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Abstract— This paper studies the random-coding exponent of
joint source-channel coding for a scheme where source messages
are assigned to disjoint subsets (referred to as classes), and
codewords are independently generated according to a distri-
bution that depends on the class index of the source message.
For discrete memoryless systems, two optimally chosen classes
and product distributions are found to be sufficient to attain the
sphere-packing exponent in those cases where it is tight.

Index Terms— Joint source-channel coding, reliability function,
random coding, product distributions, sphere-packing bound.

I. INTRODUCTION

JOINTLY designed source-channel codes may achieve a
lower error probability than separate source-channel cod-

ing [1]. In fact, the error exponent of a joint design may
be up to twice that of the concatenation of source and
channel codes [2]. The best exponent in this setting is due
to Csiszár [1], who used a construction where codewords are
drawn at random from a set of sequences with a composition
that depends on the source message. He also showed that
the exponent coincides with an upper bound, the sphere-
packing exponent, in a certain rate region. A few years
earlier, Gallager [3, p. 534, Prob. 5.16] derived a random-
coding exponent for an ensemble whose codewords are drawn
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according to a fixed product distribution, independent of the
source message. This method yields a simple derivation of
the channel coding exponent in discrete memoryless channels
[3, Th. 5.6.2]. However, the straightforward application to
source-channel coding gives a (generally) weaker achiev-
able exponent than Csiszár’s method, although this differ-
ence is typically small for the optimum choice of input
distributions [2].

In this paper, we study a code ensemble for which code-
words associated to different source messages are generated
according to different product distributions. We derive a new
random-coding bound on the error probability for this ensem-
ble and show that its exponent attains the sphere-packing
exponent in the cases where it is known to be tight. We find
that it is sufficient to consider either one or two different
distributions in the optimum ensemble.

The paper is structured as follows. In Section II we intro-
duce the system model and several definitions used throughout
the paper. Section III reviews related previous work on source-
channel coding. Section IV, the main section of the paper,
presents the new random-coding bound and its error exponent.
Finally, we conclude in Section V with some final remarks.
Proofs of the results can be found in the appendices.

II. SYSTEM MODEL AND DEFINITIONS

An encoder maps a source message v to a length-n
codeword x(v), which is then transmitted over the chan-
nel and decoded as v̂ at the receiver upon observation of
the output y. The source is characterized by a distribution
Pk(v) = ∏k

j=1 P(v j ), v = (v1, . . . , vk) ∈ Vk , where V is a
finite alphabet. Since P fully describes the source, we shall
sometimes abuse notation and refer to P as the source. The
channel law is given by a conditional probability distribution
W n(y|x) = ∏n

j=1 W (y j |x j ), x = (x1, . . . , xn) ∈ X n ,
y = (y1, . . . , yn) ∈ Yn , where X and Y denote the input
and output alphabet, respectively. While X and Y are assumed
discrete for ease of exposition, our achievability results extend
in a natural way to continuous alphabets.

Based on the output y, the decoder selects a source message
v̂ according to the maximum a posteriori (MAP) criterion,

v̂ = arg max
v

Pk(v)W n(
y|x(v)

)
. (1)

Throughout the paper, we avoid explicitly writing the set in
optimizations and summations if they are performed over the
entire set. Also, where unambiguous, we shall write x instead
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of x(v). We study the average error probability ε, defined as

ε � Pr{V̂ �= V }, (2)

where capital letters are used to denote random variables.
In addition to bounds on the average error probability ε
for finite values of k and n, we are interested in its expo-
nential decay. Consider a sequence of sources with length
k = 1, 2, . . . and a corresponding sequence of codes of length
n = n1, n2, . . . Assume that the ratio k

n converges to some
quantity

t � lim
k→∞

k

n
, (3)

referred to as transmission rate. An exponent E(P, W, t) > 0
is to said to be achievable if there exists a sequence of codes
whose error probabilities ε satisfy

ε ≤ e−nE(P,W,t)+o(n), (4)

where o(n) is a sequence such that limn→∞ o(n)
n = 0. The

reliability function EJ(P, W, t) is defined as the supremum of
all achievable error exponents; we sometimes shorten it to EJ.

