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Abstract—We design powerful low-density parity-check (LDPC)
codes with iterative decoding for the block-fading channel. We
first study the case of maximum-likelihood decoding, and show
that the design criterion is rather straightforward. Since optimal
constructions for maximum-likelihood decoding do not perform
well under iterative decoding, we introduce a new family of
full-diversity LDPC codes that exhibit near-outage-limit perfor-
mance under iterative decoding for all block-lengths. This family
competes favorably with multiplexed parallel turbo codes for
nonergodic channels.

Index Terms—Block-fading (BF) channel, iterative decoding,
low-density parity-check (LDPC) codes, maximum-likelihood
(ML) decoding, maximum-distance separable (MDS) codes,
outage probability.

I. INTRODUCTION

T HE block-fading (BF) channel model was first introduced
in [20], and further elaborated upon in [2] (see also [1, p.

98 ff.]). This is a realistic and convenient model for a number
of channels affected by slowly varying fading, and, as observed
for example in [8], is especially relevant in wireless communi-
cations involving slow time–frequency hopping (e.g., cellular
networks and wireless Ethernet) or multicarrier modulation
using orthogonal frequency division multiplexing (OFDM).
The design of error-control codes for BF channels offers a
challenging problem, which differs greatly from its counter-
parts referred to additive white Gaussian noise (AWGN) or
independent-fading channels (see [8] for a summary of recent
results). The main reason for this major difference stems from
the fact that in BF channels the random channel gains remain
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constant during a block of symbols (see below for additional
details and definitions), and take independent values from
block to block. As a result, while the word-error probability
in independent-fading channels depends on the Hamming
distances between code words, in BF channels it depends on a
new parameter, the blockwise Hamming distance. Since codes
exhibiting a large minimum Hamming distance may not have
a large blockwise Hamming distance, codes that are good
when used on the independent-fading channel may not be as
good for a BF channel. In addition, over independently faded
channels permutations of the symbols cause no variation of
the code performance, but this property does no longer hold
on the BF channel. Thus, if an off-the-shelf code, designed
for the independent-fading channel, is used for transmission
over the BF channel, it is important to carefully select the best
permutation of its symbols. Finally, one must consider that the
BF channel is nonergodic. As a consequence, to determine the
information-theoretical rate limit which cannot be surpassed by
the word error probability of any coding scheme, one cannot
use channel capacity, but rather the outage probability [1],
[2], [20]. Classical random-like codes, designed to approach
ergodic capacity, cannot generally approach the ideal perfor-
mance limits of BF channels, and, hence, code designs suited to
the nonergodic nature of the channel are called for. This paper
is devoted to this design problem.

Two main parameters that determine the error rate of coded
BF channels for high signal-to-noise (SNR) ratios are the diver-
sity order and the coding gain. The former determines the slope
of the error-rate curve as a function of the SNR on a log-log
scale.1 Since the error probability of any coding scheme is
lower-bounded by the outage probability, the diversity order is
upper-bounded by the intrinsic diversity of the channel, which
reflects the slope of the outage limit. When maximum diversity
is achieved by a code, the coding gain yields a measure of
SNR proximity to the outage limit. The maximum achievable
diversity order with discrete input constellations is given by
the Singleton bound [8], [14], [17], and codes achieving the
Singleton bound are termed blockwise maximum-distance
separable (MDS). Blockwise MDS codes are outage-achieving
over the (noiseless) block-erasure channel [9], but may not
achieve the outage-probability limit on noisy BF channels. As
a matter of fact, as shown in [8], blockwise MDS codes are
necessary, but not sufficient to approach the outage probability
of the channel.

1The diversity order is exactly the asymptotic slope for Rayleigh fading, while
for other fading distributions it is only proportional to the slope. See [19], [27]
for details. In this paper, we shall restrict our attention to Rayleigh fading.
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Recent code designs for BF channels include near-outage
schemes based on a suitable permutation of parallel turbo codes
[3]–[5]. Multiplexers for convolutional, turbo and repeat-ac-
cumulate codes [3], [8], [14] appeared one decade after the
analysis of random and periodic interleaving of convolutional
codes on the block-erasure channel [16]. Random ensembles of
low-density parity-check codes (LDPC) designed for ergodic
AWGN channels [11], [23], in spite of the excellent decoding
threshold of their irregular structures, do not have full-diversity,
and hence exhibit a poor performance over a BF channel.
Decoding thresholds of LDPC code ensembles over ergodic BF
channels have been studied [12]. Unfortunately, these codes
are not designed to be blockwise MDS, and therefore fail to
achieve the outage limit in the nonergodic setup.

