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A Tight Lower Bound to the Outage Probability of
Discrete-Input Block-Fading Channels
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Abstract—In this correspondence, a tight lower bound to the outage
probability of discrete-input Nakagami-m block-fading channels is pro-
posed. The approach permits an efficient method for numerical evaluation
of the bound, providing an additional tool for system design. The optimal
rate-diversity tradeoff for the Nakagami-m block-fading channel is also
derived and a tight upper bound is obtained for the optimal coding gain
constant.

Index Terms—Block-fading channel, diversity, error probability, outage
probability, rate-diversity tradeoff, signal-to-noise ratio (SNR)-exponent.

I. INTRODUCTION

The block-fading channel [1], [2] is a useful channel model for a
class of slowly-varying wireless communication channels. The model
is particularly relevant for delay-constraint applications where channel
usage is restricted to only include a finite number of distinct channel
blocks, each subject to independent flat fading. Frequency-hopping
schemes as encountered in the Global System for Mobile Communi-
cation (GSM) and the Enhanced Data GSM Environment (EDGE),
respectively, as well as orthogonal frequency division multiplexing
(OFDM) as encountered in more recently proposed wireless communi-
cation systems standards can conveniently be modeled as block-fading
channels. The simplified model is mathematically tractable, while
still capturing the essential features of practical slowly-varying fading
channels.

In a block-fading channel, a codeword spans a finite number B of
independent fading blocks. As the channel relies on particular real-
izations of the finite number of independent fading coefficients, the
channel is nonergodic and therefore not information stable [3], [4]. It
follows that the Shannon capacity of this channel is zero since there is
an irreducible probability that a given transmission rate R is not sup-
ported by a particular channel realization [1], [2]. This probability is
named the information outage probability. For sufficiently large codes,
the outage probability is the lower bound to the word error rate for any
coding schemes.

Considerable efforts have been dedicated to describing the behavior
of the word error probability and the outage probability for Rayleigh
block-fading channels in the high signal-to-noise ratio (SNR) regime.
In particular, analysis based on worst-case pairwise error probabilities
shows that at high SNR the achievable word error probability of codes
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C of rate R (in bits per channel use) constructed over a signal constel-
lation X of size jX j = 2M behaves as

lim
SNR!1

� logPe(SNR; R)
log SNR

= dB(R) (1)

where

dB(R) = 1 + B 1� R

M
(2)

is the Singleton bound [5]–[7]. More recently, it has been shown [8]
that the optimal SNR exponent

d
?(R) sup

C

lim
SNR!1

� logPe(SNR; R)
log SNR

(3)

is actually given by the Singleton bound (2). This establishes the
Singleton bound as the optimal rate-diversity tradeoff for transmis-
sion over the Rayleigh block-fading channel with discrete signal
constellations.

While these results provide significant insight into code design, the
analysis techniques do not provide explicit tools for the evaluation of
the outage probability; a task which usually requires extensive numer-
ical computations. To this end, an upper bound to the outage proba-
bility of Rayleigh and Rician block-fading channels is proposed in [9],
[10]. In this paper, we propose a tight lower bound to the outage prob-
ability which can be efficiently evaluated for the general Nakagami-m
block-fading channel [11]. We show that numerical evaluation of the
proposed bound is very efficient, resulting in significantly less complex
computation as compared to Monte Carlo simulation. We also show
that the optimal rate-diversity trade-off for the Nakagami-m fading
case is given by d?(R) = mdB(R) for any m > 0, and we obtain
an upper bound to the achievable coding gain for any coding scheme.

The remainder of the correspondence is organized as follows. In Sec-
tion II, the system model is described for the Nakagami-m block-fading
channel, while Section III defines the outage probability of this channel.
In Section IV, we detail the proposed lower bound for the outage prob-
ability, as well as an efficient method for the evaluation of the bound.
The asymptotic behavior of the outage probability is investigated in
Section V, where the rate-diversity trade-off is extended to include the
Nakagami-m fading statistics. Finally, conclusions are given in Sec-
tion VI, while proofs are collected in Appendices.

The following notation is used in the paper. Sets are denoted by cal-
ligraphic fonts with the complement denoted by superscript c. The ex-
ponential equality g(�)

:
= �d indicates that lim�!1

log g(�)
log �

= d. The
exponential inequalities _�, _� are similarly defined. 1lf	g is the in-
dicator function for event 	, d�e (b�c) denotes the smallest (largest)
integer greater (smaller) than �, and n

+ = f� 2 nj� � 0g.