We denote Gallager’s source and channel functions as

Es(ρ, P) � log

(∑
v

P(v)
1

1+ρ

)1+ρ

, (5)

E0(ρ, W, Q) � − log
∑

y

(∑
x

Q(x)W (y|x)
1

1+ρ

)1+ρ

, (6)

respectively. Here, log(·) denotes the natural logarithm.
We are interested in the error exponent maximized over

a subset of probability distributions on X . Let Q be a non-
empty proper subset of probability distributions on X . With
some abuse of notation we define

E0(ρ, W,Q) � max
Q∈Q

E0(ρ, W, Q). (7)

When the optimization is done over the set of all prob-
ability distributions on X we simply write E0(ρ, W ) �
maxQ E0(ρ, W, Q).

We denote by Ē0(ρ, W,Q) the concave hull of
E0(ρ, W,Q), defined as the pointwise supremum over
convex combinations of any two values of the function
E0(ρ, W,Q) [4, p. 36], i.e.

Ē0(ρ, W,Q)

� sup
ρ1,ρ2,λ∈[0,1]:

λρ1+(1−λ)ρ2=ρ

{
λE0(ρ1, W,Q) + (1 − λ)E0(ρ2, W,Q)

}
.

(8)

Similarly, Ē0(ρ, W ) denotes the concave hull of E0(ρ, W ).

III. GALLAGER’S AND CSISZÁR’S EXPONENTS

For source coding (i.e., when W is the channel law of a
noiseless channel), the reliability function of a source P at
rate R, denoted by e(R, P), is given by [5]

e(R, P) = sup
ρ≥0

{
ρR − Es(ρ, P)

}
. (9)

For channel coding (i.e., when P is the uniform distribu-
tion), the reliability function of a channel W at rate R, denoted
by E(R, W ), is bounded as [3]

Er(R, W ) ≤ E(R, W ) ≤ Esp(R, W ), (10)

where Er(R, W ) denotes the random-coding exponent and
Esp(R, W ) the sphere-packing exponent, respectively given by

Er(R, W ) = max
ρ∈[0,1]

{
E0(ρ, W ) − ρR

}
, (11)

Esp(R, W ) = sup
ρ≥0

{
E0(ρ, W ) − ρR

}
. (12)

We define the critical rate of the channel Rcr as the smallest
value of R such that Er(R, W ) and Esp(R, W ) coincide.

For source-channel coding, Gallager used a random-coding
argument to derive an upper bound on the average error
probability by drawing the codewords independently of the
source messages according to a given product distribution
Qn(x) = ∏n

j=1 Q(x j ). He found the achievable exponent
[3, p. 534, Prob. 5.16]

max
ρ∈[0,1]

{
E0(ρ, W, Q) − t Es(ρ, P)

}
, (13)

which becomes, upon maximizing over Q,

EG
J (P, W, t) � max

ρ∈[0,1]

{
E0(ρ, W ) − t Es(ρ, P)

}
. (14)

Csiszár refined this result using the method of types [1].
By using a partition of the message set into source-type classes
and considering fixed-composition codes that map messages
within a source type onto sequences within a channel-input
type, he found an achievable exponent

ECs
J (P, W, t) � min

t H(V )≤R≤RV

{
te

(
R

t
, P

)
+ Er(R, W )

}
,

(15)

where RV � t log |V|. A convenient alternative representation
of ECs

J was obtained by Zhong et al. [2] via Fenchel’s duality
theorem [4, Th. 31.1]:

ECs
J (P, W, t) = max

ρ∈[0,1]
{

Ē0(ρ, W ) − t Es(ρ, P)
}
. (16)

Since Ē0(ρ, W ) ≥ E0(ρ, W ), it follows from (16) and (14)
that ECs

J ≥ EG
J . Nonetheless, the finite-length bound implied

by the exponent ECs
J in [1] might be worse than the one in

[3, p. 534, Prob. 5.16] due to the worse subexponential terms,
which may dominate for finite values of k and n.