In this paper, we introduce a new family of blockwise MDS
LDPC codes, the root LDPC codes, based on a special type
of checknode that we call rootchecks.2 Under iterative mes-
sage-passing decoding, they achieve the outage-probability
limit on block-erasure channels, and they perform close to
that limit on Rayleigh BF channels. This paper is organized
as follows. Section II introduces the channel model and the
relevant notations. LDPC codes with full diversity under Max-
imum Likelihood (ML) decoding are discussed in Section III.
Our new family of LDPC codes suited for iterative decoding is
further described. Section V analyzes their density evolution in
the presence of block fading. Conclusions are finally drawn in
Section VI. Complementary support material is shown in the
Appendices.

II. CHANNEL MODEL AND NOTATION

We consider codewords of binary digits transmitted on a
BF channel, where independent fading gains (whose values
form the channel state) affect each codeword. The length is a
multiple of , with denoting the number of bits per
fading block. The received signal when symbol is transmitted
is given by

(1)

where , and , with de-
noting the integer part of a real number . The nonnegative real
number is the fading gain at block . The sym-
bols are chosen from a BPSK alphabet where

is the average energy per symbol. The noise samples are i.i.d.
with . We assume perfect channel
state information (CSI) at the receiver, and channel gains which
are i.i.d. Rayleigh-distributed from block to block and from
codeword to codeword. Thus, when the information rate is
bits per channel use, the average SNR per symbol is given by

, and the average SNR per bit is .
Fig. 1 illustrates the channel model for and .

In this paper, we focus on linear binary codes with
block length , dimension , and rate

2We hasten to observe that our definition of rootchecks can also be formulated
in terms of stopping sets, as defined in [7] (see Definition 1.1 and Lemma 1.1)
and in Section 3.22 of [24] in the context of binary erasure channels. Since the
context is quite different in this paper, we deem it more natural to use our concept
of rootchecks here.

Fig. 1. Codeword representation for a BF channel with � � �. The fading
gains � � � are independent between themselves and among codewords.

Fig. 2. Parity-check matrix notations for a block-fading channel with � � �.
The � � ��� extra rows are added in order to enhance the coding gain of a
full-diversity code.

. The code is defined by an parity-check matrix
(Fig. 2), or, equivalently, by the corresponding Tanner graph

[1]. This has single-parity checknodes. It is assumed that
has full rank , so that .
Let us recall that the diversity order attained by is defined as
[21], [25]

(2)

where is the word error probability at the decoder’s output.
Thus, the diversity order depends on the decoding algorithm.

Definition 1: An error-correcting code is said to have full
diversity if .
The word error probability of a code with full diversity de-
creases as at high SNR [1], [21], [25], [27]. For a given
codeword , we define the blockwise Hamming weight
vector , where is the Hamming
weight of coded bits affected by fading . Under maximum
likelihood decoding, it is well known [3], [8], [14] that the
diversity order is determined by

(3)

In words, the integer is the minimum number of blocks that
have nonzero Hamming weight. We refer to as the blockwise
minimum Hamming distance. Qualitatively, this implies that an
ML decoder of will be able to decode correctly in presence
of deep fades, which one can think of as block erasures.
We also define the minimum blockwise Hamming weight as

(4)
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Having , i.e., nonzero weight in all blocks, implies that
under ML decoding. Under these conditions, the pair-

wise error probability can be upper bounded by [14], [3]

(5)

where the right approximation is valid at high SNR. The quan-
tity is referred to as the coding gain. Since
is constant for a given codeword , then increasing would
lead to a higher coding gain.
The diversity order attained by admits a Singleton-like bound
[1], [8], [14], [17]

(6)

Consequently, is the highest achievable rate for a
full-diversity code.

The instantaneous mutual information of a block-fading
channel depends on channel realization [2], [20], [25]. Such a
quasi-static channel is not information stable [26]. Therefore,
its Shannon capacity is zero since there is a nonvanishing
probability that the decoder makes a word error. In the limit of
large block length, this probability is the information outage
probability, defined as [2], [20]

(7)

where is the instantaneous input–output mutual infor-
mation between the input and output of the channel, defined as

(8)

with the input–output mutual information of an
AWGN channel with SNR per symbol equal to . The BF
channel is also commonly referred to as nonergodic since, for
finite values of is a nonconstant random variable.

The information outage probability is the nat-
ural fundamental limit for the BF channel for sufficiently large
word length, i.e., achievability and converse results hold for
the outage probability [18] Therefore, any code approaching

should have a word-error probability that, as in-
creases, becomes independent of the code length [4], [8].

Unless stated otherwise, we shall focus our study on a coding
rate (or just slightly smaller than ) and a nonergodic
Rayleigh fading channel with blocks per codeword, as
depicted in Figs. 1 and 2. However, most of our results can be
easily generalized to .

III. FULL-DIVERSITY LDPC CODES UNDER ML DECODING

In this section, we study LDPC codes in the presence of BF
under ML decoding. As we shall see, the design of full-diversity
LDPC codes under ML decoding is rather straightforward. We
recognize that ML decoding is unfeasible in practice; however,
it yields valuable insight into code structures suitable for noner-
godic channels. The main result of this section is that, under it-
erative decoding, ML-designed full-diversity codes fail to guar-
antee diversity due to badly located pseudo-codewords.