II. SYSTEM MODEL

Consider transmission of codewords of length BL coded symbols
over a block-fading channel with B blocks. Each block is an additive
white Gaussian noise (AWGN) channel of L channel uses affected by
the same flat fading coefficient. The complex baseband expression for
the received signal is

yyyb =
p

SNR hbxxxb + zzzb; b = 1; . . . ; B (4)

where yyyb 2 L is the received signal in block b, xxxb 2 L is the por-
tion of the codeword assigned to block b, and zzzb is a noise vector with
independent and identically distributed (i.i.d.) circularly symmetric
Gaussian entries � N (0; 1). We define hhh = (h1; . . . ; hB) 2 B as
the vector of fading coefficients. The fading coefficients are assumed
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i.i.d. from block to block and from codeword to codeword, as well as
being perfectly known to the receiver.

We consider a channel with a discrete input constellation set X �
of cardinality 2M . Without loss of generality, we assume that [jxj2] =
1, where x 2 X , and that the fading coefficients are normalized such
that [jhbj

2] = 1. It follows that SNR is the average signal-to-noise
ratio at the receiver end. Define 
b jhbj

2 as the fading power gain.
Then, the instantaneous received SNR at block b is 
bSNR.

We consider the case where the fading coefficients follow the general
Nakagami-m distribution [11], [12]. The probability density function
(pdf) of jhbj is1

fjh j(�) =
2mm�2m�1

�(m)
e�m� (5)

where �(a) is the Gamma function �(a) =
1
0

ta�1 e�tdt. It follows
that the fading power gain 
b has the following pdf:

f
 (�) =
m �

�(m)
e�m�; � � 0

0; otherwise
(6)

and cumulative distribution function (cdf)

F
 (�) =
1� �(m;m�)

�(m)
; � � 0

0; otherwise
(7)

where �(a; �) is the upper incomplete Gamma function �(a; �) =
1
�

ta�1 e�tdt.
The Nakagami-m distribution represents a large class of fading sta-

tistics, including Rayleigh fading (by setting m = 1). The distribu-
tion also approximates Rician fading with parameter K (by setting
m = (K + 1)2=(2K + 1)) [12]. Therefore, the proposed analysis
for systems with Nakagami-m fading is a generalization of previous
results in the literature.

III. MUTUAL INFORMATION AND OUTAGE PROBABILITY

The instantaneous input-output mutual information of the block-
fading channel with a given channel realization hhh can be expressed
as [1]

I(SNR; hhh) =
1

B

B

b=1

IAWGN(
b SNR)

where IAWGN(�) is the input-output mutual information of an AWGN
channel with SNR �. I(SNR; hhh) is the input-output mutual informa-
tion of a set of B noninterfering parallel channels, each of which is
used only for a fraction 1

B
of the time. When the input signal set X is

discrete, the mutual information IAWGN(�) is given by

IAWGN(�)=M�2�M

x2X
log2

x 2X
e�j

p
�(x�x )+Zj +jZj

(8)

where the expectation over Z � N (0; 1) can be efficiently computed
using the Gauss–Hermite quadrature rules [13].

Transmission at rate R over the channel in (4) is considered to be in
outage whenever

1

B

B

b=1

IAWGN(
bSNR) < R:

The corresponding outage probability is given by

Pout(SNR; R) = Pr
1

B

B

b=1

IAWGN(
bSNR) < R : (9)

1Since the complex coefficients h are perfectly known to the receiver, we
can assume phase coherent detection, and thus, only the amplitude is affected
by the fading statistics.

IV. LOWER BOUND TO THE OUTAGE PROBABILITY

In general, when the channel has a discrete input constellation, evalu-
ation of the outage probability in (9) is complicated since a closed form
expression for IAWGN(�) is not known. Typically,Pout(SNR; R) is in-
stead evaluated through Monte Carlo simulations,2 which are compu-
tationally demanding for high SNR. In this section, we propose a lower
bound to the outage probability with discrete inputs, which can be ef-
ficiently computed for any SNR.

