time modulator spreads the symbols
of over the transmit antennas and a number

of fading blocks, such that

is an integer representing the number of rotations used in an
ARQ round. We refer to as the time-expansion factor of the
code construction. In this case, we have that the rotation matrix

becomes block-diagonal, namely

(5)

where is the rotation matrix of dimen-
sion . According to (5), we can define

, such that . We define the multi-
dimensional constellation as

(6)

Due to the block-diagonal structure of , the detection problem
reduces to detection problems over each of dimension

. This formulation encompasses many cases of interest,
as, for example, the unrotated case, for which , the general
threaded algebraic space-time (TAST) modulation structure for
MIMO block-fading channels [15], or perfect space-time mod-
ulation [16]. As we will see in Section V, the parameter plays
a key role in the reliability of the overall system. Intuitively,
the larger is, the larger the space-time symbol spreading be-
comes, and hence, the larger the diversity [15]. On the other
hand, using large implies larger decoding complexity, as the
detection problem is exponential in . Using the previous dis-
cussion, we introduce the following equivalent channel matrix:

(7)

for . These matrices correspond to the channels
seen by rotation within ARQ round . The equivalent channel
defined by (7) induces the following channel model:

(8)

where , and are the corre-
sponding input, output, and noise vectors. This model describes
the relationship between the output of one of the rotations of

the linear dispersion space-time modulator and the output of the
channel. One use of channel (8) corresponds to uses of the
real model (1).

C. Decoding

We will make use of the ARQ decoder proposed in [1], which
behaves as a typical set decoder for the first ARQ round
and finally performs maximum-likelihood (ML) decoding at the
last ARQ round. The decoding function at ARQ round , for

, denoted , gives the following
output:

if is the unique codeword in
jointly typical with given
otherwise

(9)
which implies that message index

whenever the received matrix can be decoded and
whenever errors are detected.

III. ARQ PERFORMANCE METRICS

Following the approach in [1], we introduce a few perfor-
mance metrics relevant to ARQ systems, namely, the error prob-
ability, average latency, and throughput. For ease of notation, we
define three relevant decoder events as follows. Let

denote the event of error detection up to and including ARQ
round ; let

denote the event of decoding a valid message at ARQ round ;
and let

denote the event of a decoding error at ARQ round , given that
message was transmitted. Based on the events defined above,
the probability of error is given by

(10)

where the expectation is with respect to the joint distribution
of the fading gain matrix and received signal matrix. From the
error expression in (10), it is clear that the ARQ decoder suf-
fers from undetected errors and ML decoding errors. Unde-
tected errors occur during ARQ rounds and
reflect the inability of the decoder to identify erroneous frames.
ML decoding errors occur at the last ARQ round and reflect the
inability of the decoder to resolve atypical channel and noise
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realizations. It was shown in [1] that the probability of unde-
tected errors can be made arbitrarily small using appropriate
codebooks, leaving ML decoding errors to dominate the error
probability. In terms of error probability, the effectiveness of an
ideal ARQ decoder is, therefore, almost exclusively limited by
the error probability at the last ARQ round.

The expected latency of the system is determined by the
probability of error detection [1], and it is given by

(11)

where is expressed in terms of number of ARQ rounds. The
corresponding transmit throughput of the system in terms of the
average effective code rate is simply obtained by

(12)

where is expressed in bits per channel use.1

IV. INFORMATION ACCUMULATION AND OUTAGE PROBABILITY

In this section, we expand on the idea of mutual information
accumulation in ARQ systems as well as introduce the com-
monly used concept of information outage. This approach was
first put forward in [4], and again used in [1] to prove the con-
verse.

The instantaneous input–output mutual information of the
channel (3) up to ARQ round , for the channel realization

can be written as [1], [4]

(13)

(14)

where is the instantaneous input–output mutual infor-
mation corresponding to ARQ round . Following (14), we will
refer to as the accumulated mutual information up to
ARQ round [4]. The accumulated mutual information
measures the normalized mutual information between the accu-
mulated received matrix and the coded blocks , given the
instantaneous channel state matrix . Because is a random
matrix, is a nonnegative random variable. Further, from
(14), it is clear that the accumulated mutual information is an
increasing function of the ARQ round index , for a given real-
ization of .

