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Large-SNR Error Probability Analysis of BICM with
Uniform Interleaving in Fading Channels

Alfonso Martinez, Member, IEEE and Albert Guillén i Fàbregas, Member, IEEE

Abstract—This paper studies the average error probability of
bit-interleaved coded modulation with uniform interleaving in
fully-interleaved fading channels. At large signal-to-noise ratio,
the dominant pairwise error events are mapped into symbols with
Hamming weight larger than one, causing a flattening of the error
probability. Closed-form expressions for the error probability
with general modulations are provided. For interleavers of
practical length, the flattening is noticeable only at very low
values of the error probability.

Index Terms—Bit-interleaved coded modulation, error proba-
bility, higher-order modulation, saddlepoint approximation, bi-
nary phase-shift keying (BPSK), quaternary phase-shift keying
(QPSK).

I. MOTIVATION AND SUMMARY

WHILST QPSK is equivalent to two parallel indepen-
dent BPSK channels in the Gaussian channel, the

equivalence fails in fading channels because of the statistical
dependence between the quadrature components introduced by
the fading coefficients. This dependence ensures that the error
probability is dominated by the number of QPSK symbols
with Hamming weight two. The asymptotic slope of the error
probability is reduced and an error floor results, a phenomenon
similar in nature to the floor appearing in turbo codes [1], [2].

More generally, bit-interleaved coded modulation (BICM)
[3] is affected by the same phenomenon. For large signal-to-
noise ratio (SNR), the error probability is determined by error
events with a high diversity, so that the minimum Hamming
weight of the code is distributed across the largest possible
number of modulation symbols. Although “worse” error events
with smaller diversity are present, they are weighted by a low
error probability, and thus remain hidden for most practical
purposes. We analyze this behaviour by first studying the
union bound to the error probability for QPSK modulation
with Gray labeling and fully-interleaved fading, and then
extending the results to general constellations. The saddlepoint
approximation allows us to derive closed-form expressions for
the pairwise error probability, which highlight the aforemen-
tioned floor effect. Finally, we estimate of the threshold SNR
at which the error probability changes slope.
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II. CHANNEL MODEL

At the transmitter, a linear binary code of rate Rc is used to
generate codewords c = (c1, c2, . . . , c�) of length �, which are
interleaved before modulation. Then, consecutive groups of m
interleaved bits (cm(k−1)+1, . . . , cmk), for k = 1, . . . , n, are
mapped onto a modulation symbol xk using some mapping
rule, such as binary reflected Gray labeling. We denote the
modulation signal set by X , its cardinality by |X |, and the
number of bits per symbol m = log2 |X |. The signal set
is normalized to unit average energy. Subindices r and i
respectively denote real and imaginary parts. We also assume
that n � �

m is an integer. We denote the inverse mapping
function for labeling position j as cj : X → {0, 1}, namely
cj(x) is the j-th bit of symbol x. The sets X j1,...,jv

c1,...,cv
contain

the symbols with bit labels in positions j1, . . . , jv equal to
c1, . . . , cv.

For each input symbol the corresponding channel output yk

is given by

yk = hk

√
SNRxk + zk, k = 1, . . . , n (1)

where SNR is the average received signal-to-noise ratio, zk are
independent samples of circularly-symmetric Gaussian noise
of variance 1, and hk are i. i. d. fading coefficients. We
assume that the fading coefficient is known at the receiver,
which implies that the phase of hk is irrelevant thanks to the
circular symmetry of the noise. We also assume that the fading
coefficients hk are drawn from a Nakagami distribution of pa-
rameter mf > 0 [4]. This distribution encompasses Rayleigh
and AWGN channels, and approximates Rician fading.