The maximum input–output mutual information for a channel with
input signal constellationX of size jX j = 2M is always upper bounded
byM . Furthermore, the input-output mutual information of the channel
can also be upper bounded by that of the channel with Gaussian input.
Therefore, for any realization of 


, IAWGN(
bSNR), b = 1; . . . ; B is
upper bounded by3

IuAWGN(
bSNR) minfM; log2(1 + 
bSNR)g (10)

= log2(1 + 
bSNR); 
b �
2 �1
SNR

M; otherwise

=
log2(1 + 
bSNR); b 2 Sc

M; b 2 S
(11)

where S = b 2 f1; 2; . . . ; Bg : 
b >
2 �1
SNR

and Sc denotes its
complement.

Let jSj be the cardinality of S . Since 
b, b = 1; . . . ; B; are indepen-
dent random variables, jSj is a binomially distributed random variable

with success rate p Pr 
b >
2 �1
SNR

. Hence

Pr(jSj = t) =
B

t
pt(1� p)B�t; t = 1; 2; . . . ; B (12)

where

p =1� F

2M � 1

SNR

=
� m;m 2 �1

SNR

�(m)
: (13)

Using the upper bound of mutual information in (10) and (11), we lower
bound Pout(SNR; R) as

P `
out(SNR; R) Pr

1

B

B

b=1

IuAWGN(
bSNR) < R (14)

= Pr
b2S

IuAWGN(
bSNR)

+
b2S

IuAWGN(
bSNR) < BR (15)

= Pr jSjM +
b2S

log2(1 + 
bSNR) < BR :

(16)

Since 
b, b = 1; . . . ; B are i.i.d. random variables,
b2S log2(1 +


bSNR) is the summation of jScj = B � jSj i.i.d. random vari-

2Even if the inputs to the channel are Gaussian, for which I (
 SNR) =
log (1 + 
 SNR), a closed form expression for the outage probability is not
known.

3Superscripts u and ` will denote upper and lower bounds, respectively.



4316 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 11, NOVEMBER 2007

Fig. 1. Outage probability of Nakagami-m block-fading channels with B = 4, M = 4, m = 0:5 and m = 2. The thick solid lines correspond to the lower
bound (23), thin dashed lines with circles denote the simulation of (14) and thin dashed lines with squares denote the simulation of (9) with 16-QAM modulation.

ables. Each random variable inside the summation is given by
log2(1 + 
bSNR) conditioned on b 2 Sc, or equivalently on the event
E , where E is defined as

E 
b : 
b �
2M � 1

SNR
: (17)

Denote Ab as the random variable log2(1+
bSNR) conditioned on E .
Then, the distribution of Ab is given by the following proposition.

Proposition 1: Assume 
b is a random variable whose distribution
is given by (6). Denote Ab as the random variable log2(1 + 
bSNR)
conditioned on the event E given in (17). The distribution of Ab is then
given by

fA (�) =

f

F

2 log(2)
SNR

; 0 � � �M

0; otherwise.

(18)

Proof: See Appendix I

Therefore, denotingAk ,k = 1; . . . ; jScj, as theB�jSj independent
random variables that follow the distribution given in (18), we can write
(16) as

P
`
out(SNR; R) = Pr jSjM +

B�jSj

k=1

Ak < BR : (19)

By conditioning on jSj, we can express P `
out(SNR; R) as

P
`
out(SNR; R) =

B

t=0

Pr

B�jSj

k=1

Ak < BR� jSjM jSj = t

� Pr(jSj = t) (20)

=

B

t=0

Pr

B�t

k=1

Ak < BR� tM Pr(jSj = t): (21)

From the distribution in (18), note that Pr(Ak � 0) = 0. Therefore,
for any t such that BR � tM � 0, or equivalently for all t � BR

M
,

the corresponding probability is zero. Hence, we can rewrite (21) as

P
`
out(SNR; R)

=

d e�1

t=0

Pr

B�t

k=1

Ak < BR� tM Pr(jSj = t): (22)

If we now define the random variable Yt
B�t
k=1 Ak , we can write

P
`
out(SNR; R) =

d e�1

t=0

FY (BR�tM)
B

t
p
t(1�p)B�t (23)

where FY (�) is the cdf of Yt.
Since Ak , k = 1; . . . ; B � t are independent random variables, the

pdf of Yt can be evaluated by performingB�t convolutions of fA (�).
Numerically, this convolution can be efficiently computed in the fre-
quency domain using fast Fourier transform (FFT) techniques [14].
With this method, we can efficiently evaluate the cdf of Yt, FY (�), and
therefore we can also efficiently evaluate P `

out(SNR; R) in (23). The
evaluation of (23) is significantly faster than evaluating Pout(SNR; R)
in (9) using Monte Carlo simulation techniques.