We define information outage as the event that occurs when
the accumulated mutual information is below [1], namely

(15)

For any finite and , the channel defined in (3) is not in-
formation stable and the channel capacity in the strict Shannon

1Note that our definition of transmit throughput here is purely a measure of
the average code rate at the sender’s side, as it does not take into account whether
messages are correctly decoded at the receiver’s side.

sense is zero [17], because the probability of the outage event
is nonzero. The corresponding outage probability is defined as
[18], [19]

(16)

(17)

As shown in the converse proof of Theorem 2 (see the
Appendix) and also in [1], the occurrence of an outage event
induces a frame error. This implies that the error probability is
lower bounded by the outage probability for sufficiently large
block length .

The accumulated mutual information , and hence,
the corresponding outage probability, depends on the SNR

and the input distribution with the constraint that
. When no other constraints are imposed

on the input distribution, the input distribution that maxi-
mizes , and therefore, minimizes , is
the Gaussian distribution, namely, the entries of are i.i.d.
complex circularly symmetric random variables with zero mean
and unit variance. This leads to [1]

(18)

(19)

In practice, Gaussian codebooks are not feasible, and we will
resort to signal constellations with a fixed signaling alphabet
that does not change with time and/or the transmitted message.
In this paper, we are mostly interested in studying the role of the
fixed discrete nature of practical constellations, and the impact
this further system constraint has on the outage probability. In
particular, we can write the mutual information for the scheme
described in Section II-B as

(20)

where

(21)

(22)

is the input–output mutual information corresponding to the re-
alization given in (7) of the channel described
in (8), assuming a uniform distribution over the mul-
tidimensional constellation defined in (6). Because

, it is not difficult to show that (20) can be
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bounded as (23) shown at the bottom of the page. This relation-
ship will prove useful in proving our main results.

V. THROUGHPUT-DIVERSITY-DELAY TRADEOFF

In this section, we derive the optimal tradeoff between
throughput, diversity gain, and delay of ARQ schemes sig-
naling over MIMO block-fading channels. In particular, we
show that the tradeoff highlights the roles of the complex-plane
signal constellation through , the rate of a single ARQ round

, the maximum number of ARQ rounds , and the number
of fading blocks per ARQ round . As we will see, for large
SNR, the tradeoff expression highlights the role of the asymp-
totic throughput through . Furthermore, the optimal tradeoff
expression includes the effect of the space-time spreading
dimension of the linear dispersion modulator, providing also a
reference of decoding complexity.

We now present the main results of this paper concerning the
optimal SNR exponent of ARQ systems.

Theorem 1: Consider the channel model (3) with input
constellation satisfying the short-term average power constraint

. The optimal SNR exponent is
given by

for short-term static fading
for long-term static fading.

(24)

Proof: Theorem 1 follows immediately as a corollary of
[1, Th. 2] after taking into account the introduction of in the
system.

Theorem 1 states that Gaussian codes achieve maximal diver-
sity gain for any positive rate. As we show in the following, this
is not the case with discrete signal constellations . In partic-
ular, full diversity is achievable by discrete signal sets provided
the rates satisfy . However, to attain full diver-
sity, we must restrict the signal constellations to certain proper-
ties. In general, due to the discrete nature of these signal sets, a
tradeoff between rate, diversity and delay arises. This relation-
ship is expressed in the next theorem.

Theorem 2: Consider the channel model (3) satisfying the
short-term average power constraint , with
the fixed discrete inputs described in Section II-B, using an un-
derlying complex-plane constellation , with and
time-expansion factor . The optimal SNR exponent is then
given by

for short-term static fading

for long-term static fading

(25)

Proof (Sketch): A sketch of the proof is provided here,
with the technical details left to the Appendix. We first prove
the converse and show that the diversity gain is upper
bounded by (25). We can use Fano’s inequality to show that the
outage probability lower bounds the error proba-
bility for a sufficiently large block length. Then, we bound
the maximum SNR exponent by considering the diversity gain
of the outage probability. For large SNR, the instantaneous mu-
tual information is either zero or bits per channel use, cor-
responding to when the channel is in deep fade and when the
channel is not in deep fade, respectively [6]. Achievability is
proved by bounding the error probability of the typical set de-
coder [1] for ARQ rounds , and that of the
ML decoder at round , using the union Bhattacharyya bound
[20] on a random coded modulation scheme over concate-
nated with linear dispersion space-time modulation. For large
block length such that , we obtain random
coding exponents similar to those in [6]. For finite , the random
coding exponents provided in the proof coincide with (25) over
a range of rates that increases with . Finally, as , we
show that the SNR exponent of random codes is given by the
Singleton bound for all values of where (25) is continuous.