Fig. 3. ML-designed full-diversity LDPC code with � � �.

Following the notations defined in the previous section, the
parity-check matrix is written in the form
, where the left and right parts are .

The vector space generated by the left columns is denoted
. Similarly, is the vector space generated by the right

columns. Recall that the addition of redundant rows does not
modify the code nor its Hamming weight distribution. There-
fore, as stated in Section II, can be assumed to have full rank

without any loss of generality.

Proposition 1: A binary code with rate , i.e.,
, has full diversity if and only if and are both full-

rank.

Proof: If , then a nonzero codeword cannot
have its support on , because all columns in are inde-
pendent. Hence, for all nonzero codewords. Similarly,

when . Finally, and for
all nonzero codewords, which yields .

The full-rank property of the above proposition was first
observed in [10]. Its extension to coding rate with

can be obtained by imposing that the
matrices , and all have full rank.
Generalization to any rate is straightforward.

Proposition 2: Consider a binary code with rate ,
and hence with . If has full diversity, then

.

Proof: If has full diversity, then
. Any column from can then be written as a linear com-

bination of columns from . This is also valid for any column
belonging to . Hence, nonzero codewords with exist
for both and if the coding rate is exactly equal to

.

The minimum blockwise Hamming weight must be increased
in order to improve the coding gain of . Proposition 2 states
that to achieve this, one must decrease the coding rate. The next
proposition shows that adding just one extra row is enough to
improve ML decoding by moving from to .

Proposition 3: There exists a binary code of rate
that has full diversity with .

Proof: The proof is based on the special parity-check ma-
trix structure shown in Fig. 3 where is a full-rank matrix
whose columns have odd Hamming weight (the identity ma-
trix, for example). Let now be such that its first column is
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Fig. 4. ML-designed full-diversity LDPC code with � � �.

the all zero vector, and the remaining columns are all
even-weight and full-rank.

Next, we show that the corresponding to this construction
is 2. Clearly, the first (leftmost) columns of and the last
(rightmost) columns of have full rank, so that we have

.
None of the first columns of can be a linear combina-

tion of the last columns of , due to the 1 in the last posi-
tion of each of the first columns. None of the last columns
of can be a linear combination of the first columns of ,
because columns of have odd weight and any linear combi-
nation of columns of has even weight.

These last statements imply that .

The rate reduction necessary to achieve is negligible
for large code length . If we now require , the following
result holds.

Proposition 4: Consider a binary code with rate .
The code has only if .

Proof: Recall that denotes the linear span of the set of
columns of . Consider the sets consisting of
together with its translates for all columns of .
No two of these sets can intersect, otherwise either a column of

, or a sum of two columns of , equals a sum of columns of
, which would imply the existence of a codeword of weight

at most 2 on the first positions. Therefore we must have
.

Proposition 5: There exists a full-diversity binary code with
and .

Proof: The code has the parity-check matrix of Fig. 4. The
presence of a Hamming code whose minimum distance is 3 rules
out a blockwise Hamming weight equal to 2.

It is interesting to simulate iterative decoding of LDPC codes
that are full-diversity for ML decoding, i.e., with , and
results are shown in Fig. 5, for and the (3,6) ensemble.
The code used is of the type guaranteed by Proposition 1, i.e.,
it is simply chosen so that and have full-rank. We see
that this structure does not help the iterative decoder and that
the code actually has diversity 1 for iterative decoding and not
diversity 2 guaranteed by Proposition 1 for ML decoding. The
performance is the same as that of randomly chosen (3,6) LDPC
code (not shown in the figure). This effect is caused by the pseu-
docodewords [15] whose support is restricted to or , and

hence have a minimum blockwise pseudoweight equal to zero
when belief propagation is applied.

To simulate ML decoding of this code we have used a “genie-
aided” iterative decoder: this is an iterative decoder that con-
siders that it has correctly decoded if there is no residual error
in the positions corresponding to or to . This is because
we argue that if a suboptimal decoder is able to correct all errors
in one block of positions, then the ML decoder should be able to
remove all residual errors, because there is no codeword whose
support belongs to a single block. Similarly, to simulate the case

guaranteed by Proposition 4, we have considered that
the “genie-aided” decoder has correctly decoded if the number
of residual errors in one position is less than 3.

Fig. 5 shows therefore that the structures investigated in this
section do not improve the performance of belief propagation.
To achieve this we have to introduce a new LDPC design: this
is the object of the following section.