III. UNION BOUND AND AVERAGE PAIRWISE ERROR

PROBABILITY FOR BICM

At the receiver, we consider the maximum-metric BICM
decoder which selects the codeword with largest metric∏n

k=1 q(xk, yk) [3]. The real-valued metric function q(xk, yk)
is computed by the demodulator for each symbol according
to the formula

q(xk, yk) =
m∏

j=1

qj

(
cj(xk), yk

)
, (2)

where the bit metric qj

(
cj(x) = c, y

)
is given by

qj

(
cj(x) = c, y

)
=
∑

x′∈X j
c

p(y|x′, h), (3)

where p(y|x, h) = 1
π e−|y−h

√
SNRx|2 is the channel transition

probability density.
The word error rate, denoted by Pe, is the probability

of selecting at the decoder a codeword different from the
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transmitted one. Similarly, the bit error rate Pb is the aver-
age number of input bits in error out of the possible �Rc

corresponding to a codeword of length �. Exact expressions
for Pe or Pb are difficult to obtain and one often resorts to
bounding, such as the union bound [4]. In the union bound,
the probability of an error event is bounded by the sum of
the probabilities of all possible pairwise error events, where a
codeword c′ other than the transmitted c has a larger metric.
We define the pairwise score as

ξpw �
n∑

k=1

m∑
j=1

log
qj(c′m(k−1)+j , yk)

qj(cm(k−1)+j , yk)
. (4)

The pairwise error probability PEP(c′, c) between a reference
codeword c and the competitor codeword c′ is given by
PEP(c′, c) = Pr

{
ξpw > 0

}
. By construction, the pairwise

score is given by the sum of n symbol scores,

ξs
k �

m∑
j=1

log
qj(c′m(k−1)+j , yk)

qj(cm(k−1)+j , yk)
. (5)

If the codewords have Hamming distance d, at most d symbol
scores are non zero. Further, each symbol score is in turn given
by the sum of m bit scores

ξb
k,j � log

qj(c′m(k−1)+j , yk)

qj(cm(k−1)+j , yk)
. (6)

Clearly, we only need to consider the non-zero bit and
symbol scores. These scores are random variables whose
density function depends on all the random elements in the
channel, as well as the transmitted bits, their position in the
symbol and the bit pattern. In order to avoid this dependence,
and as done by Yeh et al. [5], a uniform interleaver [2] is added
between the binary code and the mapper, so that the pairwise
error probability is averaged over all possible ways of placing
the d bits in the n modulation symbols. We distinguish these
alternative placements by counting the number of symbols
with weight v, where 0 ≤ v ≤ w� and w� = min(m, d).
Denoting the number of symbols of weight v by nv, the
symbol pattern ρn is given by ρn = (n0, . . . , nw�). We also
have that

∑w�

v=0 nv = n and d =
∑w�

v=1 vnv .
For finite-length interleaving, the conditional pairwise error

probability PEP(d, ρn) varies for every possible pattern. As
done by Yeh et al. [5], averaging over all possible ways of
choosing d locations in a codeword we have the following
union bounds 1

P̄e ≤
∑

d

Ad

∑
ρn

P (ρn) PEP(d, ρn), (7)

P̄b ≤
∑

d

A′
d

∑
ρn

P (ρn) PEP(d, ρn), (8)

where Ad is the number of binary codewords of Hamming
weight d, A′

d =
∑

j
j

Rc�Aj,d, with Aj,d being the number
of codewords of Hamming weight d generated with an input

1If a more detailed code spectrum were known, namely Ad,ρn and
Aj,d,ρn , respectively denoting the number of codewords with Hamming
weight d mapped onto the pattern ρn and the number of such codewords
with input weight j, similar expressions to those in Eq. (7) could be written
without the averaging operation.

message of weight j, and P (ρn) is the probability of a partic-
ular pattern ρn. A counting argument [5] gives the probability
of the pattern ρn, P (ρn) � Pr

(
ρn = (n0, . . . , nw�)

)
, as

P (ρn) =

(
m
1

)n1(m
2

)n2 · · · (m
w�

)nw�(
mn
d

) n!
n0!n1!n2! . . . nw� !

(9)

We remove the dependence of the pairwise error probability
on the specific choice of modulation symbols by averaging
over all possible such choices. This method consists of adding
to every transmitted codeword c ∈ C a random binary word
d ∈ {0, 1}n known by the receiver. This is equivalent to
scrambling the output of the encoder by a sequence known at
the receiver. Scrambling guarantees the symbols corresponding
to two m-bit sequences (c1, . . . , cm) and (c′1, . . . , c′m) are
mapped to all possible pairs of symbols differing in a given
Hamming weight, hence making the channel symmetric. In
[3], [5], the scrambler role was played by a random choice
between a mapping rule μ and its complement μ̄ with prob-
ability 1/2 at every channel use. Scrambling is the natural
extension of this random choice to weights larger than 1.