Numerical results for Nakagami-m block-fading channels withB =
4, M = 4, m = 0:5 and m = 2 are given in Fig. 1. The transmission
rates considered areR = 1; 2; 3 bits per channel use, which correspond
to Singleton bounds dB(R) = 4; 3; 2, respectively. The figure shows
the simulation and analytical curves of the lower bound to the outage
probability of the channel based on (14) and (23), respectively, together
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Fig. 2. Outage probability for the of Nakagami-m block-fading channels with B = 4,M = 4, SNR = 10 dB,m = 0:5 andm = 2. The solid lines correspond
to the lower bound (23). The dashed lines denote the simulation of (9) with 16-QAM modulation.

with the 16-QAM outage simulation curve based on (9). We observe
that the analytical curves coincide with the corresponding lower bound
simulation curves. The analytical curves give a tight lower bound to
the 16-QAM outage curve. Note that the bound is very tight for the im-
portant case of R = 1, which, from the Singleton bound expression
in (2), is the largest rate that can be achieved with full diversity. Fig. 2
provides a plot of the outage probability of the same channels as a func-
tion of the code rate R at SNR =10 dB, illustrating the validity of the
bound over a wide range of transmission rates. Further simulations, not
shown here because of space limitation, show that these observations
are valid for a wide range of channel parameters. We also observe from
Fig. 1 that the slope of each curve is mdB(R), representing the SNR
exponent of the outage probability. In Section V, we rigorously prove
that the optimal SNR-exponent over the channel is

d
?(R) = mdB(R): (24)

In proving this result, we characterize not only the SNR-exponent but
also the asymptotic coding gain.

V. ASYMPTOTIC BEHAVIOR

Using (23) and the analysis techniques from [8], we obtain the fol-
lowing result for the asymptotic diversity of Nakagami-m block-fading
channels, for all m > 0.

Proposition 2: Assume transmission over the block-fading channel
as defined in (4) with input signal constellation size 2M . Assume fur-
ther that the fading power gain 
b is a random variable whose distri-
bution is given by (6). In this case, the lower bound on Pout(SNR; R)
given in (23) can asymptotically be expressed as

P
`

out(SNR; R)
:
= K`SNR�md (R) (25)

where dB(R) is the Singleton bound given in (2). Furthermore, K` is
a constant independent of SNR given by

K` = F
Y

BR� (B � dB(R))M

�
B

B � dB(R)

(m(2M � 1))md (R)

(m�(m))d (R)
(26)

where

F
Y

(�) = lim
SNR!1

FY (�): (27)

Proof: See Appendix II.

This proposition not only shows that the SNR exponent of the outage
probability is upper bounded by mdB(R) but also gives the asymp-
totic constant K` of P `out(SNR; R). This is indeed useful for code de-
sign since it gives an upper bound for the coding gain achieved by
any coding scheme. At the same time, together with the expression of
P `out(SNR; R) given in (23), it gives a more specific characterization of
the outage probability, indicating the word error probability (or SNR)
region where asymptotic analysis is valid.

The lower bound to the outage probability and the asymptotic term
given in (25) are illustrated in Fig. 3. The same set of parameters as
in Fig. 1 has been chosen, namely B = 4, M = 4, m = 2 and
R = 1; 2; 3.

So far, we have shown that d?(R) � mdB(R). To prove the opti-
mality of the SNR-exponent mdB(R), we need to prove the achiev-
ability result given in the next proposition.

Proposition 3: Assume transmission with random codes of rate R
and block length L(SNR) satisfying

lim
SNR!1

L(SNR)
log(SNR)

= � (28)
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Fig. 3. Outage probability of Nakagami-m block-fading channels with B = 4, M = 4, m = 0:5 and m = 2. The solid lines correspond to the lower bound
(23) and the dashed lines to its asymptotic expression given in (25) using K in (26).

over a block-fading channel as defined in (4) with input signal con-
stellation size 2M . Further assume that the fading power gain 
b is a
random variable whose distribution is given by (6). In this case, the
SNR-exponent is lower bounded by (29) shown at the bottom of the
page.

Proof: See Appendix III.

The preceding propositions lead to the following theorem.

