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Abstract— This paper studies the second-order asymptotics
of coding rates for the discrete memoryless multiple-access
channel (MAC) with a fixed target error probability. Using
constant-composition random coding, coded time-sharing, and
a variant of Hoeffding’s combinatorial central limit theorem, an
inner bound on the set of locally achievable second-order coding
rates is given for each point on the boundary of the capacity
region. It is shown that the inner bound for constant-composition
random coding includes that recovered by independent identically
distributed random coding, and that the inclusion may be strict.
The inner bound is extended to the Gaussian MAC via an
increasingly fine quantization of the inputs.

Index Terms— Multiple-access channels, second-order coding
rate, channel dispersion, constant-composition random coding,
combinatorial central limit theorem.

I. INTRODUCTION

THE channel capacity describes the highest rate of trans-
mission with vanishing error probability in coded com-

munication systems. Further characterizations of the system
performance are given by error exponents [1, Ch. 9], moderate
deviations results [2], and second-order coding rates [3]. The
latter has regained significant attention in recent years [4], [5],
and is well-understood for a variety of settings. For discrete
memoryless channels, the maximum number of codewords of
length n yielding an error probability not exceeding ε ∈ (0, 1),
denoted by M∗(n, ε), satisfies [3]

log M∗(n, ε) = nC − √
nV Q−1(ε) + o(

√
n), (1)

where C is the channel capacity, Q−1(·) is the func-
tional inverse of the standard Gaussian tail probability

Q(z) �
∫∞

z
1√
2π

e− z2
2 dz, and V is known as the channel
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dispersion. Expansions of the form (1) provide additional
insight into the system performance beyond the capacity alone
by quantifying the rate of convergence.

In this paper, we study the second-order asymptotics of the
multiple-access channel (MAC). Achievability results for this
problem have previously been obtained using i.i.d. random
coding with a random time-sharing sequence [6], [7] and a
deterministic time-sharing sequence [8], whereas we demon-
strate improved asymptotic bounds via the use of constant-
composition random coding [1, Ch. 9]. A key tool in our
analysis is a Berry-Esseen theorem associated with a variant
of Hoeffding’s combinatorial central limit theorem (CLT) [9].
We consider a local notion of second-order achievability
proposed by Nomura and Han [10], in which the second-order
coding rates (e.g. −√

V Q−1(ε) in (1)) of the users are sought
for a fixed point on the boundary of the capacity region.

A. Notation

The set of all probability distributions on an alphabet X is
denoted by P(X ), and the set of conditional distributions on
Y given X is denoted by P(Y|X ). Given a distribution Q(x)
and a conditional distribution W (y|x), the joint distribution
Q(x)W (y|x) is denoted by Q × W . The set of all empirical
distributions (i.e. types [11, Ch. 2]) for sequences in X n is
denoted by Pn(X ). The set of all sequences of length n with
a given type PX is denoted by T n(PX ), and similarly for joint
types. Given a sequence x ∈ T n(PX ) and a conditional distri-
bution PY |X , we define T n

x (PY |X ) to be the set of sequences y
such that (x, y) ∈ T n(PX × PY |X ).

Bold symbols are used for vectors and matrices (e.g. x),
and the corresponding i -th entry of a vector is written using a
subscript (e.g. xi ). The vectors (or matrices) of all zeros and
all ones are denoted by 0 and 1 respectively, and the identity
matrix is denoted by I; the sizes will be clear from the context.
The symbols ≺, �, etc. denote element-wise inequalities for
vectors, and inequalities on the positive semidefinite cone for
matrices (e.g. V � 0 means V is positive definite). We denote
the �2-norm of a vector by ‖ · ‖, and the maximum absolute
value of the entries of a vector or matrix by ‖ ·‖∞. We denote
the transpose of a vector or matrix by (·)T , the inverse of
a matrix by (·)−1, the positive definite matrix square root
by (·) 1

2 , and its inverse by (·)− 1
2 . The multivariate Gaussian

distribution with mean μ and covariance matrix � is denoted
by N(μ,�).

We denote the cross-covariance matrix of two random
vectors by Cov[Z1, Z2] = E

[
(Z1 − E[Z1])(Z2 − E[Z2])T

]
,

and we write Cov[Z] in place of Cov[Z, Z]. The variance of a
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scalar random variable is denoted by Var[·]. Logarithms have
base e, and all rates are in nats except in the examples, where
bits are used. We denote the indicator function by 1{·}. For a
set S of real numbers (or vectors) and a constant (or vector) c,
we write S + c (or c + S) to denote the set {s + c : s ∈ S}.
We similarly write cS = {cs : s ∈ S} for a given constant c.

For two sequences fn and gn, we write fn = O(gn)
if | fn | ≤ c|gn| for some c and sufficiently large n, and
fn = o(gn) if limn→∞ fn

gn
= 0. We write fn = �(gn) if

fn = O(gn) and gn = O( fn).

B. System Setup and Definitions

We consider a two-user discrete memoryless
MAC (DM-MAC) W (y|x1, x2) with input alphabets X1
and X2 and output alphabet Y , yielding an n-letter transition
law given by W n(y|x1, x2) �

∏n
i=1 W (yi |x1,i , x2,i ). The

encoders and decoder operate as follows. Encoder ν = 1, 2
takes as input a message mν equiprobable on the set
{1, . . . , Mν }, and transmits the corresponding codeword x(mν)

ν

from the codebook Cν = {x(1)
ν , . . . , x(Mν)

ν }. The decoder
forms an estimate (m̂1, m̂2) of the message pair using the
output sequence y and the two codebooks. An error is said to
have occurred if (m̂1, m̂2) �= (m1, m2). A rate pair (R1, R2)
is said to be (n, ε)-achievable if there exist codebooks with
M1 ≥ enR1 and M2 ≥ enR2 codewords of length n for users
1 and 2 respectively, such that the average error probability
does not exceed ε. The capacity region R∗ is defined to
be the closure of the set of rate pairs (R1, R2) that are
(n, ε)-achievable for any ε ∈ (0, 1) and sufficiently large n.

Our results are proved using constant-composition random
coding with coded time-sharing [12]. The precise description
of the ensemble is postponed until Section IV; here we
simply provide the definitions required to state the results.
We fix a finite time-sharing alphabet U , as well as the input
distributions QU (u), Q1(x1|u) and Q2(x2|u). We define the
joint distribution

PU X1 X2Y (u, x1, x2, y)

� QU (u)Q1(x1|u)Q2(x2|u)W (y|x1, x2), (2)

and denote the induced marginal distributions by PY |X1U ,
PY |U , etc. Defining the rate vector

R �

⎡

⎣
R1
R2

R1 + R2

⎤

⎦ (3)

and the mutual information vector (implicitly dependent on
QU , Q1, Q2 and W )

I �

⎡

⎣
I (X1; Y |X2, U)
I (X2; Y |X1, U)
I (X1, X2; Y |U)

⎤

⎦, (4)

we have [13]–[15]

R∗ =
⋃

U

⋃

QU ,Q1,Q2

{
(R1, R2) : R � I

}
. (5)

Moreover, the union over U may be restricted to satisfy
|U | ≤ 2. The three conditions in the element-wise inequality

R � I correspond to a treatment of the error event as a union
of three error types:

(T ype 1) m̂1 = m1 and m̂2 �= m2,

(T ype 2) m̂1 �= m1 and m̂2 = m2,

(T ype 12) m̂1 �= m1 and m̂2 �= m2.

A key quantity in our analysis is the information density
vector [6], [8]

i(u, x1, x2, y) �

⎡

⎣
i1(u, x1, x2, y)
i2(u, x1, x2, y)
i12(u, x1, x2, y)

⎤

⎦, (6)

where

i1(u, x1, x2, y) � log
W (y|x1, x2)

PY |X2U (y|x2, u)
(7)

i2(u, x1, x2, y) � log
W (y|x1, x2)

PY |X1U (y|x1, u)
(8)

i12(u, x1, x2, y) � log
W (y|x1, x2)

PY |U (y|u)
. (9)

Averaging i with respect to the distribution in (2) yields the
mutual information vector in (4).

We consider the local notion of second-order asymptot-
ics introduced by Nomura and Han for the Slepian-Wolf
problem [10]; see also Hayashi [5] for the analogous
definitions in the single-user setting. We proceed by
presenting similar definitions for the present setting, albeit
in a slightly different form. A pair (L1, L2) is said to
be (n, ε, R∗

1 , R∗
2 )-achievable if there exist codebooks with

Mν ≥ enR∗
ν +√

nLν codewords of length n for ν = 1, 2 such
that the average error probability pe does not exceed ε. The
second-order rate region L(ε, R∗

1 , R∗
2 ) is defined as the closure

of the set of pairs (L1, L2) that are (n, ε, R∗
1 , R∗

2)-achievable
for sufficiently large n. In other words, L(ε, R∗

1 , R∗
2 ) is the set

of all (L1, L2) pairs for which there exists an ε-reliable code
with log Mν = n R∗

ν +√
nLν + o(

√
n) for ν = 1, 2. While this

definition is valid for any pair (R∗
1 , R∗

2 ), our focus will be on
pairs on the boundary of the capacity region R∗; in all other
cases we have either L = ∅ or L = R

2 due to the fact that the
strong converse holds [31]. We will see that both negative and
positive values of Lν arise; the former can be thought of as a
backoff from the first-order term, and the latter an addition to
the first-order term.

Finally, we define the set

Qinv(V , ε) � {z ∈ R
d : P[Z � z] ≥ 1 − ε}, (10)

where Z ∼ N(0, V ), and V is a d × d positive semi-definite
matrix. This definition applies for an arbitrary dimension d ,
which is dictated by the first argument.