The cumulant transform [6] is an equivalent representation
of the probability distribution of a random variable; the
distribution can be recovered by an inverse Fourier transform.
Consider a non-zero symbol score Ξs of Hamming weight
1 ≤ v ≤ m, i.e., the Hamming weight between the binary
labels of the reference and competitor symbols is v. The
cumulant transform of Ξs is

κv(s) � log E
[
es Ξs

]

= log

(
1(
m
v

) ∑
j

1
2v

∑
c∈{0,1}v

E

[∏v
i=1 qji(c̄ji , Y )s∏v
i=1 qji(cji , Y )s

])
,

(10)

where j = (j1, . . . , jv) is a sequence of v bit indices, the bit c̄
is the binary complement of c, and y are the channel outputs
with bit v-tuple c transmitted at positions in j. The cumulant
transform of the pairwise score Ξpw(ρn) is given by

κpw(s, ρn) � log E[esΞpw(ρn)] =
w�∑
v=1

nvκv(s). (11)

The expectation in (10) is done according to pj(y|c) =
1

2m−v

∑
x∈X j1,...,jv

c1,...,cv
p(y|x, h).

An important feature of the cumulant transform is that the
tail probability is to great extent determined by the cumulant
transform around the saddlepoint ŝ, defined as the value of
s for which κ′(ŝ) � dκ(s)

ds = 0. Indeed, in our notation the
Chernoff bound is given by PEP(d, ρn) ≤ eκpw(ŝ,ρn). Then
the saddlepoint approximation to PEP(d, ρn) is given by

PEP(d, ρn) � 1

ŝ
√

2πκ′′
pw(ŝ, ρn)

eκpw(ŝ,ρn), (12)

where the saddlepoint ŝ is the root of the equation
κ′

pw(s, ρn) = 0.
A particularly important case arises when v = 1, i.e., when

the binary labels of the reference and competitor symbols in
the symbol pairwise score differ only by a single bit and
all d different bits are mapped onto different constellation
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Fig. 1. Error probability of QPSK and the (5, 7)8 convolutional code with
a uniform interleaver of length � = 40, 200 in a fully-interleaved fading
channel with mf = 0.5. Diamonds correspond to bit-error rate simulation,
the solid line corresponds to the union bound, dashed lines correspond to
the union bound for n2 = max{0, d − n} (the upper one corresponds to
� = 200) and dotted lines correspond to the union bound for n2 = n∗

2 .

symbols. This is the case for interleavers of practical length.
As noticed in [3], [7], this simplifies significantly the analysis.
The cumulant transform of the symbol score with v = 1,
denoted by Ξb

1 , is given by

κ1(s) � log E
[
es Ξb

1
]

= log

(
1
m

m∑
j=1

1
2

∑
c∈{0,1}

E
[
qj(c̄, Y )s

qj(c, Y )s

])
. (13)

We denote the corresponding pairwise error probability by
PEP1(d). As noticed in [7], This expression is related, but
not identical to, the ones appearing in [3], [5]. These authors
consider an approximation to the bit decoding metric qj(c, y)
whereby only one of the summands in Eq. (3) is kept. Even
though this approximation slightly simplifies the analysis, it
leads to large inaccuracies for mappings other than Gray
mapping. In this paper, we consider the full bit metric.

As shown in Appendix A, the probability that all bit scores
are independent approaches 1 as 1− d(d−1)

2� (m− 1) for large
interleaver lengths. In general, the effect of the dependence
across the bits belonging to the same symbol must be taken
into account.