Theorem 1: Assume transmission over a block-fading channel as
defined in (4) with input constellation size 2M . Further assume that the
fading power gain 
b is a random variable whose distribution is given
by (6). In this case, the optimal SNR-exponent is given by

d
?(R) = mdB(R) (30)

for all R, M where B 1� R

M
is not an integer.

Proof: See Appendix IV.

As remarked in Appendix IV, Theorem 1 can be proved using the
methods proposed in [8]. However, with the proof proposed here,
Propositions 2 and 3 provide additional information. In particular,
Proposition 2 provides an upper bound on the coding gain K`, and
Proposition 3 provides an extension for the SNR-exponent of random
codes with finite block length in [8] to a more general fading distri-
bution.

The diversity of random codes for block-fading channels with B =
4, M = 4 and m = 2 is illustrated in Fig. 4. Random codes with
block length satisfying � = 2m

M log(2)
and � = m

2M log(2)
are consid-

ered, where � is defined in (28). We observe that the SNR-exponent
is always upper bounded by mdB(R). Except for points of disconti-
nuity of dB(R), the upper bound can be achieved by increasing � since
d(r)(R) and mdB(R) will coincide over larger ranges of R.

VI. CONCLUSION

In this correspondence, we have proposed a tight lower bound to
the outage probability of discrete-input block-fading channels with
Nakagami-m fading statistics. The lower bound can be computed
efficiently and is therefore useful for system design and analysis.
We show that the optimal rate-diversity tradeoff for Nakagami-m
block-fading channels is given by m times the Singleton bound. We
also obtain an upper bound for the achievable coding gain, which is
useful for code design.

APPENDIX I
DISTRIBUTION AND PROPERTIES OF Ab

Proposition 1: Assume 
b is a random variable whose distribu-
tion is given by (6). Denote Ab the random variable log2(1+ 
bSNR)

d
(r)(R) �

�BM log(2) 1� R

M
; � < m

M log(2)

m(dB(R)� 1) + min m;�M log(2) B 1� R

M
� dB(R) + 1 ; � � m

M log(2)
.

(29)
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Fig. 4. Optimal and random coding SNR-exponent for Nakagami-m block-fading channels withm = 2,B = 4,M = 4. The solid line corresponds tomd (R),
dashed-dotted line and dashed line denote the random coding exponent with �M log(2) = 2m and �M log(2) = , respectively.

conditioned on the event E described in (17). The distribution of Ab, is
given by

fA (�) =

F

F

2 log(2)
SNR

; 0 � � �M

0; otherwise.

(31)

Proof: The cdf of Ab is given by

FA (�) = Pr(log2(1 + 
bSNR) < �jE) (32)

= Pr log2(1 + 
bSNR) < � 
b �
2M � 1

SNR
: (33)

Applying Bayes’ rule, we obtain

FA (�) =
Pr 
b <

2 �1
SNR

; 
b �
2 �1
SNR

Pr 
b �
2 �1
SNR

: (34)

If � � M then 2� � 1 � 2M � 1 and therefore

Pr 
b <
2� � 1

SNR
; 
b �

2M � 1

SNR
= Pr 
b <

2� � 1

SNR
(35)

=F

2� � 1

SNR
: (36)

Otherwise, if � > M

Pr 
b <
2� � 1

SNR
; 
b �

2M � 1

SNR
= Pr 
b �

2M � 1

SNR
(37)

=F

2M � 1

SNR
: (38)

By inserting (36) and (38) into (34), we finally have that

FA (�) =

F

F

; � �M

1; otherwise.

(39)

Now differentiate FA (�) in (39) with respect to �, noting that
d

d�
FA (�) = fA (�) and d

d�
F
 (�) = f
 (�), we obtain (18).

Proposition 4: Assume 
b is a random variable whose distribu-
tion is given by (6). Assume Ab is a random variable as defined in
Proposition 1. Asymptotically, the distribution of Ab is independent of
SNR and is given by

fA (�)
:
= f

A
(�)

m(2 �1) 2 log(2)

(2 �1)
� �M ,

0 otherwise.
(40)

Proof: From (6) and Taylor series expansion, we have

f

2� � 1

SNR
=
mm 2 �1

SNR

m�1

�(m)
e
�m

:
=
mm(2� � 1)m�1

�(m)
SNR�(m�1): (41)

Similarly, from (7), we have

F

2M � 1

SNR
=1�

� m;m 2 �1
SNR

�(m)

:
=1�

�(m)� 1
m

m 2 �1
SNR

m

�(m)