IV. FULL-DIVERSITY LDPC CODES FOR ITERATIVE BELIEF

PROPAGATION DECODING

The results presented at the end of Section III show that, if it-
erative decoding is used, the design criteria derived under the as-
sumption of ML decoding are irrelevant. In this section, we pro-
ceed to design LDPC codes with iterative decoding. Our design
is based on a graphical representation [1], [24], which is then
translated into a matrix description. We then analyze the con-
struction by means of log-ratio probability-density evolution.

A. Limiting Case: Block-Erasure Channels

We illustrate our solution to the design problem by referring
to a limiting case. Specifically, observe that, if the fading coef-
ficients belong to the set , the BF channel becomes
a block-erasure channel [9], [16]. This corresponds to the large
SNR regime. The reader is referred to Fig. 6, where the outage
boundaries are illustrated (see [4] for more details).

In our approach, we need to find a graph whose topology
yields full diversity. For simplicity, we illustrate the case of the
(3,6) LDPC ensemble with (generalizations to other de-
gree distributions and rates will be treated infra). Fig. 7 shows
the notation employed in this section. Two examples of local
graphs whose diversity is not guaranteed are shown in Fig. 8.
The checknodes defining an LDPC code are single-parity check
codes, and hence they cannot tolerate more than one erased bit.
For example, if then the checknodes in Fig. 8 are not
able to recover the erased bit, because it is connected to bitn-
odes which are also erased, because they are subject to the same
fading coefficient. Notice also that the design must be sym-
metric, i.e., any analysis with respect to is valid for , and
hence permuting the order of the two fading gains should yield
an equivalent design.

The two unique local graphs that guarantee full diversity in
the presence of block erasures are illustrated in Fig. 9. The im-
mediate consequence is the definition of rootchecks. We start
by building a regular (3,6) structure where bitnodes have de-
gree 3 and checknodes have degree 6, next we generalize to any

degree distribution [23]. A checknode connected
to bits is written as .
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Fig. 5. Rate 1/2 ML-designed LDPC codes with iterative decoding on a Rayleigh block-fading channel with � � �. The thick solid line corresponds to the
outage probability with BPSK inputs, the dotted lines with � markers corresponds to the ML-designed code with iterative decoding, the dotted lines with
markers corresponds to the ML-designed code with � � � using a genie ML decoder and the dotted lines with � markers corresponds to the ML-designed code
with � � � using the genie ML decoder. The genie ML curves show the performance of a decoder that knows whether errors occur in positions corresponding
to � or � .

Fig. 6. Outage boundaries in the fading plane for a BF channel with � � �.
To approach the outage limit, one should: (a) reduce the gap on the ergodic line,
which requires an excellent decoding threshold and (b) reduce the gap at infinity,
which requires a full-diversity code (MDS) on a block-erasure channel.

Definition 2: Let be a binary element transmitted on fading
. A type-1 rootcheck for is a checknode

where all bits are transmitted on fading .
Type-2 rootchecks are defined similarly. Fig. 7. Notations for graph representation.
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Fig. 8. Two examples of bad configurations under belief propagation decoding
on a block-fading channel.

Fig. 9. Two unique good configurations (rootchecks) under belief propagation
decoding on a block-fading channel.

Using Definition 2, consider a length- , rate- LDPC
code. Information bits are split into two classes: bits
(tagged ) are transmitted on , while bits (tagged )
are transmitted on . Parity bits are also partitioned into two
sets, say and . Finally, we connect all information bits
to rootchecks in order to guarantee full diversity when word
error probability is measured on those bits. The protection of
parity bits is not considered. More general structures with parity
bit protection are considered in [6]. This design produces the
bipartite Tanner graph drawn in Fig. 10(a). Its extension to rate
1/3 is portrayed in Fig. 11. Integers labeling edges indicate the
degree of a node along those edges. The structure of for a
root-LDPC code is directly derived from its Tanner graph, and is
shown in Fig. 10(b). The identity matrix is written
twice in connections and . Two all-zero

submatrices prohibit any edge of type and
. The other four submatrices are all sparse, and

are random sparse matrices of Hamming weight 2 per row and
per column. Similarly, and are random sparse matrices
of Hamming weight 3 per row and per column.

An irregular version of a root-LDPC code can be built from
a left degree distribution and a right degree distribution

by appropriately modifying the weight distribution of the
4 submatrices , and . Equivalently, the de-
gree distribution changes the distribution of edges connected
to nonrootchecks in the Tanner graph. Irregularity has no influ-
ence on the diversity order because rootchecks are maintained.

Fig. 10. Tanner graph and parity-check matrix for a regular (3,6) root-LDPC
code of rate 1/2. An irregular structure ������ ����� can be easily plugged
on edges connected to nonroot checknodes. (a) Tanner graph. (b) Parity-check
matrix.

Irregularity should enhance the coding gain by pushing the code
boundary near the outage capacity limit on the ergodic line.