Theorem 2 states that optimal diversity gain of and
for short- and long-term models, respectively, can also

be achieved by discrete signal sets coupled with linear disper-
sion space-time modulators with constellation ,
namely, space-time modulators that spread the symbols of
over the fading blocks at each ARQ round. Under this sce-
nario,2 full diversity is maintained for all rates .
However, as anticipated in Section II-B, there is one drawback
of practical concern, namely, complexity. To achieve full diver-
sity, the linear dispersion space-time modulator needs to spread
the symbols of over the blocks, which implies that the size
of the constellation of each ARQ round is . We
may, however, choose a modulator that spreads symbols over
blocks where in order to reduce the complexity of the
ML decoder. In this case, there is a tradeoff between the param-
eters of (25). This can be seen as a manifestation of the discrete
nature of the input constellation, which limits the performance

2Within our framework, it would also be possible to modulate over � �

� � �� periods in the short-term case, namely, spreading the modulation
symbols also across ARQ rounds and (25) would remain valid. In particular,
letting � � ��, we could achieve full diversity over the full range of � ,
namely, � � � � �� �, which is the same exponent of the Gaussian input.
However, generalizing our model to this case would compress key concepts such
as information accumulation in a single formula, rather than the more natural
sum expression in (14). In particular, one could define the equivalent channel
model up to round � as

			 � ���� �			 
 	 	 	 
			 
���
 	 	 	 
���
 �

where ��� is the zero matrix, and obtain the result.

(23)
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of the outage probability at high SNR. Theorem 2 generalizes
the result of [5] for the quasi-static MIMO channel to the ARQ
block-fading case.

The upper bound (25) is also applicable to any systems using
block codes over independent block-fading periods. The
significance of the ARQ framework is that it provides a way of
achieving the optimal SNR exponent attained by a block code
with coded blocks, without always having to transmit all

code blocks. Indeed, following [1], observe that

(26)

On substitution of (26) into (12), we find

(27)

which shows that the transmit throughput is asymptotically
equal to (because ), the rate of a single
ARQ round. In other words, provided the SNR is sufficiently
high, ARQ systems, which send on average coded blocks
can achieve the same diversity gain as that achieved by a
block code system, which sends coded blocks every time.
This is because in the high SNR regime, most frames can be
decoded correctly with high probability based only on the first
transmitted code block. ARQ retransmissions are used to cor-
rect the rare errors, which occur almost exclusively whenever
the channel is in outage. While the throughput is
a function of at mid to low SNR, it converges toward
independent of at sufficiently high SNR. Because the optimal
diversity gain is an increasing function of , this behavior can
be exploited to increase reliability without suffering code rate
losses. However, as noted in [1], this behavior is exhibited only
by decoders capable of near perfect error detection (PED).
Therefore, the performance of practical error detection schemes
can be expected to significantly influence the throughput of
ARQ systems.

Because (27) relates the asymptotic throughput with the
coding parameter , the optimal SNR exponents given in
(25) give the optimal throughput-diversity-delay tradeoff of
MIMO ARQ block-fading channels.3 Examining the optimal
throughput-diversity-delay tradeoff (25) in more detail, we first
note that

is the code rate of a binary code, i.e., , as if the
coded modulation scheme was obtained itself as the con-

3We stress the fact that the coded modulation schemes considered in this paper
have a fixed rate, and therefore, zero multiplexing gain as defined in [1] and [3].
However, it is not difficult to show that allowing � � � ��� � would imply the
achievability of the diversity-multiplexing-delay tradeoff of [1].

catenation of a binary code of rate and length . Ex-
pression (25) implies that the higher we set the target rate
(equivalently, ), the lower the achievable diversity order is.
In particular, uncoded sequences (i.e., ) such as the
full diversity modulations [16], [21] achieve optimal diversity
gain of , while any code with nonzero
will achieve optimal diversity less than or equal to
or in the short- and long-term static models, respec-
tively. This is an intuitively satisfying result as and are
precisely the number of independent fading periods in the short-
and long-term static models, respectively, each with inherent di-
versity .

Considering the tradeoff function in (25) with varying , ,
, and plotted against the rate of a single ARQ round ,

the impact of the system parameters can be visualized for both
short- and long-term static fading models, respectively. Here,
we are only presenting one such plot; however, we still discuss
observations made for other cases. The omitted plots can be
found in [22].