C. Previous Work

The second-order rate region L has been characterized for
very few multi-user problems [10], [16], [17]. The one most
relevant to this paper is the Gaussian MAC with degraded
message sets [16], which has the notable feature of having a
curved capacity region, giving rise to a non-standard derivative
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term in the expression for L. Our analysis will yield similar
terms using different techniques.

Tan and Kosut [6] and Haim et al. [18] performed second-
order asymptotic studies for various multi-user problems using
different notions of achievability to those above. In particular,
both of these works considered the problem of finding the
backoff from the rates when a point (R∗

1 , R∗
2 ) is approached

from a given angle. As demonstrated in [16], this problem
can be solved numerically in a straightforward fashion once
L(ε, R∗

1 , R∗
2 ) is characterized.

Other previous works on the DM-MAC have taken an
alternative approach to characterizing the second-order asymp-
totics, namely, seeking global asymptotic expansions of the
following form: For any triplet (QU , Q1, Q2), rate vectors R
satisfying

n R ∈ n I − √
n Qinv(V , ε) + g(n)1, (11)

are (n, ε)-achievable for some dispersion matrix V and func-
tion g(n) = o(

√
n), where I is given in (4).

The first global result for the DM-MAC was given in [6],
where i.i.d. random coding was used to obtain (11) with
I = E[i(U, X1, X2, Y )] and V = Cov[i(U, X1, X2, Y )]
(see also [7]). Expansions of a similar form were given by
MolavianJazi and Laneman [7]. By using a constant-
composition time-sharing sequence, Huang and Moulin [8]
showed that the dispersion matrix can be improved to

V iid � E
[
Cov[i(U, X1, X2, Y ) | U ]]. (12)

As discussed by Haim et al. [18], expansions of the
form (11) are more difficult to interpret than the scalar
counterpart in (1), as the notion of the convergence of a region
is inherently less concrete than that of the convergence of a
scalar. While the scalar dispersion V in (1) corresponds to
a concrete operational definition [4], it appears difficult to
directly give any such meaning to the matrix V based on
global results. In fact, non-global asymptotic studies in [6]
indicate that, in most cases of interest, entries (1, 2) and (2, 1)
of the matrix do not play a fundamental role in characterizing
the performance. Furthermore, it may be difficult to compare
two dispersion matrices, since the partial positive definite
ordering does not guarantee that at least one of V1 � V2
or V2 � V1 hold. These issues are even more troublesome
when one considers the union over all input distributions; for
example, standard proofs often yield a non-uniform remainder
term g(n) in (11). These limitations motivate the study of local
asymptotics, such as L(ε, R∗

1 , R∗
2 ) defined above. However,

global results often prove useful as an intermediate step
towards the local results.

D. Contributions

The main result of this paper is an inner bound on
L(ε, R∗

1 , R∗
2 ) for the discrete memoryless MAC. The result

is proved using constant-composition random coding and
a variant of Hoeffding’s combinatorial CLT [9], [19].
Since coding with fixed input distributions (not varying
with n) is not sufficient to achieve all (L1, L2) pairs in
network information theory problems [16], we apply coded

time-sharing [15, Sec. 4.5.3] between input distributions
corresponding to two points on the boundary of the capacity
region, with one of the points only corresponding to a
fraction O

( 1√
n

)
of the block length. Several examples are

provided, including (i) a case where constant-composition
random coding yields a strictly larger inner bound than that of
i.i.d. random coding, and (ii) an application to the Gaussian
MAC via a quantization argument.

II. MAIN RESULT

A. Further Definitions

Our main result is written in terms of a dispersion matrix
of the form

V � E

[
Cov

[
i(U, X1, X2, Y )

∣
∣U
]

−Cov
[
i (1)(U, X1)

∣
∣U
]−Cov

[
i (2)(U, X2)

∣
∣U
]]

, (13)

where

i (1)(u, x1) � E
[
i(U, X1, X2, Y )

∣
∣ (U, X1) = (u, x1)

]
(14)

i (2)(u, x2) � E
[
i(U, X1, X2, Y )

∣
∣ (U, X2) = (u, x2)

]
. (15)

We can interpret (13) as follows: The term Cov[i] represents
the variations in (X1, X2, Y ) in the i.i.d. case (cf. (12)),
and the terms Cov[i (1)] and Cov[i (2)] represent the reduced
variations in X1 and X2 respectively, resulting from the
codewords having a fixed composition. Since all covariance
matrices are positive semidefinite, we clearly have V � V iid.
We henceforth write the entries of I (see (4)) and V using
subscripts:

I =
⎡

⎣
I1
I2
I12

⎤

⎦, V =
⎡

⎣
V1 V1,2 V1,12

V1,2 V2 V2,12
V1,12 V2,12 V12

⎤

⎦. (16)

For a fixed point (R∗
1 , R∗

2 ) on the boundary of R∗, we
let T̂− � T̂−(R∗

1 , R∗
2 ) and T̂+ � T̂+(R∗

1 , R∗
2 ) respectively

denote the left and right unit tangent vectors along the
boundary of R∗ in (R1, R2)-space; see Figure 1. We let T̂−
(respectively, T̂+) be undefined when R∗

1 = 0 (respectively,
R∗

2 = 0); in all other cases, the vectors are well-defined due
to the convexity of the capacity region. The case T̂− = −T̂+
corresponds to a curved or straight-line part of the boundary,
whereas T̂− �= −T̂+ corresponds to a sudden change in slope
(e.g. at a corner point).

We construct the following vectors in the same way as (3):

T− �

⎡

⎣
T̂−,1

T̂−,2

T̂−,1 + T̂−,2

⎤

⎦, T+ �

⎡

⎣
T̂+,1

T̂+,2

T̂+,1 + T̂+,2

⎤

⎦, (17)

where T̂(·),i denotes the i -th entry of the corresponding unit
tangent vector. To ease some of the subsequent discussions,
we define the following scalars that correspond to T̂− and
T̂+ in a one-to-one fashion:

D− � T̂−,2

T̂−,1
, D+ � T̂+,2

T̂+,1
. (18)

These are the left and right derivatives of R∗
2 as a function

of R∗
1 . They are non-positive, and are understood to equal −∞
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Fig. 1. Illustration of the vectors T̂− and T̂+ for various boundary points of
two hypothetical capacity regions. (a) Pentagonal region. (b) Curved region.

when T̂(·),1 = 0, corresponding to a vertical part of the
capacity region. Observe that T̂− is obtained by normalizing
[−1 −D−] and T̂+ is obtained by normalizing [1 D+], and
hence T̂− = −T̂+ if and only if D− = D+.

Given the pairs (R∗
1 , R∗

2 ) and (L1, L2), we define

R∗ �

⎡

⎣
R∗

1
R∗

2
R∗

1 + R∗
2

⎤

⎦, L �

⎡

⎣
L1
L2

L1 + L2

⎤

⎦. (19)

For a non-empty index set K ⊆ {1, 2, 12}, we let L(K) denote
the subvector of L where only the indices corresponding to K
are kept, and similarly for R(K), R∗(K), T (K)

− , T (K)
+ and I (K).

Similarly, V (K) denotes the |K| × |K| submatrix of V where
only the rows and columns indexed by K are kept.

B. Statement of Main Result

We say that the triplet (QU , Q1, Q2) achieves the rate pair
(R1, R2) if R � I ; from (5), every point in R∗ (including

those on the boundary) is achieved by at least one such triplet.
In the following theorem, K can be thought of as the set of
error types that are active for a given input distribution and
boundary point (e.g. if the boundary point is achieved by the
corner point of the pentagonal region corresponding to the
type-2 and type-12 conditions, then K = {2, 12}).

Theorem 1: Fix ε ∈ (0, 1), let (R∗
1 , R∗

2 ) be a point on the
boundary of the capacity region R∗ in (5), let (QU , Q1, Q2)
be an arbitrary triplet achieving that point, and consider I and
V in (4) and (13) respectively. Letting K ⊆ {1, 2, 12} be the
set of indices of the largest cardinality such that R∗(K) = I (K),
we have

L(ε, R∗
1 , R∗

2)

⊇
{

(L1, L2) : L(K) ∈
⋃

β≥0

{
βT (K)

− − Qinv(V (K), ε)
}}

∪
{

(L1, L2) : L(K) ∈
⋃

β≥0

{
βT (K)

+ − Qinv(V (K), ε)
}}

,

(20)

where the first (respectively, second) set is understood to be
empty when R∗

1 = 0 (respectively, R∗
2 = 0).

Proof: See Section IV-A.
We make the following remarks on Theorem 1:

1) In the case that T̂− = −T̂+, or equivalently D− = D+
(i.e. a curved or straight-line part of the boundary),
the two sets in (20) can be combined into a single
set containing a coefficient β ∈ R (with negative
values allowed) and the vector T (K)

+ . In this case, the
inner bound on L(ε, R∗

1 , R∗
2 ) is a half-space. We will

see in Section III-B that this does not always occur,
and combinations other than (D−, D+) = (0,−1) and
(D−, D+) = (−1,−∞) are possible (these are the
combinations that are observed for standard pentagonal
regions).