Proposition 6: Consider a rate- root-LDPC code
with degree distribution transmitted on a block-
erasure channel with . Then, under iterative message
passing decoding, the root-LDPC code has full-diversity.

Proof: The two fading coefficients and are inde-
pendent and take two possible values . Examining the
Tanner graph of Fig. 10(a), we observe that the only outage event
occurs when (both blocks erased). Indeed, when

and , it is straightforward to see that informa-
tion bits are determined using rootchecks . Similarly, when

and , information bits are determined using
rootchecks .

On a block-erasure channel, let be the probability that
be equal to 0. From the proof of Proposition 6 above, we find
that the word error probability of a root-LDPC code is . As
shown in [9], this is precisely the outage probability of the
channel, and, therefore, full-diversity blockwise MDS codes
are outage achieving in the block-erasure channel. As remarked
in [9], blockwise MDS codes are necessary, but not sufficient
to achieve the outage limit in noisy channels. In the following,
we study the behavior of root-LDPC over general Rayleigh BF
AWGN channels.
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Fig. 11. Tanner graph for a regular (4,6) root-LDPC code of rate 1/3. The intro-
duction of any ������ ����� irregularity is always possible on edges connected
to nonroot checknodes.

B. The General Case

Now we study the general case of Rayleigh BF. Some
simple facts about fourth-order distributions are reviewed in
Appendix I. In the sequel, we use the notations of Appendix I
to analyze the diversity metric in log-ratio messages.

Proposition 7: Consider a rate-1/2 root-LDPC
code transmitted on a Rayleigh block-fading channel with

. Then, under iterative belief propagation decoding, the root-
LDPC code has full-diversity.

Proof: As indicated in the design of a root-LDPC code
before Proposition 6, the diversity order of a root-LDPC code
does not depend on its left or right degree distribution. This can
also be proved via the evolution trees in the next section. Thus,
we restrict this proof to a regular (3,6) LDPC. The extension to
the irregular case is straightforward.

Let , denote the input log-ratio probabilistic
messages to a checknode of degree . The output message
for belief propagation is

(9)

where denotes the hyperbolic-tangent function. Super-
scripts and stand for a priori and extrinsic, respectively. In
order to simplify the proof, we will show that a suboptimal belief
propagation decoder is able to achieve diversity order 2. There-
fore, if a suboptimal decoder achieves full diversity, the optimal
decoder also achieves full diversity. Consider the min-sum de-
coder. The output message produced by a checknode is now
approximated by

(10)

a) First Decoding Iteration: We first study the output after
one decoding iteration. We assume that the all-zero codeword
has been transmitted. The channel crossover probability associ-
ated with fading , is

The channel message for a bit transmitted over fading coeffi-
cient is

(11)

where and (assuming ). At the
first decoding iteration, all input messages in (10) have an
expression identical to (11).

An information bit of class has . It
also receives 3 messages from its 3 neighboring
checknodes. The total a posteriori message corresponding to

is . Let be the extrinsic mes-
sage generated by the rootcheck of class connected to . The
error rate on class is given by the negative tail of the
density of messages. The addition of to
cannot degrade because the convolution with the density
of messages from nonrootchecks can only physically upgrade
the resulting density. Thus, it is sufficient to prove that message

brings full diversity. The expression of is found
by applying (10). Input messages to the rootcheck are negative
with probability . Then

where

We obtain

The partial a posteriori log-ratio message becomes

The embedded metric guarantees full
diversity. At high SNR (i.e., when ), behaves
exactly as .

b) Further Decoding Iterations: As can be seen from the
decoding tree of a bitnode in Fig. 14, the diversity order 2
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Fig. 12. Regular (3,6) root-LDPC codes with iterative decoding on a Rayleigh block-fading channel with � � �. Word-error rate is measured on information
bits. The thick solid line corresponds to the outage probability with BPSK, the dotted lines with � markers correspond to � � ���, the dotted lines with
markers correspond to � � ���� and the dotted lines with markers � correspond to � � �����.

Fig. 13. Local neighborhood of bitnode ��. This tree is used to determine the
evolution of messages �� � ��.

is maintained after the first iteration. Indeed, at the input of the
rootcheck, information bits of class have already full diversity
and parity bits bring always a term proportional to . Due
to the particular structure of root-LDPC codes, the density of
message can only be improved with respect to the first
iteration. Hence, full diversity is preserved.

Fig. 14. Local neighborhood of bitnode ��. This tree is used to determine the
evolution of messages �� � ��.