To validate the optimality of ECs
J , Csiszár derived a sphere-

packing bound on the exponent [1, Lemma 2],

Esp
J (P, W, t) � min

t H(V )≤R≤RV

{
te

(
R

t
, P

)
+ Esp(R, W )

}
.

(17)

When the minimum on the right-hand side (RHS) of (17) is
attained for a value of R such that Esp(R, W ) = Er(R, W ),
the upper bound (17) coincides with the lower bound (15) and,
hence, ECs

J = EJ. This is the case for values of R above the
critical rate of the channel Rcr [1].
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IV. AN ACHIEVABLE EXPONENT

In this section, we analyze the error probability of random-
coding ensembles where the codeword distribution depends on
the source message. We find that ensembles generated with a
pair of product distributions

{
Qn

1, Qn
2

}
may attain a better

error exponent than Gallager’s exponent (13) for Q being
equal to either Q1 or Q2. Moreover, optimizing over pairs of
distributions this ensemble attains the exponent Esp

J in those
cases where it is tight.

A. Main Results

We define a partition of the source-message set Vk into Nk

disjoint subsets A(i)
k , i = 1, . . . , Nk , such that

⋃Nk
i=1 A

(i)
k =Vk .

We refer to these subsets as classes. For each source message
v in the set A(i)

k , we randomly and independently gener-
ate codewords x(v) ∈ X n according to a channel-input
product distribution Qn

i (x) = ∏n
j=1 Qi (x j ). This definition

is a generalization of Csiszár’s partition in [1] where each
subset corresponds to a source-type class. Since the number
of source-type classes is a polynomial function of k [6],
it follows that the number of classes Nk considered in [1]
is also polynomial in k.

The next result extends [3, Th. 5.6.2] to codebook ensem-
bles where codewords are independently but not necessarily
identically distributed.

Theorem 1: For a given partition A(i)
k , i = 1, . . . , Nk , and

associated distributions Qi , i = 1, . . . , Nk , there exists a
codebook satisfying

ε ≤ h(k)

Nk∑
i=1

e
− max

ρi ∈[0,1]

{
E0

(
ρi ,W n,Qn

i

)
−E(i)

s (ρi ,Pk )

}
, (18)

where h(k) � 3Nk−1
2 and

E (i)
s (ρ, Pk ) � log

⎛
⎝ ∑

v∈A(i)
k

Pk(v)
1

1+ρ

⎞
⎠

1+ρ

. (19)

Proof: See Appendix I.
Theorem 1 holds for general (not necessarily memoryless)

discrete sources and channels, and for Qn
i , i = 1, . . . , Nk ,

being non-product distributions (including cost-constrained
and fixed composition ensembles). Furthermore, it naturally
extends to continuous channels by following the same argu-
ments as those extending Gallager’s analysis of the exponent
of channel coding.

It was demonstrated in [7] that an application of Theorem 1
to a partition where classes are identified with source-type
classes attains ECs

J . However, compared to the bound used to
derive Csiszár’s exponent in [1], Theorem 1 provides a tighter
bound on the average error probability for finite values of
k and n [8]. Furthermore, Theorem 1 can be generalized to
derive Csiszár’s lower bound on the error exponent for lossy
source-channel coding [9, Sec. IV].

For a single class with associated distribution Q, Theorem 1
simply recovers the exponent in (13). The following theorem
shows that the exponent may be improved by considering a
partition with two classes.

Theorem 2: For a pair of distributions {Q, Q′}, there exists
a partition of the source message set into two classes such that
the following exponent is achievable

max
ρ∈[0,1]

{
Ē0

(
ρ, W, {Q, Q′}) − t Es(ρ, P)

}
. (20)

Moreover, a partition achieving this exponent with associated
distributions Qi ∈ {

Q, Q′}, i = 1, 2, is given by

A(1)
k (γ ) �

{
v : Pk(v) ≤ γ k

}
(21)

A(2)
k (γ ) �

{
v : Pk(v) > γ k

}
, (22)

for some γ ∈ [0, 1].
Proof: See Appendix II.