2) In the case that K contains only a single entry
ν ∈ {1, 2, 12}, the unions over β can be replaced by
β = 0, yielding a simpler inner bound given by

L(ε, R∗
1 , R∗

2 ) ⊇ {
(L1, L2) : Lν ≤ −√VνQ−1(ε)

}
,

(21)

where L12 � L1 + L2. The fact that β = 0 suffices is
shown in the same way for each ν, so we consider the
case ν = 12. Since (R∗

1 , R∗
2 ) lies on the diagonal part of

the pentagonal region corresponding to (QU , Q1, Q2)
(and away from the corners), both (R∗

1 − δ, R∗
2 + δ) and

(R∗
1 + δ, R∗

2 − δ) are achievable for sufficiently small
δ, and hence D− ∈ [−∞,−1] and D+ ∈ [−1, 0]. The
convexity of the capacity region implies that D+ ≤ D−,
and it follows that D− = D+ = −1. From (17), we see
that D− = D+ = −1 implies T (K)

− = T (K)
+ = 0, and

hence each coefficient β in (20) is multiplying zero.
3) More generally, if the input distribution achieving

(R∗
1 , R∗

2 ) also achieves all of the boundary points in
a neighborhood of (R∗

1 , R∗
2 ), then the unions over β

can be replaced by β = 0. In particular, this is true
when the entire capacity region is achieved by a single
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input distribution. This will be observed for the Gaussian
MAC in Section III-C.

4) All non-empty subsets K of {1, 2, 12} can occur with
the exception of {1, 2}. Focusing on the case that time-
sharing is absent, the case K = {1, 2} is impossible since

I (X1, X2; Y ) = I (X1; Y ) + I (X2; Y |X1) (22)

≤ I (X1; X2, Y ) + I (X2; Y |X1) (23)

= I (X1; Y |X2) + I (X2; Y |X1), (24)

where (24) follows since X1 and X2 are indepen-
dent. Whenever K includes {1, 2}, we have R∗

1 =
I (X1; Y |X2) and R∗

2 = I (X2; Y |X1), and it follows
from (24) that R∗

1 + R∗
2 = I (X1, X2; Y ). Therefore,

we have K ={1, 2, 12}, corresponding to a rectangular
achievable rate region.

5) The inner bound in (20) is of a similar form to the
set appearing in [16, Thm. 3] for the Gaussian MAC
with degraded message sets. The main differences are
(i) The left and right tangent vectors are treated sepa-
rately here, since unlike in [16], the two do not have
the same slope in general (e.g. see Figure 1 and the
example in Section III-B); (ii) There are six cases here
corresponding to the different subsets K of {1, 2, 12}
(see the previous item), whereas in [16] there are only
two possibilities for the set of active rate conditions.

6) The proof of Theorem 1 can be followed using
i.i.d. codeword distributions, yielding an analogous
result with V iid (see (12)) in place of V . Using the fact
that V � V iid, it is not difficult to show that the inner
bounds on L(ε, R∗

1 , R∗
2 ) obtained using V include those

obtained using V iid whenever ε < 1
2 . In Section III-A,

we will see that the inclusion can be strict.
7) It is also of interest to compare V to a hypothetical

dispersion matrix of the form

V joint � E
[
Cov

[
i(U, X1, X2, Y )

∣
∣U, X1, X2

]]
. (25)

This is the matrix that would be obtained if the joint
composition of (U, X1, X2) were fixed, which is impos-
sible in the absence of cooperation between the users.
As we show in [20], we have V joint � V ; this is proved
using the matrix version of the law of total variance,
along with the identity E[ZZT ] � E[Z]E[ZT ].

8) We make no attempt to present analytical expressions for
T̂− and T̂+, but two numerical approaches to their com-
putation are presented in Section III. In general, if the
capacity region is characterized numerically, then one
can easily obtain numerical bounds or approximations
for these tangent vectors.

III. EXAMPLES

A. The Collision Channel

We begin with a simple deterministic example that will
permit us to compare i.i.d. and constant-composition random
coding, and to discuss the role of the off-diagonal entries of
the corresponding dispersion matrices.

Fig. 2. Capacity region of the collision channel. The tangent line cor-
responds to the boundary point (R∗

1 , R∗
2 ) = (1.25, 1.25), and we have

D− = D+ = −1.

Setting X1 = X2 = {0, 1, 2} and Y = {(0, 0), (0, 1), (0, 2),
(1, 0), (2, 0), c}, the channel is given by

W (y|x1, x2) =

⎧
⎪⎨

⎪⎩

1 y = (x1, x2) and min{x1, x2} = 0

1 y = c and min{x1, x2} �= 0

0 otherwise.

(26)

In words, if either user transmits the zero symbol then the pair
(x1, x2) is received noiselessly, whereas if both users transmit
a non-zero symbol then the output is c, meaning “collision”.

We recall the following observations by Gallager [21]:
(i) The capacity region can be obtained without time shar-
ing;1 (ii) By symmetry, the points on the boundary of the
capacity region are achieved by input distributions of the form
Q1 = (1 − 2 p1, p1, p1) and Q2 = (1 − 2 p2, p2, p2), where
U = ∅; (iii) The achievable rate region corresponding to
any such (Q1, Q2) pair is rectangular. The capacity region is
shown in Figure 2. The left and right tangent vectors coincide
(i.e. T̂− = −T̂+ and hence D− = D+ � D ) at all boundary
points (R∗

1 , R∗
2) with R∗

1 > 0 and R∗
2 > 0, and the case of

interest in Theorem 1 is K = {1, 2, 12}.
One approach to computing the inner bound in (20) for a

given boundary point (R∗
1 , R∗

2 ) is to first find the pair (p1, p2)

achieving that point, and then calculate T̂− and T̂+ (see
the example in Section III-B). In this example, the reverse
approach turns out to be more convenient: We start with a
given derivative D < 0, and perform an optimization over
(p1, p2) to find the corresponding (unique) boundary point
(R∗

1 , R∗
2 ).

As stated above, the achievable rate region for a given pair
(p1, p2) is a rectangle with a corner point given by (I1, I2).
The straight line of slope D passing through this point is given
by R2 = D(R1 − I1)+ I2. Thus, finding the desired boundary
point (R∗

1 , R∗
2 ) simply amounts to maximizing I2 − DI1 with

1On the other hand, for the collision channel with K non-zero symbols,
time-sharing is required for K ≥ 8 [21].
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Fig. 3. Boundaries of the inner bounds on L(ε, R∗
1 , R∗

2 ) for the collision
channel, with R∗

1 = R∗
2 = 1.25 and ε = 0.01. The regions are to the bottom-

left of the boundaries shown.

respect to (p1, p2), which is a straightforward optimization
problem.

For concreteness, we provide a numerical example for the
case that D = −1, which corresponds to T̂− = −T̂+ =[−1√

2
1√
2

]T . Using a brute force search to three decimal places,
we found the optimal parameters to be p1 = p2 = 0.25,
yielding R∗

1 = R∗
2 = 1.25 bits/use. The inner bound on

L(ε, R∗
1 , R∗

2 ) from Theorem 1, and its counterpart for i.i.d.
random coding (cf. (12)), are shown in Figure 3, where we
set ε = 0.01. For comparison, we also plot the weaker inner
bounds in which β is set to zero and only − Qinv remains
(cf. (20)). The boundaries of these regions are shown, and the
regions lie to the bottom-left of these boundaries.

We see that the region resulting from constant-composition
random coding is strictly larger than that resulting from
i.i.d. random coding. In this example, the strict inclusion holds
for all points on the boundary of the capacity region other
than the endpoints corresponding to R∗

1 = 0 or R∗
2 = 0. This

gain is analogous to a similar gain in the error exponent [12].
In contrast, in the single-user setting, the two ensembles
yield the same second-order term and error exponent after the
optimization of the input distribution [4], [22].

We conclude by discussing the roles of the various entries
of the covariance matrices. In this example, the diagonal
entries V1 and V2 determine the locations of the vertical and
horizontal asymptotes in Figure 3. We see from Figure 3
that the off-diagonal terms also play a role. In particular, the
rectangular shape of the region with β = 0 for constant-
composition coding is an extreme case corresponding to a
singular dispersion matrix V, and this is in fact the most
favorable shape possible (in terms of enlarging L(ε; R∗

1 , R∗
2 ))

given fixed locations of the vertical and horizontal asymptotes.
In contrast, the off-diagonal terms of V iid yield a more
standard curved region for β = 0, which is less favorable.
Thus, at least in this example, the enlarged second-order region
for constant-composition codes is not only due to the smaller

Fig. 4. Capacity region of the channel described by (27), and example values
of (D−, D+).

diagonal entries, but also due to a more favorable covariance
matrix structure.

B. A Non-Deterministic Example

Here we provide an example showing that the two unions in
(20) cannot, in general, be combined into one. In other words,
it is necessary to consider the left and right tangent vectors
separately. We set X1 = X2 = Y = {0, 1}, and

W (y|x1, x2) =

⎧
⎪⎨

⎪⎩

1 x1 = x2 = y

0.5 x1 �= x2

0 otherwise.

(27)

Thus, the channel is noiseless if x1 = x2, and completely
noisy if x1 �= x2. We write the input distributions as
Q1 = (1 − p1, p1) and Q2 = (1 − p2, p2).

The capacity region is shown in Figure 4. Observe that
there are two “corner points”, but unlike those of standard
pentagonal regions, neither of them corresponds to a change
in angle of 45 degrees. More precisely, the middle segment
shown in the plot has slope −1, but the other two segments
are neither vertical nor horizontal (in fact, they are not even
straight line segments, even though they may appear to be).
Both corner points are achieved by p1 = p2 = 0.5.

Here we focus on characterizing the set L(ε, R∗
1 , R∗

2 ) for
the upper corner point (R∗

1 , R∗
2 ) = (0.272, 0.449); identical

arguments apply for the lower corner point. The case of
interest in Theorem 1 is K = {2, 12}. Since the middle
segment in Figure 4 has slope −1, we have T̂+ = [ 1√

2
−1√

2

]
.