Fig. 2 illustrates the effect of the maximum number of al-
lowed ARQ rounds on the diversity of the system. It is clear
from the plot that in the short-term static case the effect of is
to simply shift tradeoff curves upwards. This is intuitively sat-
isfying, because each additional ARQ round represents incre-
mental redundancy, which can be considered as a form of ad-
vanced repetition coding. Each additional ARQ round contains

additional independent fading blocks, and hence, the diversity
gain with ARQ rounds is simply the diversity gain with
rounds plus . On the other hand, in the case of long-term static
fading, because the different ARQ rounds use the same channel
realization, larger implies a broader range of for which
maximum diversity can be achieved.

Similarly, we examine the effect of the constellation size
on the optimal diversity tradeoff function, and observe that the
tradeoff curves for higher are strictly better than lower in
terms of achievable diversity gain. This implies that a high-order
modulation scheme always outperform lower order modulation
schemes in the limit of high SNR in terms of error rate perfor-
mance, for any code rate. Alternatively, a system with high
can choose to operate at higher code rates than a low system
and still maintain the same diversity gain.

Considering the diversity tradeoff curve for different values
of , we observe that systems with high values of are strictly
better than systems with low (in terms of diversity gain).
In addition, we notice that corresponds to the number of
“steps” in the tradeoff function of (25). Systems with low values
of maintain the same diversity gain over wider intervals of
rates than systems with high . Relatively, the penalty for using
codes with high spectral efficiency is much higher for systems
with large (although these systems will still achieve higher
diversity gains than systems with low ).

Finally, for the impact of on the tradeoff curve, as antici-
pated in Section II-B, we observe that the larger is, the larger
the optimal SNR exponent becomes. As increases, larger di-
versity is maintained over a larger range of . A careful look
to (25) reveals that for , each ARQ round behaves as a
MIMO block-fading channel with blocks, each with
inherent diversity , reducing the number of steps of the
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Fig. 2. Optimal diversity tradeoff curve corresponding to � � �, � � �,� � � for a �� � MIMO channel.

tradeoff curve. Unfortunately, however, increasing implies
an exponential (in ) increase in the overall decoding com-
plexity.

Remark 1: In [15] and [23], the authors examined the per-
formance of codes over MIMO block-fading channels without
ARQ. Using the notation in this paper, the diversity gain based
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Fig. 3. Comparison of the optimal diversity tradeoff curve with (20) (dashed steps) for � � �, � � �, � � �, and � � �� � in a �� � MIMO channel.

Fig. 4. Block diagram of the concatenated MIMO ARQ architecture. The interleaver corresponding to ARQ round � and fading block � is denoted by � .

on the worst pairwise error rate performance was shown to be
upper bounded by

(28)

The bound in (28) is based on the fact that the rank of a the code-
word difference matrix of a given pairwise error event cannot
be larger than the minimum number of nonzero rows. The ap-
plication of the Singleton bound [7] to the minimum number
of nonzero rows (interpreted as the Hamming distance of the
code) leads to the result shown in (28) [15], [23]–[25]. Because
the bound (28) was derived for the non-ARQ case, we will com-
pare it with our results by letting in (25). An important
assumption made in the derivation of (28) is that a signal con-
stellation of cardinality is used for signaling at each transmit
antenna. Under this assumption, the Singleton bound and the

rank criterion give rise to the pairwise error probability (PEP)
diversity bound (28). In our case, we do not restrict the signals
out of each transmit antenna to belong to a constellation of size

, but rather allow for more freedom in the system by linearly
modulating (combining) -ary symbols of the fixed
signal constellation to be transmitted over channel uses,
as shown in Section II-B. Fig. 3 compares the Singleton bound
(28) with our main result (25). As we see, even in the case of

, our bound yields a larger exponent. This effect was
also observed in [5] for the quasi-static MIMO channel.

VI. MAXIMUM DISTANCE SEPARABLE SPACE-TIME CODES

Having established the main effects of each parameter in (25),
we now consider the practical coding aspects of Theorem 2. The
diversity tradeoff function (25) can be viewed as a modified ver-
sion of the Singleton bound [7] with the diversity gain corre-
sponding to the Hamming distance of our code , viewed as a
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Fig. 5. FER with MDS convolutional code over a short-term static SISO channel corresponding to � � �,� � �, and � � ���.

code of length constructed over an alphabet of size
. This is a useful interpretation and naturally leads us to

investigate the role of Singleton-bound-achieving MDS codes.
The role of MDS codes as block codes in block-fading channel
has been examined extensively in [6] and [26]–[28].