In Theorem 2 we considered a particular pair of distribu-
tions {Q, Q′}. A direct application of Carathéodory’s theorem
[4, Cor. 17.1.5] shows that any point belonging to the graph
of Ē0(ρ, W ) can be expressed as a convex combination of
two points belonging to the graph of E0(ρ, W ). Consequently,
there exists a pair of distributions {Q, Q′} such that these
two points also belong to the graph of E0(ρ, W, {Q, Q′}).
By optimizing the exponent (20) over all possible pairs of
distributions {Q, Q′}, the following result follows.

Corollary 1: There exists a partition of the source message
set into two classes assigned to a pair of distributions such
that ECs

J in (16) is achievable.
In contrast to Csiszár’s original analysis [1], where the num-

ber of classes used to attain the best exponent was polynomial
in k, Corollary 1 shows that a two-class construction suffices
to attain ECs

J when the partition and associated distributions
are appropriately chosen.

B. Ensemble Tightness

Since Section IV-A only considers achievability results, one
may ask whether the weakness of Gallager’s exponent is due to
the bounding technique or to the construction itself. A partial
answer to this question can be given by studying the exact
random-coding exponent, namely the exponential decay of the
error probability averaged over the ensemble, which we denote
by ε̄.

Theorem 3: For any non-empty set Q of probability dis-
tributions on X , consider a codebook ensemble for which the
codewords associated to source messages with type class Ti are
generated according to a distribution Qn

i (x) = ∏n
j=1 Qi (x j )

with Qi ∈ Q, i = 1, . . . , N ′
k , where N ′

k is the number
of source type classes. The random-coding exponent of this
ensemble is upper-bounded as

lim sup
n→∞

− log ε̄

n
≤ max

ρ∈[0,1]
{

Ē0(ρ, W,Q) − t Es(ρ, P)
}
. (23)

Proof: See Appendix III.
When Q contains only one distribution, the concavity of

E0(ρ, W, Q) as a function of ρ shows that the RHS of (23)
matches (13). In other words, if the codebook is drawn
according to only one distribution Q, then EG

J in (14) is
ensemble tight.

The ensemble considered in Theorem 2 is a particular case
of that of Theorem 3 with |Q| = 2. Since the upper bound (23)
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and the lower bound (20) coincide for Q = {Q, Q′}, the error
exponent (20) is also ensemble tight. Furthermore, for any set
with cardinality Q with |Q| > 2, we can always choose two
distributions Q and Q′ belonging to Q such that (20) equals
the RHS of (23) [4, Cor. 17.1.5]. Therefore, the random-
coding exponent of an ensemble with an arbitrary number
of classes can be attained by a two-class partition, as in
Theorem 2.

Finally, it can be shown that Theorem 3 holds for finer parti-
tions of the source message set, not necessarily corresponding
to source type classes. Since the RHS of (23) coincides
with ECs

J when Q is the set of all probability distributions
on X , we conclude that the ensembles studied in this work
cannot improve Csiszár’s random-coding exponent, even when
the latter does not coincide with the sphere-packing exponent.

C. Example: A 6-Input 4-Output Channel

We present an example in which the two-class partition
(with their corresponding product distributions) attains the
sphere-packing exponent while Gallager’s one-class assign-
ment does not. Consider the source-channel pair composed
by a binary memoryless source (BMS) and a non-symmetric
memoryless channel with |X | = 6, |Y| = 4 and transition-
probability matrix

W =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − 3ξ1 ξ1 ξ1 ξ1
ξ1 1 − 3ξ1 ξ1 ξ1
ξ1 ξ1 1 − 3ξ1 ξ1
ξ1 ξ1 ξ1 1 − 3ξ1

1
2 − ξ2

1
2 − ξ2 ξ2 ξ2

ξ2 ξ2
1
2 − ξ2

1
2 − ξ2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (24)