The idea used to compute T̂− is to shift the point (p1, p2) =
(0.5, 0.5) by a small amount (	 cos θ,	 sin θ), and observe
the behavior of the corner point (I12 − I2, I2) for θ ∈ [0, 2π),
where for each θ we are interested in the limiting behavior
as 	 → 0. Making the dependence of I2 and I12 on (p1, p2)
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Fig. 5. Boundaries of the inner bounds on L(ε, R∗
1 , R∗

2 ) for the channel
described by (27), with (R∗

1 , R∗
2 ) = (0.272, 0.449) and ε = 0.01. The regions

are to the bottom-left of the boundaries shown.

explicit, a second-order Taylor expansion yields

Iν(p1 + 	 cos θ, p2 +	 sin θ)

= Iν(p1, p2) + fν(θ)	2 + O(	3), (28)

for ν = 2, 12, where

fν(θ) �
[

cos θ sin θ
]
⎡

⎣
∂2 Iν
∂p2

1

∂2 Iν
∂p1∂p2

∂2 Iν
∂p1∂p2

∂2 Iν
∂p2

2

⎤

⎦
[

cos θ
sin θ

]

. (29)

Note that the first-order term in (28) is absent, since the
derivatives ∂ Iν

∂p1
and ∂ Iν

∂p2
are zero at (p1, p2) = (0.5, 0.5) for

ν = 2, 12. We conclude from (28) that for a fixed choice of θ ,
(I12 − I2, I2) moves in the direction ( f12(θ) − f2(θ), f2(θ))
in the limit as 	 → 0. Evaluating the direction for 10000
equally spaced angles over the range θ ∈ [0, 2π], we obtained
T̂− = [−0.99783 0.06586

]
, corresponding to θ = 0.221

radians and D− = −0.0660.
Figure 5 shows the resulting inner bound on L(ε, R∗

1 , R∗
2 )

given in Theorem 1, with ε = 0.01. In this example, the region
is identical for i.i.d. random coding and constant-composition
random coding. It is interesting to observe the different shape
of the region compared to the previous example, resulting from
the differing left and right tangent vectors. It is only the former
that plays a role in enlarging the achievable region, since the
set −Qinv(V (K), ε) (with K = {2, 12}) already satisfies the
property that if a given point is in the set, so are all points
on the right-hand side of the line of slope D+ = −1 passing
through that point.

C. Gaussian Multiple-Access Channel

We have focused our attention on the DM-MAC, which per-
mits an analysis based on combinatorial arguments. We now
discuss how Theorem 1 can be extended to the Gaussian MAC
via an increasingly fine quantization of the inputs, similarly to

Hayashi [5, Th. 3] and Tan [23]. Each use of the channel is
described by

Y = √
P1 X1 +√P2 X2 + Z , (30)

where Z ∼ N(0, 1), and where each codeword xν for user
ν = 1, 2 is constrained to satisfy 1

n ‖xν‖2 ≤ 1. The quantities
P1 and P2 represent the signal-to-noise ratios for users 1 and 2
respectively.

The capacity region is pentagonal [24, Sec. 15.1], and
is achieved using Gaussian input distributions, namely
Q1, Q2 ∼ N(0, 1). The quantities I and V in (4) and (13)
can be written explicitly; for ν = 1, 2, 12, we have

Iν = 1

2
log
(
1 + Pν

)
(31)

with P12 � P1 + P2. Moreover, for ν = 1, 2, we have

Vν = Pν(2 + Pν)

2(1 + Pν)2 (32)

Vν,12 = Pν (2 + P1 + P2)

2(1 + Pν)(1 + P1 + P2)
, (33)

and the remaining entries of V are given by

V12 = (P1 + P2)(2 + P1 + P2) + 2P1 P2

2(1 + P1 + P2)2 (34)

V1,2 = P1 P2

2(1 + P1)(1 + P2)
. (35)

A brief outline of how these expressions are obtained is given
in Appendix B.

We claim that the following inner bound holds using the
notation of Theorem 1 (with the additional condition that
the codewords must satisfy the above power constraints in
the definition of L in Section I-B):

L(ε, R∗
1 , R∗

2) ⊇
{
(L1, L2) : L(K) ∈ −Qinv

(
V (K), ε

)}
. (36)

This result was first derived by MolavianJazi and
Laneman [25], who used random coding according to
the uniform distribution over the surface of a sphere. The
techniques of this paper provide an alternative approach to
deriving the result. Extending Theorem 1 accordingly is
non-trivial, but it is done using well-established techniques;
we provide an outline in Appendix B. In contrast with
Theorem 1, no form of time-sharing is used in the proof,
and no tangent vectors appear in (36). This is due to the fact
that every point on the boundary of the capacity region is
simultaneously achieved by Gaussian inputs.

IV. PROOF OF THEOREM 1

The random-coding ensemble used in the proof depends on
two triplets (QU , Q1, Q2) and (Q′

U , Q′
1, Q′

2) of probability
distributions on the same alphabets. We define P ′

U X1 X2Y , i ′,
i ′(1), i ′(2), I ′ and V ′ in the same way as Sections I-B and II-A,
with (Q′

U , Q′
1, Q′

2) replacing (QU , Q1, Q2). In particular,
we have

I ′ � E
[
i ′(U ′, X ′

1, X ′
2, Y ′)

]
(37)

V ′ � E
[
Cov

[
i ′(U ′, X ′

1, X ′
2, Y ′)

∣
∣U ′]

−Cov
[
i ′(1)(U ′, X ′

1)
∣
∣U ′]− Cov

[
i ′(2)(U ′, X ′

2)
∣
∣U ′]],

(38)
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where (U ′, X ′
1, X ′

2, Y ′) ∼ P ′
U X1 X2Y . As an intermediate step

towards obtaining our local result, we present the following
global result.

Theorem 2: Fix any finite time-sharing alphabet U and the
input distributions (QU , Q1, Q2) and (Q′

U , Q′
1, Q′

2). For any

β ≥ 0 and ε ∈ (0, 1), there exists a function g(n) = O
(
n

1
4
)

(depending on (QU , Q1, Q2), (Q′
U , Q′

1, Q′
2), β and ε) such

that all rate pairs (R1, R2) satisfying

n R ∈ n I + √
n
(
β(I ′ − I) − Qinv(V , ε)

)+ g(n)1 (39)

are (n, ε)-achievable.
Proof: For clarity of exposition, we present the proof in

two parts. In Section IV-B, we handle the case that β = 0 and
U = ∅. The changes required to handle the general case are
presented in Section IV-C.

In the case that β = 0, Theorem 2 gives the second-
order asymptotics for a fixed triplet (QU , Q1, Q2). In this
case, the proof reveals that the behavior g(n) = O

(
n

1
4
)

can
be strengthened to g(n) = O(log n) if the argument to the
expectation in (13) has full rank for all u, and g(n) = O

(
n

1
6
)

more generally.
The case β > 0 is proved by applying an extended version

of coded time-sharing [15, Sec. 4.5.3] in which a fraction
1 − β√

n
of the symbols are generated using (QU , Q1, Q2), and

the remaining symbols are generated using (Q′
U , Q′

1, Q′
2).

A. Proof of Theorem 1 Based on Theorem 2

Throughout the proof, we write R12 � R1 + R2 and R∗
12 �

R∗
1 +R∗

2 (recall that (R∗
1 , R∗

2 ) is the boundary point of interest).
We have from the definition of K that R∗

ν < Iν for all ν ∈ Kc,
and we can thus weaken (39) to

n R ∈ n R∗ + nδ1Kc

+ √
n(β(I ′ − I) − Qinv(V , ε)) + O

(
n

1
4
)
1, (40)

where δ � minν∈Kc Iν − R∗
ν > 0, and 1Kc contains ones at

the indices corresponding to Kc, and zeros elsewhere.
Let z be a 3 × 1 vector, and let z(K) and z(Kc) be the

corresponding subvectors indexed by the superscript. From
the definition of Qinv, the set −Qinv(V (K), ε) contains the
vectors z(K) such that z ∈ −Qinv(V , ε) in the limit as the
entries of z(Kc) tend towards −∞ [10]. Moreover, since nδ
grows faster than O(

√
n), the elements of n R corresponding

to Kc in (40) may incur an additional L
√

n term for any value
of L. Combining these observations with the definition of L,
we obtain

L(ε, R∗
1 , R∗

2 ) ⊇
{

(L1, L2) :

L(K) ∈
⋃

β≥0

{
β(I ′(K) − I (K)) − Qinv(V (K), ε)

}}

. (41)

Suppose for the time being that R∗
2 > 0, and let (Q′

U , Q′
1, Q′

2)
be chosen to achieve a boundary point (R′

1, R′
2) to the right

of (R∗
1 , R∗

2 ) (more precisely, one such that R′
1 ≥ R∗

1 and
R′

2 ≤ R∗
2 , with at least one of the inequalities being strict),

and define R′
12, R′ and R′(K) in the same way as R12,

R and R(K). Since (R′
1, R′

2) is achieved by (Q′
U , Q′

1, Q′
2),

we have R′ � I ′, and in particular, R′(K) � I ′(K). Moreover,
from the definition of K, we have I (K) = R∗(K). Combining
these, we deduce from (41) that

L(ε, R∗
1 , R∗

2 ) ⊇
{

(L1, L2) : L(K) ∈
⋃

β≥0

{
β(R′(K) − R∗(K))

− Qinv(V (K), ε)
}}

. (42)

By the definition of T+ (see (17)), the direction2 of the vector
R′(K)− R∗(K) approaches that of T (K)

+ as (R′
1, R′

2) approaches
(R∗

1 , R∗
2 ) along the boundary from the right. By taking this

limiting choice and using the fact that L is defined using a
closure operation, we obtain the second set in (20). Provided
that R∗

1 > 0, the first set is obtained in an identical fashion by
letting (Q′

U , Q′
1, Q′

2) achieve a boundary point approaching
(R∗

1 , R∗
2 ) from the left.

