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Orthogonal Modulation
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Abstract

We study decoder metrics suited for iterative decoding of non-coherently detected bit-interleaved

coded orthogonal modulation. We propose metrics that do not require the knowledge of the signal-

to-noise ratio, and yet still offer very good performance.

I. I NTRODUCTION AND SYSTEM MODEL

Orthogonal modulation with non-coherent (NC) detection is a practical choice for situations

where the received signal phase cannot be reliably estimated and/or tracked. Examples include

military communications using fast frequency hopping, airborne communications with high

Doppler shifts due to significant relative motion of the transmitter and receiver, and high phase

noise scenarios, due to the use of inexpensive or unreliable local oscillators. A common choice

for the modulator is frequency shift keying (FSK). The output alphabet of the FSK modulator

is E = {eb : b = 0, 1, . . . , M − 1}, whereeb is the canonical basis vector with a one at

position b and zeros everywhere else. The channel outputy[k] ∈ CM at timek is

y[k] =
√

Esh[k]x[k] + n[k], k = 0, . . . , L− 1 (1)

whereEs is the per-symbol transmit power,h[k] ∈ C is the channel gain at timek, x[k] =

(x0[k], . . . , xM−1[k])T , the output of the FSK modulator, is all zeros, except for a single ele-

mentxb[k] = 1, corresponding to transmission on a particular frequency binb ∈ {0, 1, . . . , M−

1} at timek, andn[k] is a vector of zero-mean circularly symmetric complex Gaussian noise

samples, with varianceN0. In the cases where|h[k]| = 1,∀k or h[k] are zero-mean complex
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Gaussian with unit variance, we have the additive white Gaussian noise (AWGN) and Rayleigh

fading channels. The channel transition probabilities with non-coherent detection are [2]

p (y[k] | x = eb) = KI0

(
2

√
Es

N0

|h[k]| |yb[k]|
)

(2)

whereK is a constant independent of the hypothesisb and I0(.) is the 0-th order modified

Bessel function of the first kind.

Bit interleaved coded modulation with iterative decoding (BICM-ID) [1] has been recently

considered in [2] for the NC-FSK channel defined by (1) and (2) and a gain is demonstrated

by iterating between demodulation and decoding. In BICM, the codewordsc = (c1, . . . , cN)

of a binary codeC of lengthN = mL and rateR are interleaved and mapped over the signal

alphabet, chosing frequency binb =
∑m−1

i=0 cπ(mk+i)2
i for transmission, wherem = log2 M

andπ(.) denotes the interleaver permutation.

An important consideration in many applications is the amount of channel state information

(CSI) available at the decoder. This may range from full CSI, where the decoder knows the

instantaneous fading amplitude and the average signal-to-noise ratio (SNR), to partial CSI,

where only the average SNR is known, right through to no CSI, where not even the SNR

is known. The latter case is of interest for partial band jamming of a fast frequency hopped

system, where the resulting SNRs for each of theM frequency bins may vary with frequency

and time. Valenti and Cheng [2] develop decoder metrics for both the full and partial CSI

scenarios, but do not consider the complete absence of CSI.

In this letter we develop low-complexity decoder metrics suitable for iterative decod-

ing/demodulation with no CSI and we illustrate the corresponding effect of loss of CSI on

the extrinsic information (EXIT) charts [3] of the demodulator and overall error probability.

II. M ETRICS FORITERATIVE DECODING

BICM-ID consists of exchanging messages between the bitwise FSK demodulator and

decoder ofC in an iterative fashion. The bitwise FSK demodulator feeds the decoder ofC
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with the log-likelihood ratios

L(cπ(mk+i)) = log

∑

b∈Bi
0

p (y[k] | eb) qk,i(b)

∑

b∈Bi
1

p (y[k] | eb) qk,i(b)
, (3)

whereBi
a ⊂ {0, . . . , M − 1} is the set of frequency bins that have thei-th bit of the binary

label equal toa (which implies that|Bi
a| = M/2) and qk,i(b) are the extrinsic probabilities

computed by the decoder ofC in the previous iteration (at the first iteration these are all equal

to 0.5). Substituting (2) into (3) we obtain the iterative decoder used by [2]. The summations

in (3) may be undesirable from the point of view of complexity. To avoid these summations,

the log-likelihood ratio (3) may be approximated in the standard way

L(c[j(k, i)]) ≈ max
b∈Bi

0

log I0

(
2

√
Es

N0

|h[k]| |yb[k]|
)

qk,i(b)−max
b∈Bi

1

log I0

(
2

√
Es

N0

|h[k]| |yb[k]|
)

qk,i(b)

(4)

We shall refer to (3) and (4) as the Bessel and Bessel dual-max metrics respectively. Note

that in order to compute (3) and (4),Es, N0 or |h[k]| (or accurate estimates) must be available

to the receiver (full CSI).