This channel is similar to the channel given in [3, Fig. 5.6.5]
and studied in [2] for source-channel coding. It is composed
of two quaternary-output sub-channels: one of them is a
quaternary-input symmetric channel with parameter ξ1, and
the second one is a binary-input channel with parameter ξ2.
We set ξ1 = 0.065, ξ2 = 0.01, t = 2 (source symbols/channel
use) and P(1) = 0.028. It follows that the source entropy
is H (V ) = 0.1843 bits/source symbol, the channel capacity
is C = 0.9791 bits/channel use and the critical rate is
Rcr = 0.4564 bits/channel use. Let R� denote the value of
R minimizing (15). In this example we have R� =0.6827> Rcr
and ECs

J is tight.
In Fig. 1 we plot the objective functions of Gallager’s expo-

nent in (14) and Csiszár’s exponent in (16) as functions of ρ,
respectively. For reference purposes, we also show the values
of EG

J and ECs
J with horizontal solid lines. The distribution Q

maximizing E0(ρ, W, Q) changes from
( 1

4
1
4

1
4

1
4 0 0

)
for

ρ ≤ 0.31 to
(
0 0 0 0 1

2
1
2

)
for ρ > 0.31. As a result,

E0(ρ, W ) is not concave in ρ ∈ [0, 1]. The figure shows how
the non-concavity of Gallager’s function around the optimal ρ
of Csiszár’s function translates into a loss in exponent.

Fig. 1 also shows the bracketed terms in the RHS of (18) as
a function of ρi for the two-class partition of Theorem 2. The
overall error exponent of the two-class construction is obtained
by first individually maximizing the exponent of each of the
curves over ρi , and by then choosing the minimum of the

Fig. 1. Error exponent bounds. Csiszár’s and Gallager’s curves correspond
to Ē0(ρ, W ) − t Es(ρ, P) and E0(ρ, W ) − t Es(ρ, P), respectively. Class i
curves correspond to E0(ρ, W ) − lim

n→∞
1
n E(i)

s (ρ, Pk ), for i = 1, 2.

two individual maxima. In this example, the exponent of both
classes coincides with ECs

J . The overall exponent is thus given
by ECs

J , which is in agreement with Theorem 2.

V. CONCLUSIONS

We have studied the error probability of random-coding
ensembles where different codeword distributions are assigned
to different subsets of source messages. We have showed
that the random-coding exponent of ensembles generated with
a single distribution does not attain Csiszár’s exponent in
general. In contrast, ensembles with at most two appropriately
chosen subsets and distributions suffice to attain the sphere-
packing exponent in those cases where it is tight. One of the
strengths of our achievability result is that, unlike Csiszár’s
approach, it does not rely on the method of types. This leads
to tighter bounds on the average error probability for finite
block lengths and may simplify the task of generalizing our
bound to source-channel systems with non-discrete alphabets
and memory.

APPENDIX I
PROOF OF THEOREM 1

Generalizing the proof of the random-coding union bound
for channel coding [10, Th. 16] (with earlier precedents in
[3, pp. 136-137]) to joint source-channel coding we obtain

ε̄ ≤
∑

v,x,y

Pk(v)Qn
v(x)W n(y|x)

× min

{
1,

∑

v̄ �=v

Pr
{

Pk(v̄)W n(y|X̄) ≥ Pk(v)W n(y|x)
}}

,

(25)

where Qn
v denotes the channel-input distribution correspond-

ing to the source message v and X̄ is distributed according
to Qn

v̄ .
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When codewords are generated according to distributions
that depend on the class index of the source, (25) yields

ε ≤
Nk∑

i=1

∑

v∈A(i)
k

Pk(v)
∑

x,y

Qn
i (x)W n(y|x)

× min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1,

Nk∑

j=1

∑

v̄∈A( j)
k

∑

x̄:Pk (v̄)W n( y|x̄)

≥Pk(v)W n( y|x)

Qn
j (x̄)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (26)

We next use Markov’s inequality for s j ≥ 0, j = 1, . . . , Nk ,
to obtain [3]

∑

x̄:Pk (v̄)W n( y|x̄)
≥Pk(v)W n( y|x)

Qn
j (x̄)≤

∑

x̄

Qn
j (x̄)

(
Pk(v̄)W n(y|x̄)

Pk(v)W n(y|x)

)s j

.