B. Proof of Theorem 2 (β = 0, U = ∅)

In this subsection, we consider the case that β = 0 and
U = ∅, and we omit the arguments u to the functions defined
in Section II-A (e.g. i(u, x1, x2, y) is replaced by i(x1, x2, y)).

For ν = 1, 2, we are given the input distribution Qν ∈
P(Xν), and we let Qν,n ∈ Pn(Xν) be a type with the same
support as Qν such that maxxν |Qν(xν) − Qν,n(xν)| ≤ 1

n .
We generate the Mν � enRν codewords of user ν = 1, 2
independently according to the uniform distribution on
T n(Qν,n), i.e.

PXν (xν) = 1

|T n(Qν,n)|1
{

xν ∈ T n(Qν,n)
}
. (43)

For clarity of exposition, we assume that Q1 and Q2 are
themselves types, and hence Q1,n = Q1 and Q2,n = Q2;
the analysis for the more general case introduces an additive
O(1) term that can be incorporated into g(n) in (39).

We define the random variables

(X1, X2, Y , X1, X2) ∼ PX1(x1)PX2(x2)W n(y|x1, x2)

×PX1(x1)PX2(x2). (44)

Using a threshold-based decoder and standard bounding tech-
niques (e.g. see [25]), we can upper bound the random-coding
error probability pe as follows:

pe ≤ 1 − P

[
in(X1, X2, Y ) � γ

]

+M1P

[
i n
1 (X1, X2, Y ) > γ1

]

+M2P

[
i n
2 (X1, X2, Y) > γ2

]

+M1 M2P

[
i n
12(X1, X2, Y) > γ12

]
, (45)

where γ = [γ1 γ2 γ12]T is arbitrary, and

in(x1, x2, y) �
n∑

i=1

i(x1,i , x2,i , yi ) (46)

i n
ν (x1, x2, y) �

n∑

i=1

iν(x1,i , x2,i , yi ). (47)

2If |K| = 1, the “direction” should be interpreted as being the sign.
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By applying a standard change of measure from constant-
composition to i.i.d. [5], [11], we can upper bound the
second, third and fourth terms of (45) by Mν p0(n)e−γν for
ν = 1, 2, 12 respectively, where p0(n) � (n + 1)|X1|+|X2|−2,
and M12 � M1 M2. We thus obtain

pe ≤ 1 − P
[
in(X1, X2, Y) � γ

]+ p0(n)
∑

ν=1,2,12

Mνe−γν .

(48)

Using this bound with

γν = log Mν +
(

d + 1

2

)
log n, (49)

where d � |X1| + |X2| − 2 is the order of the polynomial
p0(n), the desired result in (39) (with β = 0 and U = ∅) will
follow using nearly identical steps to [6, Th. 4] once we prove
the following:

1) E[in(X1, X2, Y)] = n I and Cov[in(X1, X2, Y )] =
nV + �n , where I and V are given in (4) and (13),
and �n has O(1) entries.

2) In the case that V � 0, the probability on the right-hand
side of (48) can be approximated using a multivariate
Berry-Esseen theorem with O

( 1√
n

)
convergence.

3) In the case that V is singular, the problem can
be reduced to a lower dimension using Chebyshev’s
inequality, and the Berry-Esseen theorem can again be
applied.

We formalize and prove these statements in the remainder of
this subsection; the remaining details of the proof of (39) are
omitted to avoid repetition with [6].

1) Calculation of Moments: The first moment of in is easily
found by writing

E
[
in(X1, X2, Y )

] =
n∑

i=1

E
[
i(X1,i , X2,i , Yi )

] = n I , (50)

where the last equality follows since, by symmetry, X1,i ∼ Q1
and X2,i ∼ Q2 for all i . To compute the covariance matrix
of in , we write

Cov
[
in(X1, X2, Y )

]

= Cov

[ n∑

i=1

i(X1,i , X2,i , Yi )

]

(51)

=
n∑

i=1

n∑

j=1

Cov
[
i(X1,i , X2,i , Yi ), i(X1, j , X2, j , Y j )

]
(52)

= nCov
[
i(X1, X2, Y )

]

+(n2 − n)Cov
[
i(X1, X2, Y ), i(X†

1, X†
2, Y †)

]
, (53)

where (X1, X2, Y ) and (X†
1, X†

2, Y †) correspond to two
arbitrary but different indices in {1, · · · , n} (e.g. one can
set (X1, X2, Y ) = (X1,1, X2,1, Y1) and (X†

1, X†
2, Y †) =

(X1,2, X2,2, Y2)). Equation (53) follows by noting that the
symmetry of the codebook construction implies that the n
terms in (52) with i = j are equal, and similarly for the
n2 − n terms with i �= j .

To compute the cross-covariance matrix in (53), we
need the joint distribution of (X1, X2, Y ) and (X†

1, X†
2, Y †).

This distribution can be understood by noting that the uniform
distribution on T n(Q) is obtained by randomly permuting the
symbols of an arbitrary sequence x ∈ T n(Q). This, in turn, can
be interpreted as successively performing uniform sampling
from a collection of symbols without replacement (n times in
total), where the initial collection contains nQ(x) occurrences
of each symbol x ∈ X . By considering the first two steps of
such a procedure, we readily obtain

P[Xν = xν] = Qν(xν) (54)

P[X†
ν = x†

ν |Xν = xν] = nQν (x†
ν ) − 1{xν = x†

ν }
n − 1

(55)

for ν = 1, 2. Letting P†
ν (x†

ν |xν) denote the right-hand side
of (55), the cross-covariance matrix in (53) is given by

Cov
[

i(X1, X2, Y ), i(X†
1, X†

2, Y †)
]

= E

[(
i(X1, X2, Y ) − I

)(
i(X†

1, X†
2, Y †) − I

)T ]
(56)

=
∑

x1,x2,y

Q1(x1)Q2(x2)W (y|x1, x2)

×
∑

x†
1 ,x†

2 ,y†

P†
1 (x†

1 |x1)P†
2 (x†

2 |x2)W (y†|x†
1 , x†

2 )

×(i(x1, x2, y) − I
)(

i(x†
1 , x†

2 , y†) − I
)T (57)

� F1 + F2 + F3 + F4, (58)

where the four terms in (58) correspond to the four terms in the
expansion of

(
nQ1(x†

1)−1{x1 = x†
1})(nQ2(x†

2)−1{x2 = x†
2})

resulting from (55). These can be written as

F1 = n2

(n − 1)2 E

[
i(X1, X2, Y )− I

]
E

[
i(X1, X2, Y )− I

]T
(59)

F2 = − n

(n − 1)2 E

[(
i(X1, X2, Y )− I

)(
i(X 1, X2, Y )− I

)T ]

(60)

F3 = − n

(n − 1)2 E

[(
i(X1, X2, Y ) − I

)(
i(X1, X2, Y ) − I

)T ]

(61)

F4 = 1

(n − 1)2 E

[(
i(X1, X2, Y ) − I

)(
i(X1, X2, Ỹ ) − I

)T ]
,

(62)

where

(X1, X2, Y, X 1, X 2, Y , Y , Ỹ )

∼ Q1(x1)Q2(x2)W (y|x1, x2)Q1(x1)Q2(x2)

×W (y|x1, x2)W (y|x1, x2)W (ỹ|x1, x2). (63)

Observe that F1 is the zero matrix since I is the mean of i , and
F4 has O

( 1
n2

)
entries since the expectation does not depend

on n. Furthermore, recalling the definition of i (2) in (15), the
expectation in (60) can be written as

E

[
E
[(

i(X1, X2, Y ) − I
)∣∣X2

]
E
[(

i(X1, X2, Y ) − I
)∣∣X2

]T ]

(64)

= Cov
[
i (2)(X2)

]
. (65)
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It follows that

F2 = −n

(n − 1)2 Cov
[
i (2)(X2)

]
, (66)

and we similarly have

F3 = −n

(n − 1)2 Cov
[
i (1)(X1)

]
. (67)

Using the identity n
(n−1)2 = 1

n + O
( 1

n2

)
and combining (53),

(58), (66) and (67), we obtain

Cov
[
in(X1, X2, Y )

] = nV + �n, (68)

where V is defined as in (13) with U = ∅, and �n has O(1)
entries.

2) A Combinatorial Berry-Esseen Theorem: The
Berry-Esseen theorem required to bound the probability
in (48) is a special case of a result by Loh [19, Th. 2]
for a problem known as Latin hypercube sampling. This
result builds on a combinatorial central limit theorem due to
Hoeffding [9]; for other related works, see [26]–[29] and the
references therein.