In this section, we illustrate that the optimal SNR exponent
shown in (25) can be achieved with practical MDS coding
schemes. The block diagram of the concatenated MIMO ARQ
transmitter structure considered in the numerical examples is
shown in Fig. 4. A codeword of the MDS outer encoder is parti-
tioned into blocks. Each such block is then passed through
a pseudorandom interleaver, subsequently mapped onto a block
of complex symbols according to the signal constellation, and
passed through a linear dispersive modulator. In the ARQ
transmitter, blocks of channel uses are transmitted in
each ARQ round. For simplicity, we make use of the MDS
convolutional codes presented in [26] to illustrate the practical
meaning and importance of the diversity tradeoff curve.4 The
ARQ decoder defined in Section II-C is impractical due to the
complexity of the typical set decoder. Instead, we develop a
bounded-distance ARQ decoder and a suboptimal iterative a
posteriori probability (APP)-based ARQ decoder, respectively,
approximating the behavior of the typical set decoder.

For the numerical examples, we consider two systems. The
first system has a maximum number of ARQ rounds of
and , and is using the four-state outer convolu-
tional code, while the second system has a maximum number

4The main goal of these examples is not to approach the outage probability
of the channel, but rather to illustrate the meaning and significance of the re-
sults presented in the previous section. If one wants to approach the outage
probability, more powerful codes should be employed. For details on outage
approaching code ensembles for single-input–single-output (SISO) and MIMO
channels, the reader is referred to [6], [29]–[31].

of ARQ rounds of and , and is using the four-
state outer convolutional code. The rate of a single
ARQ round is the same for both systems. The two sys-
tems are investigated for both SISO and MIMO block-fading
channels, subject to short-term static fading and long-term static
fading, respectively. Here, however, we only present the results
for short-term static fading. Additional results for the long-term
fading case are reported in [22].

We first consider the use of a bounded-distance ARQ decoder.
Define the set of messages , where the corresponding
received codeword hypotheses , , are within
a bounded distance from the received matrix

(29)
where . For , the output of the bounded-
distance ARQ decoder is then given by

if
otherwise.

(30)

Denoting the true message , the undetected error probability
is bounded as

(31)

(32)

(33)
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Fig. 6. Average number of ARQ rounds for MDS convolutional codes over a short-term static SISO channel corresponding to � � �,� � �, and � � ���.

where follows from bounding the chi-squared distribution
of with the Chernoff bound. Finally, letting
for , we have

(34)

This result implies that arbitrarily low undetected error prob-
ability can be achieved by the new decoder, at the cost of
additional delay. In particular, should be chosen such that

to achieve the optimal ML exponent
.

Fig. 5 illustrates the performance of the two ARQ systems
in the short-term SISO static channel. We choose the pseudo-
random interleaver to be the trivial identity interleaver, i.e., no
interleaving is applied between the outer encoder and the inner
modulator. The mapper over is set to be binary phase-shift
keying (BPSK), the space-time modulation rotation matrix

, and channel uses. We apply the list Viterbi decoder
proposed in [32] to implement the ARQ decoder outlined in (29)
and (30). In particular, we choose to minimize the
number of retransmissions.

Considering the system, the top three curves in Fig. 5
show the corresponding outage probability, frame error rate
(FER) with list decoding, and FER with PED. The FER curves
are parallel to the outage curve at high SNR, which show
that the convolutional MDS codes indeed achieve the optimal
diversity gain. The system corresponds to the bottom
three curves of Fig. 5, where again we see that the optimal
diversity gain is achieved by the MDS convolutional code.

Comparing the two ARQ systems, it is clear that significant
performance gains can be obtained at the expense of higher de-
lays. At FER of , the gain of the system over the

system is already 5 dB. The performance gap increases
even more dramatically at higher SNR.

Fig. 6 shows the average number of ARQ rounds of the two
ARQ systems considered above. For each system, we plot the
average number of ARQ rounds with PED, with the list de-
coder and the lower bound given by (11), respectively. It is clear
from the plot that at medium to low SNR, significant loss in
throughput is incurred by codes that do not approach the outage
probability limit, like convolutional code. Even more loss in
throughput is observed when list decoding is used as the error
detection mechanism.