IV. INEQUIVALENCE BETWEEN BPSK AND QPSK WITH

GRAY LABELING

Obtaining closed-form expressions for the cumulant trans-
forms can be difficult, and numerical methods are needed.
Notable exceptions are BPSK and QPSK with Gray labeling,
where the pattern ρn is uniquely determined by the number
of QPSK symbols whose bits are at Hamming distance 1 and
2, respectively denoted by n1 and n2. Then n1 + 2n2 = d. It
is also clear that max{0, d − n} ≤ n2 ≤ �d

2�. We denote the
pairwise error probability by PEP(d, n2). Reference [8] gave
the union bounds to the average error probability for block-
fading channels, of which QPSK can be seen as a particular

case. In any case, having n2 ≥ 0 implies that we have n2

symbols with Hamming weight two that fade with the same
fading coefficient, and therefore, QPSK behaves differently
from two independent BPSK channels.

A non-zero symbol score ξs is the result of having a
Hamming distance of either 1 or 2 bits. In the first case,
it is easy to see that it has a Gaussian distribution of mean
−2SNR|hk|2 and variance 4SNR|hk|2. This score is equal
to that of BPSK modulation with effective signal-to-noise
ratio 1

2SNR|hk|2. When both bits are different, the score is
a real-valued random variable with a Gaussian distribution
of mean −4SNR|hk|2 and variance 8SNR|hk|2. This score
coincides with that of a BPSK modulation with signal-to-noise
ratio SNR|hk|2. Using the expression for κ1(s) from [7], we
conclude that

κpw(s, n2) = log
(
E
[
esΞ1

]d−2n2 E
[
esΞ2

]n2
)

(14)

= log

((
1 +

2sSNR
mf

− 2s2SNR
mf

)−mf (d−2n2)

(
1 +

4sSNR
mf

− 4s2SNR
mf

)−mf n2
)

. (15)

Direct calculation shows that the saddlepoint is located at ŝ =
+ 1

2 , and we finally approximate the conditional pairwise error
probability PEP(d, n2) by the saddlepoint approximation

PEP(d, n2) � 1

2
√

πmfSNR dmf+dSNR−n2SNR
(2mf +SNR)(mf+SNR)(

1 +
SNR
2mf

)−mf (d−2n2)(
1 +

SNR
mf

)−mf n2

.

(16)

In the limit mf → ∞, i.e., for the AWGN channel, this
formula respectively becomes

PEP(d, n2) � 1√
2πdSNR

e−
1
2dSNR, (17)

which is independent of n2, as expected. The error per-
formance approaches that of two codewords at distance d
transmitted over BPSK with signal-to-noise ratio 1

2SNR.
Zummo et al. gave a similar analysis in their study of

block-fading channels [8] and of BICM [5]. Our use of the
saddlepoint approximation gives a simple and tight closed-
form approximation to the pairwise error probability. Figure 1
depicts the bit-error probability of QPSK with the (5, 7)8
convolutional code for � = 40, 200 and mf = 0.5. In all cases,
the saddlepoint approximation to the union bound (solid lines)
is very accurate for moderate-to-large SNR. In particular, we
observe the change in slope with respect to the standard union
bound, which assumes that all bits in which the codewords
differ are mapped onto different symbols (independent binary
channels). The approximated threshold (20) computed with
the minimum distance is SNRth = 22 dB for � = 40 and
SNRth = 36 dB for � = 200. This floor is absent for
independent binary parallel channels. In the next section, we
prove that the floor appears at very low error rates (i. e. at
very high SNR) for practical codes.
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Fig. 2. Approximation to the bit error probability of QPSK at the threshold
signal-to-noise ratio SNRth, Pb = 2PEP1(d), as a function of the minimum
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0.5, � = 100; in dashed line, mf = 0.5, � = 1000; in dash-dotted line,
mf = 3, � = 100; and in dotted line mf = 3, � = 1000.