We will now develop decoder metrics that do not depend onEs, N0 or |h[k]|. Taylor series

expansion of the Bessel functionI0(α) around zero yields

I0(α) = 1 +
α2

4
+ O(α4) (5)

which motivates the following approximation of the log-likelihood ratios (3),

L(c[j(k, i)]) ≈ log

M

2
+

Es

N2
0

|h[k]|2
∑

b∈Bi
0

|yb[k]|2 qk,i(b)

M

2
+

Es

N2
0

|h[k]|2
∑

b∈Bi
1

|yb[k]|2 qk,i(b)
. (6)

If we further assume thatEs
N2

0
|h[k]|2 ∑

b∈Bi
0
|yb[k]|2 À M/2 we have

L(c[j(k, i)]) ≈ log

∑

b∈Bi
0

|yb[k]|2 qk,i(b)

∑

b∈Bi
1

|yb[k]|2 qk,i(b)
(7)
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which is independent ofEs, N0 and the fading amplitudes|h[k]|. The interpretation of (7)

is interesting. The receiver first measures the received energies at every frequency bin and

computes theempirical probabilityat every bin as the fraction of the total received energy

present in a given bin. Obviously, the normalization factor (the total energy
∑M−1

i=0 |yi[k]|2)

cancels in (7). We can further approximate (7) using the dual-max method as follows,

L(c[j(k, i)]) ≈ max
b∈Bi

0

log(|yb[k]|2 qk,i(b))−max
b∈Bi

1

log(|yb[k]|2 qk,i(b)) (8)

which yields the corresponding parameter free dual-max metrics.

We now present some numerical examples which demonstrate the utility of the parameter

free metrics. Since we are interested in application of the metrics to iterative decoding, it is

of interest to compare the corresponding EXIT charts [3].

Figure 1 shows EXIT charts for soft demodulation using the Bessel metrics (3) (solid), dual-

max Bessel (4) (dashed), and the parameter free metrics (7) (dashed-dotted) and (8) (dotted)

for M = 4, 16, 64 in the AWGN channel. The curves exhibit an almost-linear behavior,

with Bessel metrics and parameter free metrics resulting in similar slopes. This implies that

at higher SNR, the parameter metrics will have the same EXIT chart, which will help in

assessing the performance degradation due to the lack of CSI. Further, we observe that the

parameter free metrics are information lossy, namely, when the input mutual information

is Iin = 1, the output mutual information is lower than that obtained with Bessel metrics.

Finally, and perhaps most surprising, the parameter free dual-max metric (8) is significantly

better than (7) at lowIin, despite the reduction in computational complexity. Application of

the dual-max approximation following the Taylor approximation seems to regain some of

the loss from the ideal Bessel metrics. Similar charts are obtained for the Rayleigh fading

channel. From now, we concentrate in comparing the metrics (3) and (8).

Figure 2 show the EXIT charts and simulated trajectories for metrics (3) (left) and (8) (right)

with the (25, 27, 33, 37)8 convolutional code and 64-FSK in the AWGN channel. While the
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EXIT analysis predicts the threshold behavior quite accurately for (3), the EXIT chart analysis

is slightly pessimistic in the case of metrics (8). This is due to the fact that the Gaussian

approximation inherent in the EXIT analysis is not accurate. Recall that metrics (8) are a

result of three consecutive approximations to (3) and therefore, some loss in the Gaussianity

of the iterative process is expected. The predicted EXIT chart thresholds areEb/N0 = 2.5091

dB for metrics (3) andEb/N0 = 3.8391 dB for (8). Simulations show that bit-error rate of

10−5 is achieved at4 dB and4.6 dB respectively, thus implying that the EXIT chart analysis

is slightly optimistic. The penalty for not knowing the channel is0.65 dB only.

Table I summarizes the simulated bit-error rate for BICM with an outer rateR = 1/4

repeat-accumulate code and4, 16 and 64-ary NC-FSK in the AWGN and Rayleigh fading

channels. The simulations were performed using10, 000 information bits per codeword and

20 decoding iterations (one iteration of the RA decoder per demodulation iteration). The

results in the table highlight the small loss for not knowingEs, N0 or the fading amplitude.

III. C ONCLUSIONS

We present a low complexity method of computing metrics suited for iterative demod-

ulation/decoding ofM -ary non-coherent orthogonal modulation that does not require any

knowledge of the signal-to-noise ratio or fading coefficients at the receiver. The method is

based on the first-order Taylor series expansion of the Bessel function. The proposed method

performs very close of the ideal metrics and enables the use of methods such as BICM over

non-coherent channels without side information.
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Fig. 1. EXIT charts of the Bessel and parameter free metrics forM = 4, 16, 64 on the AWGN channel with SNR= 6 dB.
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Fig. 2. Trajectories forM = 64 in the AWGN channel with a(25, 27, 33, 37)8 convolutional code using Bessel (3) at

Eb/N0 = 3 dB (left) and parameter free metrics (8) atEb/N0 = 4 dB (right).

TABLE I

Eb/N0 AT 10−5 FOR M = 4, 16, 64 AND RA CODE OFR = 1/4.

AWGN Rayleigh Fading

M Metrics (3) Metrics (8) Metrics (3) Metrics (8)

4 5.5 dB 5.9 dB 6.1 dB 8.1 dB

16 3.9 dB 4.3 dB 4.3 dB 5.8 dB

64 3.5 dB 4.1 dB 3.7 dB 5.1 dB
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