Finally, note that the average ARQ round curves converge to-
ward one at high SNR. This agrees with (27) and shows that
regardless of the maximum number of allowed ARQ rounds

, no spectral efficiency penalties are incurred at sufficiently
high SNR. In the limit of high SNR, the transmit throughput

.
We now consider MIMO systems with and

using the four-state and convolutional codes,
concatenated with the optimal linear dispersive modu-
lator suggested in [15]. In this example, the channel coherence
time is channel uses and the mapper over is set to
4-quadrature amplitude modulation (4QAM). In this case, the
bounded-distance ARQ decoder in (30) also becomes imprac-
tical, and we, therefore, resort to suboptimal iterative error de-
tection and decoding schemes. As a benchmark, we consider an
iterative scheme based on the full-complexity APP detector, re-
cursively exchanging code symbol extrinsics with an outer APP
decoder, thus generating estimates of the information sequence.
Applying the max-log APP detector in place of the full-com-
plexity APP detector provides a low-complexity alternative. For
the examples considered here, the full-complexity iterative de-
coder is roughly twice as complex as the max-log APP alterna-
tive. For the full-complexity iterative decoder, we only consider
PED as the target benchmark, while for the max-log APP-based
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Fig. 7. FER with MDS convolutional code over a short-term static � � � MIMO channel corresponding to � � �, � � �, and � � ��. The thick solid lines
are the lower outage probability bounds. For � � �, diamonds correspond to full-complexity APP detection with PED, while squares and crosses correspond to
max-log APP detection with PED and MinLLR, respectively. For � � �, pentagrams correspond to full-complexity APP detection with PED, while circles and
asterisks correspond to max-log APP detection with PED and MinLLR, respectively.

iterative decoder, we consider PED as well as a nonideal error
detection scheme. At each ARQ round, we run the accumu-
lated received signal through six iterations of the respective it-
erative detection and decoding algorithms before examining the
decoder output.

In the nonideal error-detection case, errors are detected by
examining the soft output of the decoder at each ARQ round.
Specifically, we use the minimum bit-reliability criterion [33],
checking at the end of each ARQ decoding round whether the
minimum bitwise log-likelihood ratio (LLR) of the information
sequence exceeds a threshold, i.e.,

(35)

where denotes the th element of the information LLR se-
quence at the th ARQ round and denotes the length of the
LLR vector. If (35) holds, decoding is considered successful,
and the information sequence corresponding to the LLR vector
is delivered to the sink. The choice of affects both the av-
erage latency as well as the error rate of the system. In general,
choosing a high encourages the receiver to request additional
retransmissions, which in turn reduces the error rate. However,
if is set too high, the system behaves as a block-coded system
and the spectral efficiency advantage of ARQ systems is not re-
alized. Further, it is necessary to increase as a function of SNR
to achieve error rate performance comparable to that of perfect
error detection. To this end, we adjust the threshold as

(36)

where we have lower bounded in order to encourage retrans-
missions at low SNR. This choice of was found to perform

well when the growth parameter is carefully selected. In the
examples shown here, is determined experimentally.

Fig. 7 compares the error rate performance of the
system and system under the short-term fading dynamics.
For each system, we plot four curves, corresponding to the lower
outage probability bound, obtained by using (23), the PED per-
formance for the two iterative decoders, as well as the minimum
bit-reliability criterion (MinLLR) performance for the max-log
APP-based iterative decoder. In this case, we have and

for the MinLLR scheme when and , re-
spectively. We notice that additional retransmissions lead to an
appreciable decrease in error rates, and, equally important, the
MinLLR criterion performs virtually as good as perfect error
detection. Also, we observe no appreciable loss in performance
of the max-log APP-based iterative decoder as compared to the
full-complexity case, confirming the use of the max-log APP
approximation is well justified.

Fig. 8 compares the average latency (measured in number
of ARQ rounds) of the two ARQ systems under the short-term
fading scenario. Again, we plot four curves per system, corre-
sponding to the lower bound of expected latency, using (23) and
(11), as well as the PED and MinLLR performances. In this case,
we observe that the cost of using the MinLLR criterion is mainly
an increase in latency, caused by requesting superfluous retrans-
missions, and again there is no appreciable loss in performance
by applying the max-log APP approximation.