A. Asymptotic Analysis

In this section, we concentrate on the asymptotic study
of the pairwise error probability averaged over all possible
interleavers of length n, using Eq. (9). It seems clear that
the best (i. e. steepest) conditional pairwise error probabilty
PEP(d, n2) is attained for n2 = 0, which corresponds to
all bits in the pairwise score belonging to different symbols.
Similarly, the worst (i. e. flattest) conditional pairwise error
probability PEP(d, n2) is attained for n∗

2 = �d
2�, which

corresponds to the bits having maximal concentration in the
minimum possible number of QPSK symbols. For these two
cases, we show in Appendix B that the respective probabilities
P (n2) admit the following asymptotic (in n) approximations

P (n2 = 0) � 1 − d
(
d − 1

2

)
�

and

P (n2 = n∗
2) �

⎧⎪⎨
⎪⎩

2
(

d
�e

) 1
2 d

d even,
√

2dd+1
2

e(�e)
1
2 (d−1)

(d−1)
1
2 d

d odd.
(18)

We determine the position at which the respective pairwise
probabilities cross by solving

P (n2 = 0)PEP(d, 0) = P (n2 = n∗
2) PEP(d, n∗

2). (19)

Under the assumptions that SNR and � are large, with the aid
of Eq. (18), and keeping only the term at minimum distance
dmin (which we denote without the subscript, to remove clutter
from the equations), Eq. (19) is easily solved to obtain (20).
For large d, the threshold is approximately given by SNRth �
4mf

(
�e
d

) 1
mf in both cases. For the special case of Rayleigh

fading, mf = 1, SNRth grows linearly with the interleaver
length � and is inversely proportional to the Hamming distance
d for very large d.

Figure 2 depicts the approximate value of Pb, coarsely
approximated as 2 PEP(d), at the threshold SNR for several
values of mf and � as a function of the minimum Hamming

distance d. As expected from Figure 2, the error probability
quickly becomes very small, at values typically below the
operating point of common communication systems. For short
packets using weak codes transmitted over channels with
significant fading, the threshold may be of importance.

V. HIGH-ORDER MODULATIONS: ASYMPTOTIC ANALYSIS

In this section, we extend the analysis presented in the previ-
ous section for QPSK to general constellations and mappings,
and estimate the signal-to-noise ratio at which the slope of
the error probability changes. Since we are interested in large
values of SNR, we shall be working with an asymptotic ap-
proximation to the error probability. In particular, our analysis
is based on an extension of the results in [3], [7] for the
asymptotic behaviour of the error probability in the Rayleigh-
fading channel. We will provide such asymptotic expressions
for the symbols scores of varying weight and use the approach
presented for QPSK in the previous section to determine the
value of SNR at which the various approximations to the error
probability cross.

In [3], Caire et al. considered the Rayleigh fading at
large SNR, and derived the following approximation to the
cumulant transform of the bit score,

κ1(s) � − log
(

d2
h

4
SNR

)
, (21)

where d2
h is a harmonic distance given by

d2
h =

(
1

m2m

1∑
c=0

m∑
j=1

∑
x∈X j

c

1
|x − x′|2

)−1

, (22)

where x′ is the closest symbol in the constellation X j
c̄ to

x. Eq. (21) may be used in the Chernoff bound to give an
approximation to the error probability at large SNR. It was
found in [3] that this gives a good approximation. Using that
ŝ = 1

2 , that limSNR→∞ κ1(ŝ) = 8mf [7] and the saddlepoint
approximation in Eq. (12), we obtain the large SNR heuristic
approximation

PEP1(d) � 1
2
√

πd

(
4

d2
hSNR

)d

. (23)

In Appendix C we extend the analysis in [3] to the cu-
mulant transform of the BICM symbol score of weight v for
Nakagami-mf fading, and obtain the following limit

κv(ŝ) � −mf log

(
d2
h(v)
4mf

SNR

)
, (24)

where d2
h(v) is a generalization of the harmonic distance given

by

d2
h(v) =

(
1(

m
v

)
2m

∑
c

∑
j

∑
x∈Xc

j

(∣∣∑v
i=1(x − x′

i)
∣∣∑v

i=1 |x − x′
i|2
)2mf

)− 1
mf

.