The proof of the previous proposition is based on showing
that the information bits have diversity 2. In the following, we
examine the diversity of the parity bits. A parity bit of class

has . It also receives 3 messages
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Fig. 15. Local neighborhood of bitnode ��. This tree is used to determine the
evolution of messages �� � ��.

from its 3 neighboring checknodes all of class .
The total a posteriori message of is .
Now let us determine the nature of based on input messages
to a checknode of class as illustrated in Figs. 10(a) and
15. The node is not a rootcheck. We need to determine the
metric embedded in its output message. In the case
(this happens with probability ), it can be shown that, after
one decoding iteration, the extrinsic message produced by
satisfies

where the function is defined in Appendix II. On the contrary,
when , it can be shown that

We conclude that, for parity bits, with a probability greater than
, the output message has diversity order one. In spite of the

presence (with a nonzero probability) of diversity-2 messages,
the error probability of parity bits will be dominated by weak
messages with diversity 1. The above arguments are still valid
for further decoding iterations.

Recall now that under ML decoding the coding gain is con-
trolled by the quantity which is the minimum blockwise
Hamming weight defined in (4). Under iterative decoding we
now use to refer to the analogous quantity defined
in Appendix I which controls the coding gain in the same way.
We conclude this section by analyzing the behavior of this
in the case .

Corollary 1: A root-LDPC code with satisfies
under iterative belief propagation decoding.

Proof: Consider an information bit of class . Let
be the degree of . At high SNR, the log-ratio message pro-
duced by its rootcheck has an embedded metric . Con-
sider the nonroot checknodes connected to . Since parity
bits of class dominate the error probability at the input of
checknodes, then its metric will be . Finally, the a posteriori
log-ratio message associated to will contain a metric of the
type . Hence, the parameter under iterative de-
coding is 1.

In Fig. 12, we illustrate the performance of the (3,6) root-
LDPC ensemble. As we observe, the performance is similar for
all ranges of , and it is also close to the outage probability of
the channel. This effect was first observed with blockwise-con-
catenated codes and repeat-accumulate codes in [8], and then in
[3]–[5] for parallel turbo codes. For large this effect is due to
the threshold behavior of good codes, i.e., for a given channel
realization, the code has a SNR threshold (independent of )
below which the decoder cannot decode successfully. Hence,
whenever this threshold is larger than the SNR , the decoder
will make an error for sufficiently large word length [8]. This
is considered in more detail in the following section, where the
analysis of the word error probability under iterative decoding
for large is done using density evolution.

V. DENSITY EVOLUTION IN PRESENCE OF BLOCK FADING

The evolution of message densities [22], [24] under iterative
decoding is described through six evolution trees for a binary
root-LDPC code. The evolution trees represent the local neigh-
borhood of a bitnode in an infinite-length code whose graph has
no cycles. Figs. 13, 14, and 15 show the local neighborhoods
of classes and . Similar evolution trees can be drawn for
classes and . Full diversity in the presence of fading is guar-
anteed, thanks to messages (respectively, )
as indicated in the proof of Proposition 7. Irregularity is de-
fined in the standard way [23] through the polynomials
and . Root-LDPC ensembles are a special case of multi-
edge-type LDPC codes [24]. Nevertheless, we do not use the
compact notation of multiedge-type codes as in [24, Ch. 7]. In-
deed, root-LDPC codes have two specific properties which are
not found in general ensembles.

• Nodes associated to information bits are clearly distin-
guished from those associated to parity bits. For each
channel state, two classes must be created in order to
separate parity nodes from information nodes.

• On a BF channel the root-LDPC ensemble is designed to
ensure full diversity for information bits only. Hence, what
mainly matters in Density Evolution is the convergence
analysis of messages associated to information bits, mainly
messages and . This second property can
be thought as an unequal error protection because parity
bits will exhibit an average error probability with diversity
order 1.

The following notations are used, where the superscript is an
integer denoting the decoding iteration order:

• and : Probability density functions of log-
ratio messages on the edges and , re-
spectively. See Fig. 13.

• and : Probability density functions of log-
ratio messages on the edges and , respec-
tively. See Fig. 14.
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• and : Probability density functions of log-
ratio messages on the edges and , re-
spectively. See Fig. 15.

• Let and be two independent real
random variables. The density function of ob-
tained by convolving the two original densities is written
as . The notation denotes the convo-
lution of with itself times. The expression
represents the density function .

• Let and be two independent real
random variables. The density function of the vari-
able obtained through a chec-
knode is written as and is called R-convolu-
tion [24]. The notation denotes the R-convolution
of with itself times. The expression repre-
sents the density function .

The polynomial is replaced by each time an edge
is isolated at the input of a bitnode. In addition, the polyno-
mial is replaced by each time an edge is isolated
at the input of a checknode. Also, the degree distribution of
bitnodes and checknodes from a node perspective will be de-
noted by and , respectively. For regular ensembles, it
is obvious that ,
and . Now, let and denote, respectively,
the maximum left degree and the maximum right degree in the
Tanner graph. If the original degree distribution polynomials are
written as and ,
then a straightforward edge counting in the Tanner graph leads
to the general expressions of polynomials involved in the mul-
tiedge-type structure of root-LDPC ensembles

(12)

and

(13)

where is the average degree of bitnodes
and is the average degree of checknodes.
Keeping the above notations in mind, we can now state the den-
sity evolution equations for root-LDPC codes.