VII. CONCLUSION

The focus of this paper is to derive the optimal tradeoff be-
tween throughput, diversity gain, and delay for the block-fading
MIMO ARQ channel. We prove that for the block-fading
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Fig. 8. Average number of ARQ rounds for MDS convolutional codes over a short-term static ���MIMO channel corresponding to� � �,� � �, and � � ��.
The thick solid lines are the lower bounds on expected latency. For � � �, diamonds correspond to full-complexity APP detection with PED, while squares and
crosses correspond to max-log APP detection with PED and MinLLR, respectively. For � � �, pentagrams correspond to full-complexity APP detection with
PED, while circles and asterisks correspond to max-log APP detection with PED and MinLLR, respectively.

MIMO ARQ channel with input constellation satisfying a
short-term power constraint, the optimal SNR exponent is
given by for short-term static fading and for
long-term static fading, which is achieved by Gaussian codes
of any positive rate.

When the input signal constellations are constrained to be dis-
crete, this is no longer the case. Due to the discrete nature of
these signal sets, a tradeoff between rate, diversity, and delay
arises. As our main result, we prove that for the block-fading
MIMO ARQ channel with discrete input signal constellation of
cardinality satisfying a short-term power constraint, the
optimal SNR exponent is given by a modified Singleton bound,
relating all the system parameters. In particular, we show that
the tradeoff highlights the roles of the complex-plane signal con-
stellation through , the rate of a single ARQ round , the
maximum number of ARQ rounds , and the number of fading
blocks per ARQ round . Furthermore, the optimal tradeoff ex-
pression includes the effect of the space-time spreading dimen-
sion of the linear dispersion modulator, providing also a ref-
erence of decoding complexity.

Finally, we present numerical results demonstrating the prac-
tical significance of the theoretical analysis, showing that prac-
tical MDS codes achieve the optimal throughput-diversity-delay
tradeoff.

APPENDIX

In this Appendix, we show the details of the proof of The-
orem 2. In particular, we detail the proof for the short-term static
model. The proof corresponding to the long-term static model
follows exactly the same steps, and it is thus omitted.

A. Proof of Theorem 2: Converse

To prove Theorem 2, we first establish the converse and show
that the diversity gain is upper bounded by (25). We assume

throughout the analysis with no loss in generality.5

We start following the arguments in [1, App. I] and conclude
that by Fano’s inequality, we can obtain a lower bound to the
error probability of the ARQ decoder at any ARQ round by
using an ML decoder that operates over the ARQ rounds.
Therefore

(37)

where . Hence, for sufficiently large , we
have that [1], [3]

(38)

Therefore, it follows that we can upper bound the SNR exponent
of the ARQ system by considering the outage probability up to
ARQ round .

Now, we study in more detail the properties of
when discrete signal constellations are used. In particular, we
recall that (23) states that (39) shown at the top of the following
page holds, and therefore, (40) and (41) also shown at the top
of the following page hold, where

are the ordered eigenvalues of the

matrix corresponding to ARQ
round and fading block .

5If � � � , it suffices to replace ��� ��� 	��� ��� by
��� ��� 	��� ��� in the computation of the input–output mutual
information with Gaussian inputs and all the arguments still follow.
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(39)

(40)

(41)

We now characterize the behavior of the outage probability at
high SNR. Following [3], we define the SNR normalized eigen-
values as

(42)

The joint probability distribution of
can be described using a result in [3, Lemma 3]

(43)

where is a normalizing constant. Then, it follows that
(44)–(46) shown at the bottom of the page hold. If we now define

(47)

(48)

(46) becomes

(49)
where denotes componentwise inequality, i.e., ,

, for some , and is the all-one vector,
because

when
otherwise.

(50)

This means that asymptotically for large SNR, when all the com-
ponents of are larger or equal than one (deep fades), the mu-
tual information tends to , and to , otherwise. Following
similar steps as in [3], we can write (51), shown at the bottom
of the page, where the large SNR outage event is given by

(52)

(53)

and . Applying Varadhan’s
lemma [34], we have that

(54)

The infimum (54) is solved by considering two cases. If
, then the infimum is satisfied by for all and ,

hence the diversity gain is zero. Alternatively, if ,
then among all possible vectors , for and

, we need to have vectors equal to the all-ones

(44)

(45)

(46)

(51)
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vector , for some to satisfy the infimum. The
condition to be met is written

(55)

which implies that to achieve the infimum, should be

(56)

Because , we upper
bound the optimal SNR exponent as

(57)

which proves the desired converse result.