(25)

For a given x, x′
i is the i-th symbol in the sequence of v

symbols (x′
1, . . . , x

′
v) which have binary label c̄ji at position

ji and for which the ratio |∑v
i=1(x−x′

i)|∑ v
i=1 |x−x′

i|2 is minimum among all
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SNRth =

⎧⎪⎪⎨
⎪⎪⎩

4mf

(
�e

8
1
d d

) 1
mf d even

4mf (�e)
1

mf
(

e
2

) 2
mf (d−1) (d−1)

d
mf (d−1) (d+1)

1
mf (d−1)

d

2(d+1)
mf (d−1)

d odd.
(20)

possible such sequences. For mf = 1 and v = 1 we recover
the harmonic distance d2

h above.
As it happened with the bit score and PEP1(d), Eq. (24)

may be used in the Chernoff bound or in the saddlepoint
approximation in Eq. (12), to obtain a heuristic approximation
to the pairwise error probability for large SNR, namely

PEPH(d, ρn) � 1

2
√

πmf

∑
v≥1 nv

m∏
v=1

(
4mf

d2
h(v)

1
SNR

)nvmf

.

(26)
For the sake of simplicity, we disregard the effect of the
coefficient 1

ŝ
√

2πκpw(ŝ)
in our analysis of the threshold SNR.

For sufficiently large signal-to-noise ratio, the error prob-
ability is determined by the worst possible distribution pat-
tern ρn of the d bits onto the n symbols, that with the
largest tail probability for the pairwise score. Then, since
d =

∑w�

v=1 nvv by construction, we can view the pattern ρn =
(n0, n1, . . . , nw�) as a (non-unique) representation of the
integer d as a weighted sum of the integers {0, 1, 2, . . . , w�}.
By construction, the sum

∑
v≥1 nv is the number of non-

zero Hamming weight symbols in the candidate codeword.
Clearly, the lowest

∑
v≥1 nv gives the worst (flattest) pairwise

error probability in the presence of fading. We obtain an
equation for SNRth similar to Eq. (19) for QPSK for the
fully-interleaved fading channel,(

P (ρ0)
(

4mf

d2
h(1)

1
SNRth

)mf
)d

=
1

SNRmf

∑m
v=1 nv

th∑
ρn:min

∑
v nv

P (ρn)
m∏

v=1

(
4mf

d2
h(v)

)nvmf

. (27)

The left-hand side corresponds to the steepest pairwise error
probability, namely PEP1(d), weighted by the probability that
all bit scores are independent, denoted by P (ρ0). The right-
hand side corresponds to the largest pairwise error probability
with smallest number of non-zero symbol scores, that is
among all possible patterns ρn with minimum

∑
v nv. Note

that the exponent of SNR is −mf

∑
v nv, and thus has the

lowest possible diversity, as it should.
From Eq. (27), we can extract the value of SNRth as

SNRth � 4mf

( ∑
ρn:min

∑
v nv

P (ρn)
(
d2
h(1)

)d
P (ρ0)

∏
v

(
d2
h(v)

)nv

)− 1
mf (d−∑v nv)

.

(28)

As expected, for the specific case of QPSK with Gray
mapping, computation of this value of SNRth (d2

h(1) = 2,
d2
h(2) = 4) gives a result which is consistent with the result

derived in Section IV-A, namely Eq. (20), with the minor
difference that we use now the Chernoff bound whereas the
saddlepoint approximation was used in the QPSK case.

10 15 20 25 30 35 40
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

� = 90
� = 300

� = 3000

� = ∞

Eb
N0

(dB)
P

b

 

 
Simulation � = 90
Simulation � = 3000
Saddlepoint UB (inf. int.)
Heuristic Approx. (v = 1)
Heuristic Approx. (v = 2)
Heuristic Approx. (v = 3)

Fig. 3. Bit error probability union bounds and bit-error rate simulations
of 8-PSK with the 8-state rate-2/3 convolutional code in a fully-interleaved
Rayleigh fading channel. Interleaver length � = 90 (circles) and � = 3000
(diamonds). In solid lines, the saddlepoint approximation union bounds for
� = 90, � = 300, � = 3000 and for infinite interleaving, with PEP1(d).
In dashed, dashed-dotted, and dotted lines, the heuristic approximations with
weight v = 1, 2, 3 respectively.