Proposition 8: Consider a nonergodic BF channel with
. For fixed fading coefficients , the six density evolu-

tion equations of a root-LDPC code are, for all

where the multi-edge-type fraction is

and is the Gaussian density at the output of the channel
with fading . The other three similar density evolution equa-
tions are obtained by permuting the two fading gains.

Proof: Let us carefully examine the set of edges con-
necting and to as in the Tanner graph of Fig. 10(a) that
illustrates a regular root structure. For general irregular struc-
tures, the integers 2 and 3 indicating the number of edges should
be replaced by degree distribution polynomials defined in (12)
and (13), as clearly illustrated in the evolution trees in Figs. 13,
14, and 15. We have , with is the number
of edges and is the number
of edges. Next, introduce the fraction as

Now, the six density evolution equations can be directly de-
rived from local neighborhoods of bitnodes in the graphical rep-
resentation of the root-LDPC code. For example, as shown in
Fig. 14, the message is obtained by convolving the
channel output density with the outgoing message den-
sity from the set of checknodes and then convolving with
the single-edge density produced by checknodes. Before ap-
plying the transformation through checknodes and the
transformation through checknodes, input messages must
be averaged via and ,
respectively.

In the special case of regular root-LDPC ensembles, i.e.,
and are monomials, density evolution will be de-

scribed by four equations only since implies that
and . A result on the

ergodic threshold of regular ensembles follows.

Proposition 9: Consider an (ergodic) AWGN channel (i.e.,
assume ). Under iterative decoding, a regular

root-LDPC code has the same decoding threshold
as a random regular LDPC code.

Proof: With the two fading gains equal to unity, the six
evolution trees degenerate into a single tree, and all densities
become identical:

for any decoding iteration . Thus, density
evolution of a regular root-LDPC code reduces to a classical
density evolution of a random code given by

, where .

For irregular ensembles on the ergodic channel
, we have three distinct message densities

, and . It is difficult to deter-
mine the root-LDPC threshold as a function of the random en-
semble threshold. Many numerical examples undertaken by the
authors showed that there may be a slight loss in SNR, about
1 or 2 hundredths of a decibel. Surprisingly, in some irregular
root-LDPC ensembles, there may be a slight gain in the ergodic
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Fig. 16. Iterative decoding on a block-fading channel with � � �. Density evolution of irregular root-LDPC and and its finite length performance. The irregular
ensemble defined by (15) is also compared to a regular (3,6) ensemble and to the outage probability with BPSK.

threshold, about a couple of tenths of decibel. Thus, it should
be possible to design root-LDPC codes for the block fading
channel that are also efficient in the absence of fading. The ir-
regular code given at the end of this section is one such example.
A good ergodic threshold (i.e., an irregular LDPC structure) is
also necessary to achieve near-outage performance on a noner-
godic channel. Refer again to the outage boundary representa-
tion in the fading plane of Fig. 6. Let be the fading value
defined by the intersection of the BPSK outage boundary and
the ergodic line. For rate 1/2, this intersection point satisfies

, where is the av-
erage mutual information on an AWGN channel with a binary
input and an SNR per bit equal to .

Let denote the fading value defined by the intersection of
the LDPC code outage boundary and the ergodic line. Then we
have

where is the decoding threshold of the LDPC code over
the ergodic AWGN channel. Finally, we obtain

where in the SNR gap separating the decoding threshold and
the capacity limit on the Gaussian channel. To better understand
the gain due to irregularity illustrated in Fig. 16, we evaluate the
ratio .

• For the regular (3,6) LDPC ensemble, the threshold is
1.10 dB over the Gaussian channel (ergodic line). Hence,

.
• For an irregular root-LDPC ensemble having a threshold of

0.38 dB over the Gaussian channel (ergodic line), we get
.

Using the best irregular code proposed in [23] with a
threshold of 0.25 dB, we obtain . Hence,
with close to 1, the area between the outage capacity
boundary and the code outage boundary is decreased in the
neighborhood of the ergodic line. However, this does not ensure
that, the code outage boundary would be close to the outage
capacity boundary in the critical region between the ergodic line
and the block-erasure channel. Therefore, in order to approach
the outage probability limit, a full-diversity capacity-achieving
code is necessary, but may not be sufficient. The numerical
optimization of an ensemble degree distribution in order to fully
match the BPSK outage boundary is outside the scope of this
paper. Nevertheless, we describe below an irregular ensemble
with excellent performance on the block-fading channel. Before
completing this section with the irregular root-LDPC example,
let us briefly describe how Proposition 8 is used to estimate the
asymptotic performance.
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Fig. 17. Coding gain and diversity order of � � �� � �� (� of fourth order) where � and � are Rayleigh distributed.