We define the quantities

�n � 1

n
Cov

[
in(X1, X2, Y)

]
, (69)

Ŝn � 1√
n
�

− 1
2

n
(
in(X1, X2, Y ) − n I

)
(70)

�n(x1, x2) � �
− 1

2
n

(
i
(
x1, x2, Y (x1, x2)

)

− i (1)(x1) − i (2)(x2) + I
)

(71)

ξn �
∑

x1,x2

Q1(x1)Q2(x2)E
[
‖�n(x1, x2)‖3

]
, (72)

where Y (x1, x2) ∼ W (·|x1, x2). From (68), the matrix
�n − V has O

( 1
n

)
entries. It follows that whenever V � 0,

we have for sufficiently large n that �n � 0, and hence �
− 1

2
n

is well-defined.
Theorem 3 (Corollary of [19, Th. 2]): Let the input dis-

tributions Q1 and Q2 be given, and consider the quantities
(X1, X2, Y ), I , V , Ŝn and ξn respectively defined in (44), (4),
(13), (70) and (72) (with U = ∅). If V � 0, then we have for
sufficiently large n that

∣
∣
∣P
[
Ŝn ∈ A]− P

[
Z ∈ A]

∣
∣
∣ ≤ 1√

n

K

ξn
(73)

for any convex, Borel-measurable set A ⊆ R
3, where

Z ∼ N(0, I), and K is a universal constant.
Obtaining this result from [19, Th. 2] is non-trivial, and the

details are provided in Appendix A.
In the discrete setting under consideration, one can show

that ξn = �(1) using the fact that the relevant third moments
are finite (e.g. they can be uniformly bounded in terms of the
alphabet sizes [6, Appendix D]). Thus, we obtain the desired
O
( 1√

n

)
convergence in (73).

When V � 0, we can use Theorem 3 to bound the
probability in (48) by writing

P
[
in(X1, X2, Y ) � γ

]

= P

[
1√
n

(
in(X1, X2, Y ) − n I

) � 1√
n

(
γ − n I

)
]

(74)

= P

[
1√
n

�
− 1

2
n
(
in(X1, X2, Y ) − n I

) ∈ An

]

(75)

= P
[
Z ∈ An

]+ O
( 1√

n

)
(76)

= P

[

�
1
2
n Z � 1√

n

(
γ − n I

)
]

+ O
( 1√

n

)
(77)

where (75) follows by defining An to be the image of the

rectangular region in (74) under �
− 1

2
n , (76) follows with

Z ∼ N(0, I) from Theorem 3, and (77) follows by reversing
the step in (75). These steps are similar to [6, Appendix B],
where a Cholesky decomposition is used.

3) Singular Dispersion Matrices: In general, the disper-
sion matrix V may not have full rank, in which case
Theorem 3 does not directly apply. We can deal with this
case by reducing the problem to a lower dimension, similarly
to [6, Sec. VIII-A]. The argument here is slightly more
involved, since nV is not necessarily the exact covariance
matrix of in(X1, X2, Y ), due to the additional O(1) term
in (68).

Suppose that V has rank r < 3, and consider the matrix �n

in (69). Using an eigenvalue decomposition along with (68),
we obtain

�n = �n�n�
T
n , (78)

where �n is a unitary matrix, and �n is a diagonal matrix
whose first r diagonals are �(1), and whose last 3 − r
diagonals are O

( 1
n

)
. Noting that �n is the covariance matrix

of An � 1√
n

(
in(X1, X2, Y ) − n I

)
, we see that �n is the

covariance matrix of Ãn � �T
n An .

Suppose for the time being that r ≥ 1. From the structure
of �n , we conclude that

Ãn =
[

Ã
(1)
n

Ã
(2)
n

]

, (79)

where Ã
(1)
n and Ã

(2)
n have dimension r and 3 − r respectively,

and the covariance matrix of Ã
(2)
n has O

( 1
n

)
entries. Since

�n is unitary (i.e. �n�T
n = I), we have An = �n Ãn ,

and hence

An = �n

[
Ã

(1)
n
0

]

+ �n

[
0

Ã
(2)
n

]

(80)

� �′
n Ã

(1)
n + �̃n, (81)

where �′
n is obtained from �n by keeping only the first r

columns, and �̃n denotes the second term in (80). Since An

has mean zero by construction, we conclude that the same is
true of Ãn , and hence of �̃n . Furthermore, since Cov[ Ã

(2)
n ]

has O
( 1

n

)
entries and �̃n is obtained from Ã

(2)
n via the unitary

(and hence uniformly bounded) matrix �n , Cov[�̃n] also has
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O
( 1

n

)
entries. Thus, Chebyshev’s inequality implies for any

δn > 0 that

P
[‖�̃n‖∞ ≥ δn

] ≤ maxi Var[	̃i,n ]
δ2

n
= O

( 1

nδ2
n

)
, (82)

where 	̃i,n is the i -th entry of �̃.
We are now in a position to bound the probability appearing

in (48). The following holds for any δn > 0:

P
[
in(X1, X2, Y ) � γ

]

= P

[

An � 1√
n

(
γ − n I

)
]

(83)

= P

[

�′
n Ã

(1)
n + �̃n � 1√

n

(
γ − n I

)
]

(84)

≥ P

[

�′
n Ã

(1)
n � 1√

n

(
γ −n I

)+ δn1
]

−P
[‖�̃n‖∞ ≥δn

]
(85)

= P

[

�′
n Ã

(1)
n � 1√

n

(
γ − n I

)+ δn1
]

+ O
( 1

nδ2
n

)
, (86)

where the final three steps respectively make use of (81),
[6, Lemma 9], and (82). Since the entries of Ã

(1)
n are

shifted and weighted sums of the entries of in(X1, X2, Y),
and since the corresponding covariance matrix is positive
definite by construction, we can analyze (86) in the same
way as the case V � 0 (other than the terms δn1 and
O
( 1

nδ2
n

)
, which are handled in the following paragraph).

The fact that the resulting second-order term can be writ-
ten as −√

n Qinv(V , ε) follows in the same way as the
i.i.d. case [6, p. 894].

The remainder term in (86) contributes an additive O
( 1√

nδ2
n

)

term to the expansion in (39), whereas the addition of
δn1 in the first probability in (86) contributes an additive
O(δn

√
n) term to the expansion. The overall contribution

O
( 1√

nδ2
n

+ δn
√

n
)

is minimized by δn = �(n− 1
3 ), yielding

g(n) = O(n
1
6 ), as stated following Theorem 2.

The case r = 0 (i.e. V = 0) is handled similarly;
by following the steps of (83)–(86), we readily obtain the
following analog of (86):

P
[
in(X1, X2, Y ) � γ

]

≥ 1

{

0 � 1√
n

(
γ − n I

)+ δn1
}

+ O
( 1

nδ2
n

)
(87)

Using this bound, we can obtain (39) (with β = 0 and
U = ∅) in the same way as the case r > 0 by noting
that Qinv(0, ε) equals the set of all vectors with non-negative
components.

C. Proof of Theorem 2 (General Case)

Here we provide the changes required in the previous
subsection to prove Theorem 2 in full generality. We recall
the definitions of P ′

U X1 X2Y , i ′, etc. at the beginning of the
section.

1) Coded Time-Sharing With β = 0: In the case that β = 0
but U �= ∅, we modify the constant-composition random-
coding ensemble (cf. (43)) as follows. We let QU,n , Q1,n

and Q2,n be (conditional) types that respectively approximate

QU , Q1 and Q2. We fix an arbitrary time-sharing sequence
u with type QU,n , and generate the Mν � enRν codewords
of user ν = 1, 2 independently according to the uniform
distribution on T n

u (Qν,n), i.e.

PXν |U (xν |u) = 1

|T n
u (Qν,n)|1

{
xν ∈ T n

u (Qν,n)
}
. (88)

Similarly to (44), we define the random variables

(X1, X2, Y , X1, X2)

∼ PX1|U (x1|u)PX2|U (x2|u)

×W n(y|x1, x2)PX1|U (x1|u)PX2|U (x2|u). (89)

The procedure described in Section IV-B.1 for generating
a codeword uniformly over the type class is modified as
follows. Let x be an arbitrary element of the conditional
type class Tu(·). Instead of randomly permuting the entire
sequence x, a random permutation of the subsequence x(u)

corresponding to the indices where u equals u is applied inde-
pendently for each value of u ∈ U . Due to this independence,
we can handle the summation

in(u, X1, X2, Y ) �
n∑

i=1

i(ui , X1,i , X2,i , Yi ) (90)

=
∑

u

nQU (u)∑

i=1

i(u, X (u)
1,i , X (u)

2,i , Y (u)
i ) (91)

by considering each value of u ∈ U separately. For the
values of u corresponding to singular dispersion matrices,
we can perform a reduction to a lower dimension as shown
following (78). From Theorem 3, we conclude that each
inner summation in (91) is asymptotically normal with
O
( 1√

nQU (u)

) = O
( 1√

n

)
convergence. It follows that the overall

sum is also asymptotically normal with O
( 1√

n

)
convergence.

To see this, we let Ŝ1,n and Ŝ2,n be asymptotically normal
in the sense of (73), and let Z1 and Z2 be the associated
Gaussian random variables. We then have

P
[
Ŝ1,n + Ŝ2,n ∈ A]

= E
[
P
[
Ŝ1,n + Ŝ2,n ∈ A ∣∣ Ŝ2,n

]]
(92)

= E
[
P
[
Z1 + Ŝ2,n ∈ A ∣∣ Ŝ2,n

]]+ O
( 1√

n

)
(93)

= P
[
Z1 + Ŝ2,n ∈ A]+ O

( 1√
n

)
(94)

= P
[
Z1 + Z2 ∈ A]+ O

( 1√
n

)
, (95)

where (95) follows using similar steps to (92)–(94). Using
this observation and repeating the analysis of Section IV-B
and [6], we obtain the more general result of Theorem 2
with β = 0.