As we observe in Figure 3, the slope change present
for QPSK is also present for 8-PSK with Rayleigh fading
and Gray labeling; the code is the optimum 8-state rate-
2/3 convolutional code, with dmin = 4. Again, this effect is
due to the probability of having symbol scores of Hamming
weight larger than 1. The figure depicts simulation results
(for interleaver sizes � = 90, 3000) together with the sad-
dlepoint approximations for finite � (for � = 90, 300, 3000),
infinite interleaving (with PEP1(d)), and with the heuristic
approximation PEPH(d ρn) (only for � = 90 and d = 4).
For 8-PSK with Gray mapping, evaluation of Eq. (25) gives
d2
h(1) = 0.7664, d2

h(2) = 1.7175, and d2
h(3) = 2.4278.

Table I gives the values of P (ρn) for the various patterns ρn.
Table I also gives the threshold SNRth given in Eq. (28) for
all possible values of

∑
v≥1 nv, not only for the worst case.

We observe that the main flattening of the error probability
takes place at high SNR. This effect essentially disappears for
interleavers of practical length: for � = 300 (resp. � = 3000)
the error probability at the first threshold is about 10−8 (resp.
10−12). The saddlepoint approximation is remarkably precise;
the heuristic approximation PEPH(ddmin, ρn) also gives very
good results.

VI. CONCLUSIONS

We have studied the large-SNR behavior of the error prob-
ability of BICM over fully-interleaved fading channels. Our

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on February 20, 2009 at 12:12 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 1, JANUARY 2009 43

TABLE I
ASYMPTOTIC ANALYSIS FOR 8-PSK WITH VARYING INTERLEAVER

LENGTH � = 3n AND MINIMUM DISTANCE d = 4.

Pattern ρn � P (ρn) Threshold Eb
N0

(dB)

(n − 4, 4, 0, 0) � = 90 0.8688 N/A
� = 300 0.9602 N/A
� = 3000 0.9960 N/A

(n − 3, 2, 1, 0) � = 90 0.1287 16.0
� = 300 0.0396 21.5
� = 3000 0.0040 31.6

(n − 2, 0, 2, 0), � = 90 0.0015 20.5
(n − 1, 1, 0, 1) � = 300 0.0002 26.0

� = 3000 2 · 10−6 39.1

analysis reveals that the pairwise error probability is asymp-
totically dominated by the number pairwise error symbols
with Hamming weight larger than one, yielding an error floor.
We have derived closed-form approximations to this error
probability. For practical code lengths, the error floor appears
at very low error rates.

APPENDIX A
PROBABILITY OF ALL-ONE SEQUENCE

We use Stirling’s approximation to the factorial, n! �
nne−n

√
2πn, to Eq. (9) to obtain

Pind � P (n1 = d, n2 = 0, . . . , nw� = 0)

=
�n

(� − md)n−d+ 1
2

(� − d)�−d+ 1
2

��
, (29)

with the obvious simplifications and combinations. Extracting
a factor � in (� − d) and (� − md), and cancelling common
powers of � in numerator and denominator, we get

Pind �
(

1 − d

n

)−n+d−1
2
(

1 − d

�

)�−d+
1
2
. (30)

We now take logarithms, and use Taylor’s expansion of the
logarithm, log(1 + t) � t − 1

2 t2, in the right-hand side of
Eq. (30). Discarding all powers of � higher than �−2, and
combining common terms, we obtain

log Pind � −md2

2�
+

d

2n
+

d2

2�
− d

2�
= −d(d − 1)

2�
(m − 1).

(31)

Finally, recovering the exponential, Pind � e−
d(d−1)

2� (m−1).

APPENDIX B
ASYMPOTICS OF P (n2)

Assume that d is even, so n2 = 1
2d and n1 = 0. Then

P (n2) =
d!(2n − d)!n!

(2n)!(n − 1
2d)!(1

2d)!
. (32)

Using Stirling’s approximation to the factorial, and after some
simplifications, we have that

P (n2) � 2
(

2n − d

2n

)n(
d

2n − d

) 1
2d

. (33)

In the limit of large n, using that limn→∞
(
1+ a

n

)n = ea, and
2n � d, we have

P (n2) � 2e−
1
2d

(
d

2n

)1
2 d

= 2
(

d

2ne

) 1
2d

. (34)

If d is odd, then n2 = 1
2 (d − 1) and n1 = 1. Then

P (n2) =
2d!(2n − d)!n!