:
=
mm(2M � 1)m

m�(m)
SNR�m: (42)

Inserting (41) and (42) into (31), we obtain (40).
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APPENDIX II
PROOF OF PROPOSITION 2

Define Ak as a random variable described by the distribution func-
tion f

A
(�) given in (40). Further define F

Y
(�) as the cdf of Y t

B�t

k=1 Ak . According to Proposition 4, fA (�)
:
= f

A
(�), and there-

fore, FY (�)
:
= F

Y
(�). In addition, Taylor expansion of (13) gives

p
:
=

�(m)� 1
m
(m2 �1

SNR
)m

�(m)

:
= 1 (43)

1� p
:
=
mm(2M � 1)m

m�(m)
SNR�m: (44)

Since the asymptotic expressions for p, 1�p and FY (�) are finite and
nonzero, the asymptotic behavior of P `

out(SNR; R) in (23) is found
by replacing FY (�) with F

Y
(�), and replacing p, 1 � p with their

corresponding asymptotic value in (43) and(44). It follows that

P
`
out(SNR; R)

:
=

d e�1

t=0

F
Y

(BR� tM)

�
B

t

mm(2M � 1)m

m�(m)

B�t

SNR�m(B�t)
: (45)

Since f
A

(�) is independent of SNR, F
Y

(�) is also independent of
SNR. Therefore, the term with minimum m(B� t) dominates the ex-
pression in (45). The dominating term corresponds to

t =
BR

M
� 1 (46)

and thus

B � t = 1 + B 1�
R

M
= dB(R) (47)

which is precisely the Singleton bound. Therefore, we write the asymp-
totic behavior for (23) as

P
`
out(SNR; R)

:
= K` SNR�md (R) (48)

where

K` = F
Y

(BR� (B � dB(R))M)

�
B

B � dB(R)

(m(2M � 1))md (R)

(m�(m))d (R)
(49)

is independent of SNR.

APPENDIX III
PROOF OF PROPOSITION 3

The proof follows the same lines as in [8] with the generalization of
Rayleigh fading statistic to Nakagami-m fading statistic.

Defining the normalized fading gains as in [15]

�b = �
log 
b

log(SNR)
(50)

we have the following result.

Proposition 5: Assume 
b is a random variable with distribution
in (6). Assume further that�b is a random variable as defined in (50). In
this case, the joint distribution of ��� = (�1; . . . ; �B) has the following
asymptotic behavior:

f���(���)
:
= SNR�m �

; ��� 2 B
+

0; otherwise.
(51)

Proof: From (50), 
b = SNR�� . Therefore, the pdf of �b is

f� (�b) = f
 SNR��
d
b

d�b

=
mmSNR�(m�1)� exp(�mSNR�� )

�(m)

� SNR�� log SNR

=
mm

�(m)
SNR�m� exp(�mSNR�� ) log(SNR): (52)

The joint distribution of the vector ��� is then

f���(���) =
mm log(SNR)

�(m)

B

�SNR�m �
exp �m

B

b=1

SNR�� : (53)

It can easily be seen that

lim
SNR!1

log(f���(���))

log(SNR)
=

�m B

b=1 �b; ��� 2 B
+

0; otherwise.
(54)

Therefore, f���(���) follows the asymptotic behavior in (51).
Consider random codes of rate R and block length L = L(SNR)

over a signal set of size 2M such that

� = lim
SNR!1

L(SNR)
log(SNR)

: (55)

Assume the codewords of the code are given by XXX(i), i =
0; . . . ; 2BLR � 1. Following the analysis in [8], the average pairwise
error probability between XXX(0) and XXX(1) for a given channel realiza-
tion hhh is given by

P (XXX(0)! XXX(1)jhhh) �

B

b=1

�
L
b (56)

where �b is the Bhattacharrya coefficient

�b = 2�2M

x2X x 2X

exp �
SNR
4


bjx � x
0j2 : (57)

The union bound of the word error probability for a given fading co-
efficient is obtained by summing over the pairwise error probability
of 2BLR � 1 codewords XXX(i); i = 1; . . . ; 2BLR � 1. Noting that

b = SNR1�� , we obtain

Pe(SNRjhhh)

� exp �BLM log(2) 1�
R

M
�

1

BM

B

b=1

log2 1 + 2�M

x 6=x

e
� jx�x j SNR (58)