2) Coded Time-Sharing With β > 0: In the case that
β > 0, we apply a variant of coded time-sharing depend-
ing on an extended alphabet Ũ � U × {1, 2} and the
triplets (QU , Q1, Q2) and (Q′

U , Q′
1, Q′

2). Specifically, we
define the triplet (Q̃U,n, Q̃1,n, Q̃2,n) with Q̃U,n ∈ P(Ũ),
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Q̃1,n ∈ P(X1 | Ũ) and Q̃2,n ∈ P(X2 | Ũ) as follows:

Q̃U,n(u, 1) =
(

1 − β√
n

)
QU (u) (96)

Q̃U,n(u, 2) = β√
n

Q′
U (u) (97)

Q̃ν,n(xν |u, 1) = Qν(xν |u) (98)

Q̃ν,n(x1|u, 2) = Q′
ν(xν |u) (99)

for ν = 1, 2. We consider the constant-composition ensem-
ble in (88) with (Q̃U,n, Q̃1,n, Q̃2,n) playing the role of
(QU , Q1, Q2), and we set P̃U X1 X2Y,n � Q̃U,n × Q̃1,n ×
Q̃2,n × W . We follow the same arguments as the case that
β = 0 and U �= ∅, but with care taken to handle the fact
that some of the time-sharing values ũ ∈ Ũ correspond to
subsequences of u having length �(

√
n), rather than �(n).

Since we are interested in the limit of large n, we may assume
that 1 − β√

n
> 0.

The role of the information density vector i is now played
by the quantity

ĩ(ũ, x1, x2, y) �
{

i(u, x1, x2, y) ũ = (u, 1)

i ′(u, x1, x2, y) ũ = (u, 2).
(100)

The corresponding mean vector and dispersion matrix with
respect to P̃U X1 X2Y,n are given by

Ĩ �
(

1 − β√
n

)
I + β√

n
I ′ (101)

Ṽ �
(

1 − β√
n

)
V + β√

n
V ′, (102)

where I ′ and V ′ are defined in (37)–(38). With these defi-
nitions, the analysis proceeds in the same way as the above
analysis for U �= ∅. Analogously to (91) (and using analogous
notation), the additive n-letter extension ĩ

n
of (100) admits

the decomposition

ĩ
n
(u, X1, X2, Y)=

∑

ũ

nQ̃U,n (ũ)∑

i=1

ĩ(ũ, X (ũ)
1,i , X (ũ)

2,i , Y (ũ)
i ). (103)

The inner summations corresponding to ũ = (u, 2) only
contain �(

√
n) terms (rather than �(n) terms). Since the

remainder term in the Berry-Esseen theorem decays as the
inverse of the square root of the number of terms, we get
O(n

1
4 ) in place of O

( 1√
n

)
in (77).

On the other hand, the remainder term in (86) is unchanged
despite the presence of ũ values with corresponding subse-
quences of length �(

√
n). To see this, we first write

P
[
ĩ
n � γ

] = P

[∑

ũ

1√
n

(
ĩ
nũ
ũ − nũ Ĩ ũ

) � 1√
n

(
γ − n Ĩ

)
]

,

(104)

where ĩ
n

denotes the left-hand side of (103) (with implicit
arguments), ĩ

nũ
ũ denotes the inner summation corresponding

to a given ũ on the right-hand side of (103), nũ � nQ̃U,n(ũ)
denotes the number of terms in the summation, and Ĩ ũ denotes
the mean of each summand therein. These definitions, along
with those in (96)–(100), readily yield Ĩ = ∑

ũ Q̃U,n(ũ)̃I ũ .

Using (104), one can follow the steps in (83)–(86) and end
up with the same remainder term as (86), regardless of which
values of ũ have corresponding dispersion matrices that are
singular.

Combining the preceding observations and following the
steps of the previous subsections and [6], we obtain the
following condition for (n, ε)-achievability:

n R ∈ n Ĩ − √
n Qinv(Ṽ , ε) + O

(
n

1
4
)
1. (105)

The proof is concluded by substituting (101)–(102) into (105)
and using a Taylor expansion of Qinv (e.g. see [16, Lemma 6])
to replace Qinv(Ṽ , ε) by Qinv(V , ε).

V. CONCLUSION

We have characterized the second-order asymptotics of the
DM-MAC using constant-composition random coding and a
combinatorial Berry-Esseen theorem. Applying an extended
version of coded time-sharing, we have presented a new
method for obtaining the derivative (or tangent vector) terms
in the second-order rate region, which first appeared in [16].
Analogously to the random-coding error exponents [12],
we have observed improved bounds for constant-composition
random coding compared to i.i.d. random coding. While we
focused primarily on unconstrained channels, our results are
directly applicable to discrete channels with input constraints,
thus providing another advantage over i.i.d. codes. We have
also presented an extension of our main result to the Gaussian
setting via an increasingly fine quantization of the inputs.

A highly challenging open problem is the development of
outer bounds on L. The converse analysis for the Gaussian
MAC with degraded message sets [16] relied on a reduction
from average error to maximal error, but it is well-known that
such a reduction is not possible for the standard MAC [30].
The “wringing techniques” used in Ahlswede’s derivation of
the strong converse circumvent this issue [31], but still fail to
exhibit O

( 1√
n

)
convergence rates to the boundary points, as

is required to get a non-trivial outer bound on L.

APPENDIX A
PROOF OF THEOREM 3

Here we outline the problem studied by Loh [19] and
state the result that recovers Theorem 3, adapting the notation

therein to be more consistent with ours. We write A1
d= A2 if

the random variables A1 and A2 have the same distribution.
The “dimensionality” in [19] corresponds to the number of

users of the MAC, so we let it equal 2. Let π1(·) and π2(·)
be independent random permutations of {1, · · · , n}, uniformly
distributed over the n! possible permutations. For ν = 1, 2
and j1, j2 = 1, · · · , n, define the random variables Uν( j1, j2)
uniformly distributed on (0, 1) independently of each other
and of π1(·) and π2(·), and set

Bν( j1, j2) � jν − Uν( j1, j2)

n
, ν = 1, 2. (106)

The summation of interest is written as follows:

Sn �
n∑

j=1

f
(

B
(
π1( j), π2( j)

))
, (107)
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where B(·, ·) = [B1(·, ·) B2(·, ·)]T , and f (·) is a function with
a two-dimensional vector argument and a three-dimensional
vector output.

Using (106) and the fact that Uν( j1, j2) ∈ (0, 1) almost
surely, any realization bν of Bν uniquely determines both
the index jν and the variable Uν in the numerator of (106).
Thus, overloading the symbol f , we write the following for
b = [b1 b2]T:

f (b) = f (b1, b2) = f ( j1, j2, u1, u2), (108)

where the final four arguments are deterministically deduced
from b.

We now provide the key definitions needed to state
[19, Th. 2]. The notation here should be treated as being
separate from the rest of this paper for now, but we will shortly
see that the definitions of all re-used symbols are consistent.
The quantities related to first moments are as follows:

μ � 1

n
E
[
Sn
]

(109)

μ( j1, j2) � E
[

f (B( j1, j2))
]

(110)

μ(1)( j1) � 1

n

n∑

j2=1

μ( j1, j2) (111)

μ(2)( j2) � 1

n

n∑

j1=1

μ( j1, j2). (112)

The quantities related to second moments are as follows:

�n � 1

n
Cov

[
Sn
]

(113)

Ŝn � 1√
n
�

− 1
2

n
(
Sn − nμ

)
(114)

f (1)(b1) �
∫ 1

0
f (b1, b2) db2 (115)

f (2)(b2) �
∫ 1

0
f (b1, b2) db1 (116)

frem(b1, b2) � f (b1, b2) − f (1)(b1) − f (2)(b2) + μ (117)

Vf �
∫ 1

0

∫ 1

0
frem(b1, b2) frem(b1, b2)

T db1db2

(118)

Finally, the quantities related to third moments are as follows:

�( j1, j2) � �
− 1

2
n
(

f (B( j1, j2)) − μ(1)( j1) − μ(2)( j2) + μ
)

(119)

ξn � 1

n2

n∑

j1=1

n∑

j2=1

E
[‖�( j1, j2)‖3]. (120)

We now have the following.
Theorem 4 (Combinatorial Berry-Esseen Theorem

[19, Th. 2]): If Vf � 0, then the following holds for
sufficiently large n:

∣
∣
∣P
[
Ŝn ∈ A]− P

[
Z ∈ A]

∣
∣
∣ ≤ 1√

n

K

ξn
(121)

for any convex, Borel-measurable set A ⊆ R
3, where

Z ∼ N(0, I), and K is a universal constant.

We now show that Theorem 3 is recovered by a
suitable choice of f . Let x1 = (x1,1, · · · , x1,n) and
x2 = (x2,1, · · · , x2,n) be arbitrary sequences having type Q1
and Q2 respectively, and define Y ( j1, j2) ∼ W (·|x1, j1, x2, j2)
with independence between different ( j1, j2) pairs. We set

f ( j1, j2, u1, u2) = i
(
x1, j1, x2, j2, F−1

Y ( j1, j2)
(u1 ⊕ u2)

)
, (122)

where F−1
Y ( j1, j2)

(u) = inf
{

y : FY ( j1, j2)(y) ≥ u
}

is the inverse
cumulative distribution function (CDF) of Y ( j1, j2), and
⊕ denotes real addition modulo one.

We first evaluate the quantities in (109)–(112). Clearly

U1 ⊕ U2 is uniform on (0, 1), and since F−1
Z (U)

d= Z
for any random variable Z with CDF FZ , it follows that

F−1
Y ( j1, j2)

(U1 ⊕ U2)
d= Y ( j1, j2), and hence

f (B( j1, j2)) = f
(

j1, j2, U1, U2
) d= i

(
x1, j1, x2, j2, Y ( j1, j2)

)
,

(123)

Since drawing a codeword uniformly over a type class is
equivalent to randomly permuting any codeword of the given
type, it follows that Sn in (107) has the same distribution as
in(X1, X2, Y) in (48). Using (123), the fact that xν ∈ T n(Qν)
(ν = 1, 2), and the definitions of i (1) and i (2) in (14)–(15),
we readily obtain μ = I , μ(1)( j1) = i (1)(x1, j1), and
μ(2)( j2) = i (2)(x2, j2).