(2n)!
(
n − 1

2 (d + 1)
)
!
(

1
2 (d − 1)

)
!
. (35)

Using again Stirling’s approximation, and after some simpli-
fications, we have

P (n2) �
√

2
e

(
2n− d

2n

)2n(
n

n − 1
2 (d + 1)

)n

dd+
1
2
(
2n − (d + 1)

) 1
2d

(2n − d)d− 1
2 (d − 1)

1
2d

. (36)

Again for large n, using that limn→∞
(
1 + a

n

)n = ea, and
2n � d, we have

P (n2) �
√

2
e

e−de
1
2 (d+1) dd+

1
2

(2n)
1
2 (d−1)(d − 1)

1
2d

=
√

2dd+
1
2

e(2ne)
1
2 (d−1)(d − 1)

1
2d

. (37)

APPENDIX C
ASYMPTOTIC ANALYSIS WITH FULLY-INTERLEAVED

NAKAGAMI FADING

We wish to compute the limit �v(s) � limSNR→∞ eκv (ŝ)

SNR−mf
,

given by

�v(s) = lim
SNR→∞

1

SNR−mf

⎛
⎝ 1

2v
(

m
v

) ∑
j,c

E

[∏v
i=1 qji(c̄ji , Y )s∏v
i=1 qji(cji , Y )s

]⎞⎠ .

(38)

We can rewrite the denominator as
v∏

i=1

qji(c̄ji , y) =
v∏

i=1

( ∑
x′∈X ji

c̄ji

e−|H√
SNR(X−x′)+Z|2

)

=
∑
x′

v∏
i=1

e−|H√
SNR(X−x′

i)+Z|2 , (39)

where x′ is one of all possible sequences of v modulation
symbols, with symbol at index ji drawn from the set X ji

c̄ji
. A

similar formula holds for the denominator, now with symbols
drawn from the set X ji

cji
. Expanding the exponent in Eq. (39),

we obtain
v∏

i=1

qji(c̄ji , Y )

=
∑
x′

e−|H|SNR
∑v

i=1 |X−x′
i|2+2

√
SNRRe

(∑v
i=1 H(X−x′

i)Z
∗
)
+v|Z|2 .

(40)

As done in [3], [7], we keep only the dominant sum-
mand in the bit scores qji(·, y) appearing in numerator and
denominator. For a given x, this summand corresponds to
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the sequence x′ having the smallest possible value of the

ratio
|∑v

i=1(x−x′
i)|∑

v
i=1 |x−x′

i|2 . In particular, in the denominator all the
symbols in the sequence coincide with x. We now carry out
the expectation over Z . Completing squares, and using that
the formula for the density of Gaussian noise, we have that

∫
1

π
e−|z|2e−

∑v
i=1 s(SNR|H|2|X−X′

i|2+2
√

SNRRe(H(X−X′
i)z

∗)) dz

= e
−SNR|H|2

(
s
∑v

i=1 |X−X′
i|2−s2|∑v

i=1(X−X′
i)|2

)
.

(41)

In turn, the expectation over h of this quantity yields [9]

(
1 +

(
s

v∑
i=1

|X − X ′
i|2 − s2

∣∣∣∣∣
v∑

i=1

(X − X ′
i)

∣∣∣∣∣
2)

SNR

mf

)−mf

.

(42)

We next turn back to the limit of large SNR. We have that

�v(s) =
m

mf

f

2m
(
m
v

)×
∑
j,c

∑
x∈X j

c

⎛
⎝s

v∑
i=1

|x − x′
i|2 − s2

∣∣∣∣∣
v∑

i=1

(x − x′
i)

∣∣∣∣∣
2
⎞
⎠

−mf

. (43)

For each summand, the optimizing s is readily computed to

be ŝ =
∑v

i=1 |x−x′
i|2

2|∑v
i=1(x−x′

i)|2 , which gives

�v(ŝ) =
1

2m
(
m
v

) ∑
j,c

∑
x∈X j

c

(
4mf |

∑v
i=1(x − x′

i)|2
(
∑v

i=1 |x − x′
i|2)2

)mf

.

(44)
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