= exp(�BLM log(2)G(SNR; ���)): (59)

Using (59) and the fact that Pe(SNRjhhh) � 1, the average error proba-
bility is given by

Pe(SNR) �
���

minf1; exp(�BLM log(2)G(SNR;���))gf���(���)d���:

(60)
Now, from Proposition 5, we have

Pe(SNR) _�
���2

SNR�m �

�minf1; exp(�BLM log(2)G(SNR;���))gd���: (61)
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Noting that

lim
SNR!1

log2 1 + 2�M

x6=x

e
� jx�x j SNR

=
0 �b < 1

M �b > 1
(62)

we can replace G(SNR; ���) in (61) by

~G�(���) = 1�
R

M
�

1

B

B

b=1

1lf�n � 1� �g (63)

for any � > 0. Therefore, by defining

B� = ��� : ~G�(���) � 0 (64)

and Bc� as the complement of B�, we can write (61) as

Pe(SNR) _�
B \

SNR�m �
d���

+
B \

exp � log(SNR) m

B

b=1

�b

+B�M log(2) ~G�(���) d���: (65)

By applying the Varadhan’s lemma, the SNR-exponents of the first
and second term in (65) are given by

inf
���2B \

m

B

b=1

�b

and

inf
���2B \

m

B

b=1

�b +B�M log(2) ~G�(���)

respectively. Therefore, the SNR-exponent of the word error proba-
bility is given by

d
(r)(R) � sup�>0min inf

���2B \
m

B

b=1

�b ;

inf
���2B \

m

B

b=1

�b +B�M log(2) ~G�(���) : (66)

For the first infimum in (66), it can be shown that

inf
���2B \

m

B

b=1

�b = m(1� �) B 1�
R

M
: (67)

The infimum is attained when B 1� R

M
entries of��� are 1��, and

the other entries are zero.
The second infimum in (66) can be rewritten as

B�M log(2) 1�
R

M

+ inf
���2B \

B

b=1

m�b � �M log(2)1lf�b � 1� �g : (68)

We consider two cases. If 0 � �M log(2) < m, the infimum in (68)
is zero and achieved when ��� = 000. Therefore, the second infimum in
(66) is given by

B�M log(2) 1�
R

M
: (69)

If �M log(2) � m, the infimum in (68) is given by

(m(1� �)� �M log(2)) B 1�
R

M
: (70)

The infimum is attained when B 1� R

M
entries of��� are 1��, and

the other entries are zero. Hence, the second infimum in (66) is given
by

B�M log(2) 1�
R

M
+(m(1� �)��M log(2)) B 1�

R

M
:

(71)

By collecting the results, and noting that the supremum in (66) is at-
tained when � # 0, we obtain the lower bound for the SNR-exponent
as in (29).

APPENDIX IV
PROOF OF THEOREM 1

Clearly Pout(SNR; R) � P `
out(SNR; R), and therefore

d
?
B(R) � mdB(R) (72)

follows from Proposition 2. In addition, by letting L(SNR) ! 1, it
follows from Proposition 3 that the SNR-exponent mdB(R) is achiev-
able using random codes for all R;M such that B 1� R

M
is not an

integer.

The theorem can also be proved using the SNR-normalized fading
coefficients�b � log(
 )

log(SNR)
introduced in [15]. The proof given in [8]

for the Rayleigh fading case (m = 1) shows that the asymptotic be-

havior of the joint pdf of these coefficients is f���(���)
:
= SNR� �

and thus

d
?(R) � inf

B

B

b=1

�b = dB(R) (73)

and

d
?(R) � inf

B

B

b=1

�b = dB(R) (74)

whenever B 1� R

M
is not an integer, for some suitably defined sets

B1, B2 (see [8] for details). In Proposition 5, it is shown that for Nak-
agami-m distributions the asymptotic behavior of the joint pdf of these

coefficients behaves as f���(���)
:
= SNR�m � . In this case, the

constantm factors out from the infimums in (73) and (74) and automat-
ically leads to the desired result. While this proof is shorter, Proposition
3 provides the extension of the finite block length results of [8], which
illustrates the impact of m in the random SNR-exponent d(r)(R).
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Unitary Space–Time Constellation Designs From
Group Codes

Terasan Niyomsataya, Student Member, IEEE,
Ali Miri, Senior Member, IEEE, and Monica Nevins

Abstract—In this correspondence, we propose new unitary space–time
constellation designs with high diversity products. Our Hamiltonian and
product constellations are based on Slepian’s group codes, and can be
used for any number of antennas and any data rate. Our Hamiltonian
constellations achieve the theoretical upper bound of diversity product
when the number of transmitter antennas is even and the cardinality of
the signal constellation is less than or equal to 5. Many of our Hamiltonian
and product constellations outperform, and have higher diversity products
than, the best known designs in the literature. These include orthogonal
designs, dicyclic groups, cyclic groups, parametric codes, numerical
approaches, nongroup designs, Cayley codes, TAST codes and some
constellations obtained from fixed-point free groups.