Next, we consider the quantities in (115)–(118). Recalling
that the pair ( jν, uν) is uniquely determined by bν for ν = 1, 2,
we have

f (1)(b1) =
∫ 1

0
f (b1, b2) db2 (124)

= 1

n

n∑

j2=1

E
[

f ( j1, j2, u1, U2)
]

(125)

= 1

n

n∑

j2=1

E
[
i
(
x1, j1, x2, j2, F−1

Y ( j1, j2)
(u1 ⊕ U2)

)]

(126)

= 1

n

n∑

j2=1

E
[
i
(
x1, j1, x2, j2, Y ( j1, j2)

)]
(127)

= i (1)(x1, j1), (128)

where (125) follows by interpreting the uniform averaging over
b2 ∈ [0, 1] as an averaging over n segments of length 1

n along
with an averaging over u2 within each segment, (126) follows
from (122), (127) follows since u1 ⊕ U2 is uniform on [0, 1]
for any u1, and (128) follows from the definition of i (1) in (14)
and the fact that x2 ∈ T n(Q2). An identical argument reveals
that f (2)(b2) = i (2)(x2, j2), where j2 is uniquely determined
by b2.

The only remaining quantity whose evaluation is non-trivial
is Vf in (118). By writing (117) as

frem(b1, b2) = ( f (b1, b2) − μ) − ( f (1)(b1) − μ)

−( f (2)(b2) − μ), (129)

we can express (118) as the sum of 32 = 9 integrals. The
desired identity Vf = V is obtained by showing that these
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evaluate to

Vf = V (12) + V (1) + V (2) − V (1) − V (1)

−V (2) − V (2) + 0 + 0 (130)

= V (12) − V (1) − V (2) (131)

= V , (132)

where V (12), V (1) and V (2) are the three covariance matrices
appearing on the right-hand side of (13) (with U = ∅). For
brevity, we provide details for only one of the 9 terms in (130);
the others are handled similarly. We have
∫ 1

0

∫ 1

0
( f (b1, b2) − μ)( f (1)(b1) − μ)T db1db2

=
∫ 1

0

(∫ 1

0
( f (b1, b2) − μ) db2

)

( f (1)(b1) − μ)T db1

(133)

=
∫ 1

0
( f (1)(b1) − μ)( f (1)(b1) − μ)T db1 (134)

= Cov
[
i (1)(X1)

]
(135)

= V (1), (136)

where (134) follows from (115), and (135) follows from (128)
and by interpreting the integral as an average.

We refer the interested reader to [32, Sec. 4.5.6] for a list
of identities between quantities appearing in the present paper
and the paper of Loh [19].

APPENDIX B
EXTENSION TO THE GAUSSIAN SETTING

A. Evaluation of I and V

The expressions in (31)–(35) are derived from (4) and (13)
by forming an explicit expression for i(x1, x2, y) in (6) (with
U = ∅ and Q1, Q2 ∼ N(0, 1)), performing averaging in order
to obtain i (1)(x1) and i (2)(x2) in (14)–(15), and then comput-
ing the corresponding means, variances, and covariances. For
concreteness, we provide a brief outline of this process for the
bottom-right entry of V , namely V12.

When Q1 and Q2 are N(0, 1), the output distribution is
PY ∼ N(0, 1 + P1 + P2), yielding

i12(X1, X2, Y ) = I12 − Z2

2
+ (

√
P1 X1 + √

P2 X2 + Z)2

2(1 + P1 + P2)
.

(137)

Averaging over (X2, Y ) and (X1, Y ) respectively, we obtain
the following:

i (1)
12 (X1) = I12 + P1(X2

1 − 1)

2(1 + P1 + P2)
(138)

i (2)
12 (X2) = I12 + P2(X2

2 − 1)

2(1 + P1 + P2)
. (139)

Each of the three preceding quantities has mean I12. Using
the fact that the second and fourth moments of an N(0, 1)
random variable are 1 and 3 respectively, the corresponding

variances are easily calculated to be P1+P2
1+P1+P2

,
P2

1
2(1+P1+P2)2

and
P2

2
2(1+P1+P2)2 . Substituting these into (13) yields

V12 = (P1+P2)(2+P1+P2)+2P1 P2
2(1+P1+P2)2 , as desired.

B. Derivation of the Achievable Second-Order Rate Region

Recall that the entries of I and V can be written in
the forms given in (31)–(35) respectively. The key result
used in obtaining (36) is the following lemma, which states
that there exists a sequence of discrete input distributions
Qm1 and Qm2 of cardinality m such that the corre-
sponding vector-matrix pair (Im, Vm) converges to (I, V )
(see (31)–(35)), with the convergence Im → I being expo-
nentially fast in m. This generalizes a result by Wu and Verdú
for the single-user setting [33], and is proved similarly.

Lemma 1: There exist sequences of discrete input distrib-
utions Qm1 and Qm2 of cardinality m with a corresponding
matrix-vector pair (Im , Vm) defined according to (4) and (13)
such that (i) ‖Im − I‖∞ ≤ e−γ m for some γ > 0 and
sufficiently large m, (ii) ‖Vm − V‖∞ → 0, and (iii) the
third absolute moment of each entry of i(Xm1, Xm2, Y ) under
Qm1 × Qm2 × Y is uniformly bounded in m.

Proof: The proof closely follows that of [33, Th. 8], so
we only explain the differences. We choose Qm1 and Qm2
according the Gauss quadrature rule Qg [33, Sec. II], which
satisfies the property of having the same moments as those
of a standard Gaussian random variable up to order 2m − 1
[33, Thm. 2]. Since Qg converges weakly to N(0, 1) [33],
we immediately obtain parts (ii) and (iii) of Lemma 1, so it
remains to prove part (i).

Define (Xm1, Xm2, Ym) ∼ Qm1 × Qm2 × W and
(X1, X2, Y ) ∼ Q1×Q2 ×W , where Q1, Q2 ∼ N(0, 1). Using
the identity [24, Eq. (15.142)]

I (Xm1; Ym |Xm2) = H
(√

P1 Xm1 + Z
)− H (Z), (140)

we see that the convergence of the first entry of Im to that
of I is precisely that studied in [33], and similarly for the
second entry. It remains to study the third entry, i.e. to show
that I (Xm1, Xm2; Ym) → I (X1, X2; Y ) exponentially fast.
Analogously to [33, Eq. (5)], we have

I (X1, X2; Y ) − I (Xm1, Xm2; Ym)

= D
(√

P1 X1 +√
P2 X2 + Z‖√P1 Xm1 +√P2 Xm2 + Z

)

(141)

� Dm . (142)

Using nearly identical arguments to [33, Sec. V] with an
“optimal” output distribution of N(0, 1 + P1 + P2), we obtain
analogously to [33, Eq. (54)] that

Dm ≤
∑

k≥1

1

k!
( P1 + P2

1 + P1 + P2

)k

×
∣
∣
∣
∣E
[

Hk

(√
P1 Xm1 + √

P2 Xm2√
P1 + P2

)]∣∣
∣
∣, (143)

where Hk is the Hermite polynomial of degree k
(see [33, Eq. (15)]). As shown in [33], we obtain the desired
exponential convergence rate of the mutual information pro-
vided that the expectation appearing in (143) is zero for odd
values of k, and also for k ≤ 2m − 1. For odd values of k,
we use the same symmetry argument as that of [33]; since
the distributions of Xm1 and Xm2 are both symmetric, so is
that of their weighted sum. To handle the remaining values
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k ≤ 2m − 1, we write

Hk(a + b) =
k∑

i=0

k∑

j=0

ci j aib j (144)

for some constants ci j , which follows since Hk has degree k.
By the independence of Xm1 and Xm2, the expectation

E

[
Hk

(√
P1 Xm1+√

P2 Xm2√
P1+P2

)]
depends only on the first k moments

of Xm1 and Xm2. Since the i -th moment of Xmν coincides
with the corresponding moment of Xν ∼ N(0, Pν ) for i =
1, . . . , 2m − 1 [33, Th. 2], we have for k ≤ 2m − 1 that

E

[
Hk

(√
P1 Xm1 + √

P2 Xm2√
P1 + P2

)]

= E

[
Hk

(√
P1 X1 + √

P2 X2√
P1 + P2

)]
(145)

= 0, (146)

where (146) follows since for any k, we have Hk(X) = 0
under X ∼ N(0, 1) [33].

We proceed by proving that, analogously to Theorem 2,
there exists g(n) = o(

√
n) such that all rate pairs (R1, R2)

satisfying

R ∈ n I − √
n Qinv(V , ε) + g(n)1 (147)

are (n, ε)-achievable. This is done by following the analy-
sis of Section IV-B: We consider random coding with the
constant-composition codeword distribution in (43), using
(Qm1, Qm2) as the input distribution pair. As was done
in [5, Th. 3], [23], we set m = n

1
4 . By part (i) of Lemma 1,

we have ‖n Im − n I‖∞ ≤ ne−γ n
1
4 , which behaves as o(

√
n).

Similarly, parts (ii) and (iii) of Lemma 1 show that Vm → V
and the relevant third moments associated with i are bounded.
The analysis of Section IV-B reveals that the remainder term
g(n) in (147) depends on the alphabet sizes through (|X1| +
|X2| + 2) log n (see the choice of d following (49)), which is
again o(

√
n) due to the fact that |X1| = |X2| = n

1
4 .

Finally, using (147), we obtain (36) using identical steps to
Section IV-B with β = 0 (see also [10]).
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