B. Proof of Theorem 2: Achievability

To prove the achievability of the upper bound on the SNR
exponent in (57), we examine the average frame error rate ob-
tained using random codes and the ARQ decoder described in
Section II-C. This decoder behaves like a typical set decoder for
ARQ rounds , and as an ML decoder at round

[3]. Because the channel matrix encompasses the channel
realizations of all ARQ rounds, with a slight abuse of notation,
we can express the error probability conditioned on the fading
realization as

(58)

where all parameters are defined in Section III. As shown in [1]
and [4, App. I], and sufficiently large , there exists
a code for which the error probability corresponding to the first

rounds can be bounded as

(59)

Therefore

(60)

where

(61)

is the error probability of an ML decoding error at the th ARQ
round. We could simply conclude the proof by following the
same arguments of the proof in [1, App. I], namely, using

to argue that (see [1, App. I] for details). How-
ever, the specific analysis of the ML decoding error probability
for round using random codes encompasses the standard
quasi-static and block-fading MIMO channels with no ARQ as
special cases, and therefore, is of broader interest. Furthermore,
conditions on the block length of optimal random codes are
given.

We now characterize the behavior of for random
codes constructed over , concatenated with random linear dis-
persion space-time modulators described in Section II-B.

Following the steps of [5], we consider that the code-
words of are generated with the uniform probability distri-
bution over , namely,

(62)

Each codeword is partitioned into vectors, de-
noted , where and ,
such that . Now let

(63)

denote the set of orthogonal matrices of dimension
. As outlined in Section II-B, the modulated signals are

given by

(64)

Then, if we define

(65)

where the operator formats vector
into an matrix, we have that the portion of codeword
transmitted over ARQ round can be written as

(66)

Then, we have that the conditional pairwise error probability is
given by

(67)

(68)

It follows from the structure of that

(69)

(70)
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If the elements of are drawn with the uniform probability
distribution, it follows from [35, Th. 1] that has full diversity
with probability one, namely, the matrices

have full rank. 6 We now apply the singular
value decomposition (SVD) [14] to both channel and difference
matrices

(71)

and

(72)
and get (73)–(75) shown at the bottom of the page, where

is unitary. The diagonal matrices

and are composed of the singular values of
the channel matrix and codeword difference
matrix , respectively.
As mentioned earlier, the matrices

have full rank with probability one, which

implies that the singular values in are all

6As it will be clear in the following, random rotations are not essential in the
proof. It is sufficient to rely on the existence of a particular��� with full diversity
[10]–[13], [15], [16], [21].

nonzero for , , and .
If we now define

(76)

and

(77)

(78)

we can rewrite (75) as

(79)

Averaging (79) over the code ensemble, namely, , ,
and , we get (80) shown at the bottom of the page. If we
now sum over the codewords, we have the union bound
(81)–(84) shown at the bottom of the page, where we have de-
fined the union bound exponent as (85) and (86) shown at the

(73)

(74)

(75)

(80)

(81)

(82)

(83)

(84)
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bottom of the page. Following similar arguments to those in [5]
and [6], we use the dominated convergence theorem [36] to ob-
tain that

(87)

(88)

since with probability one. For and
large SNR, the union bound exponent can be lower
bounded by

(89)

Let now

(90)

(91)

Then, we can bound the overall error probability as

(92)

In a similar way to what is done in [6], we consider codes with
block length such that

(93)

That is, we consider sufficiently long codewords at large SNR
such that the error probability is never dominated by the event
when two codewords coincide. Thus, we can write (94) shown

at the bottom of the page, and therefore, the random coding ex-
ponent is lower bounded by

(95)

where

(96)

is the exponent for large enough codewords and

(97)

(98)

is the exponent that characterizes the finite block length.
Following similar steps to those in the converse, the SNR ex-

ponent of the first component can be written as

(99)

Following similar arguments as in [6], we see that if
, then the infimum (98) is given by

(100)

(85)

(86)

(94)
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Otherwise, if , then the infimum is

(101)

The random coding SNR exponent lower bound can be tight-
ened by letting . By collecting the results together, we see
that for sufficiently large , coincides with . In fact, one
observes that for , the overall error probability is given
by the probability of the event , because the second integral in
(94) vanishes. Hence, the diversity lower bound coincides with
the diversity upper bound (25) for all rates except at the discon-
tinuities.
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