Index Terms—Differential unitary space–time modulation, group codes,
Hamiltonian constellation, product constellation, multiple-antenna wire-
less communications.

I. INTRODUCTION

Space–time coding was developed for use in multiple-antenna
wireless communications to achieve high data rate and reliability,
using a combination of techniques in error control coding and transmit
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diversity. The design of a good space–time constellation with high
coding gain and simple encoding-decoding algorithm is still an open
problem. The construction of full diversity constellations for any
number of transmitter antennas and for any data rate poses a particular
challenge.

LetV = fVlg
L�1

l=0
be a signal constellation, where eachVl is anM �

M unitary matrix and M is the number of transmitter antennas. The
data rate is R = log

2
L=M bits/s. The design problem of differential

unitary space–time constellations [7], [8] is to maximize the diversity
product �V which is computed from the constellation V as

�V =
1

2
min

0�l<l �L�1
j det(Vl � Vl )j : (1)

The term exponent 1

M
represents a geometric mean of M eigenvalues,

and 0 � �V � 1. A constellation V which has �V > 0 is said to have
full diversity [14]. Our goal in this paper is to find, for eachM andL, a
set V of LM �M unitary matrices which has �V as large as possible.

The problem of constructing a full diversity constellation with high
diversity product has been studied in many prior works. Some of the
group structures proposed to represent constellations include cyclic and
dicyclic groups [7]–[9], fixed-point free groups [14], the compact sym-
plectic group Sp(2) [20] for M = 4 and the special unitary group
SU(3) [21] for M = 3. Some examples of nongroup constellations
include parametric codes [11] for only M = 2, products of fixed-point
free groups [14] and numerical methods [4]. Many of these designs
still have some limitations in performance, in the number of transmit-
ters used, and in the data rate achieved.

In this correspondence, we propose new unitary space–time constel-
lation designs: Hamiltonian (H) and product constellations (P and
PH). These full diversity constellations can be used for any number
of antennas and for any data rate. We begin with 2 � 2 Hamiltonian
matrices, as suggested in [14]; their diversity product is related to the
Euclidean distance between two points in 2. Identifying 2 with 4,
the problem of constructing a 2 � 2 Hamiltonian constellation can be
now reduced to finding L points on the unit sphere in 4 such that the
minimum distance between two points is as large as possible. One pos-
sible solution is via sphere-packing, as suggested in [14], but here in-
stead we use Slepian’s group codes [15] to produce well-spaced points
in 4, and hence a full diversity constellation, for any cardinality L.
In particular, we propose a new matrix form of a 2 � 2 Hamiltonian
constellation (see (8)) which is built from an (L; 4) cyclic group code
[2]. Then M � M Hamiltonian constellations for any M transmitter
antennas can be constructed by using a direct sum of 2 � 2 Hamil-
tonian matrices forM even, and a direct sum of 2� 2 Hamiltonian ma-
trices with the Lth roots of unity for M odd. A product method is also
proposed to increase the data rate and improve the diversity product.
Although our Hamiltonian and product constellations do not form a
group, we show that the optimization is not computationally intensive
for large L: it only requires checking L� 1 distinct pairs of matrices,
making it comparable to those constellations that are groups.

This paper is organized as follows. In Section II, we present the de-
sign of our proposed constellations. We begin in Section II-A by briefly
summarizing the theory of (L; 4) cyclic group codes. We present the
basic Hamiltonian constellation design, first for 2 transmitter antennas,
and then for the general case, in Section II-B. In Section II-C we pro-
pose two product constellations built from the Hamiltonian design,
and present some analysis of its full diversity. In Section III, we con-
struct several of our constellations and compare them with different de-
signs in the literature, by computing their diversity products and eval-
uating their performance. Some conclusions of the work are discussed
in Section IV.
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