Let us assume that the root-LDPC ensemble is well defined,
i.e., the pair is given. Thanks to Proposition 8, for a
fixed fading pair it is possible to determine whether the
information bit error probability converges to 0 or not. We refer
to the event where the bit error probability does not converge to
0 by Density Evolution Outage (DEO). Thus, at a fixed SNR, it
is possible to determine the probability of a Density Evolution
Outage by averaging over a sufficient number of fading
instances. Now, it is possible to write the word error probability
of the ensemble as

(14)

where is the word error probability given a DEO event
and is the word error probability when DE con-
verges. It is obvious that . On the other hand,

depends on the speed of convergence of density
evolution and the population expansion of the ensemble with
the number of decoding iterations [13]. For any root-LDPC en-
semble, we will simply use the following inequality directly de-
rived from (14)

Thus, the performance estimated via density evolution is a lower
bound for the word error probability.

Finally, we illustrate in Fig. 16 some performance results of
an irregular rate- LDPC ensemble with the following degree
distribution:

(15)

On an ergodic Gaussian channel, the threshold of a random
ensemble based on the above degree distribution is 0.63 dB.
The root-LDPC ensemble based on the same degree distribu-
tion has a better threshold equal to 0.38 dB. The results shown
in Fig. 16 can be compared to those of the best parallel turbo
codes on block fading channels reported in [3], [4]. Our pro-
posed root-LDPC codes compete favorably with turbo codes
since the performance is within a 2-dB gap from the outage
probability limit. Notice that the range of SNR on fading chan-
nels is 10 times larger than the standard scale of turbo and LDPC
codes on ergodic Gaussian channels. Consequently, a 2-dB gap
on the nonergodic channel is comparable to a 0.2-dB gap on the
Gaussian channel.

VI. CONCLUSION

We have studied LDPC codes in the block-fading channel
under both ML and iterative decoding. We have shown that con-
structions designed for ML decoders fail to guarantee diversity
under iterative decoding. Driven by this restriction, we have in-
troduced the new family of root-LDPC codes, which achieve full
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Fig. 18. 3-D plot of � � ����� � � �� �� versus � and � for a variance � � ����.

diversity under iterative decoding. We have shown both finite-
and infinite-length performance, and we have illustrated how
the error-rate performance of root-LDPC is close to the outage
probability limit and almost insensitive to the block-length. This
makes root-LDPC codes attractive for slowly varying wireless
communications scenarios.

APPENDIX I
CODING GAIN OF A FOURTH-ORDER

UNBALANCED DISTRIBUTION

Here we limit our description to a diversity order of 2, but all
results are easily extendable to rate- coding on a channel
with diversity order . In the context of ML decoding, the
Euclidean distance between two codewords is proportional
to . As fading have a Rayleigh density, their
squares are exponentially distributed, i.e., . The
latter is a central distribution of order 2 with parameter

[21]. Diversity 2 is achieved with a distribution
of order 4. Hence, a full-diversity code must satisfy
and in order to get the order-4, distributed, metric

. Once maximum diversity is guaranteed, the
maximization of the product increases the coding gain.

The above simple facts are still valid in the context of itera-
tive probabilistic decoding. Let be the a posteriori probability
log-ratio of a binary element. Achieving full diversity under it-
erative decoding is equivalent to letting behave as the metric

, where and are two positive real numbers.

The energy of is normalized, . The exact mathemat-
ical expression relating to depends on the type of iterative
algorithm used for decoding, e.g., where is an
additive noise. To understand the influence of the product on
the performance, one should study the error probability associ-
ated with , i.e., . When ,
the order-4 distribution is balanced, and its probability den-
sity function is

(16)

When , the order-4 distribution is unbalanced,
and its probability density function is

(17)

The expression of is obtained after
integrating . The diversity order and the coding gain em-
bedded in appear when . For a balanced distribu-
tion, we have

(18)

For an unbalanced distribution, we obtain

(19)

In Fig. 17, the performance function is plotted versus
on a double logarithmic scale for different values of
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and . The slope is always 2 (i.e., ) for
all positive values of and . The function degenerates to

when (diversity order equal to 1 instead of 2).
Notice also that an unbalanced distribution with
and generates a coding loss about 0.65 dB. This loss is
slightly higher (about 0.75 dB) when considering
for since additive noise depends on the fading
coefficients as shown in Section IV.

APPENDIX II
BIDIMENSIONAL CUMULATIVE DENSITY

FUNCTION

Consider two real independent Gaussian random variables
and . We define the

multivariate function . The
function is given by the integral expression

(20)

where is the Gaussian tail function. A 3-D plot of is
illustrated in Fig. 18. The main properties of are:

• for all .
• is a nondecreasing function of and a decreasing func-

tion of . Hence, if and if
.

• For fixed and as .
• For fixed and as .
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