(27)

Using (27) and the inequality min{1, A + B} ≤ Aρ + Bρ′
,

A, B ≥ 0, ρ, ρ′ ∈ [0, 1] [3], (26) is upper-bounded by

ε ≤
Nk∑

i, j=1

∑

v∈A(i)
k

Pk(v)
∑

x,y

Qn
i (x)W n(y|x)

×
( ∑

v̄∈A( j)
k

∑

x̄

Qn
j (x̄)

(
Pk(v̄)W n(y|x̄)

Pk(v)W n(y|x)

)s j )ρi j

, (28)

where ρi j ∈ [0, 1] and s j ≥ 0, i, j = 1, . . . , Nk .
For si , s j ∈ [ 1

2 , 1
]

and ρi j = 1−si
s j

, (28) yields

ε ≤
Nk∑

i, j=1

∑

y

Gi (y)si G j (y)1−si (29)

where

Gi (y) �

⎛
⎝ ∑

v∈A(i)
k

Pk(v)si

⎞
⎠

1
si ( ∑

x

Qn
i (x)W n(y|x)si

) 1
si
.

(30)

This choice of ρi j allows us to decompose the probability
of the “inter-class” error event between classes i and j as
the product of two terms corresponding to “intra-class” error
events. The RHS of (30) is further upper-bounded by

ε ≤
Nk∑

i, j=1

( ∑

y

Gi (y)
)si ( ∑

y

G j (y)
)1−si

(31)

≤
Nk∑

i, j=1

(
si

( ∑

y

Gi (y)
)

+ (1 − si )

( ∑

y

G j (y)
))

(32)

≤
Nk∑

i=1

∑

y

Gi (y) +
Nk∑

i, j=1
i �= j

( ∑

y

Gi (y) + 1

2

∑

y

G j (y)
)

(33)

= 3Nk − 1

2

Nk∑

i=1

∑

y

Gi (y), (34)

where in (31) we applied Hölder’s inequality ‖ f g‖1 ≤
‖ f ‖p‖g‖q with p = 1

si
and q = 1

1−si
(with ‖ ·‖p denoting the

p-norm); (32) follows from the relation between arithmetic
and geometric means; and (33) follows because 1

2 ≤ si ≤ 1.
By identifying

∑

y

Gi (y) = e−E0(ρi ,W n,Qn
i )+E(i)

s
(
ρi ,Pk

)

, (35)

with ρi = 1−si
si

, and optimizing over ρi ∈ [0, 1],
i = 1, . . . , Nk , (31)–(34) yield

ε ≤ 3Nk − 1

2

Nk∑
i=1

e
− max

ρi ∈[0,1]

{
E0

(
ρi ,W n,Qn

i

)
−E(i)

s (ρi ,Pk )

}
. (36)

This concludes the proof.

APPENDIX II
PROOF OF THEOREM 2

The proof of the Theorem 2 is based on the next preliminary
result.

Lemma 1: For any ρ0 ∈ [0, 1] and γ ′ ≥ 0, the partition
(21)–(22) with γ = min{1, γ ′} satisfies

1

k
E (1)

s (ρ, Pk) ≤ Es(ρ, P)1{ρ > ρ0} + r(ρ, ρ0, γ
′)1{ρ ≤ ρ0}

� Ēs
(1)

(ρ, ρ0, γ
′), (37)

1

k
E (2)

s (ρ, Pk) ≤ Es(ρ, P)1{ρ < ρ0} + r(ρ, ρ0, γ
′)1{ρ ≥ ρ0}

� Ēs
(2)

(ρ, ρ0, γ
′), (38)

where 1{·} denotes the indicator function, and where

r(ρ, ρ0, γ ) � Es(ρ0, P) + Es(ρ0, P) − log γ

1 + ρ0
(ρ − ρ0). (39)

Proof: For the choice γ = min{1, γ ′} it holds that

1
{

Pk(v) ≤ γ k
}

= 1
{

Pk(v) ≤ (γ ′)k
}

(40)

since Pk(v) ≤ 1 for all v. Using (40), the monotonicity of
log(·), and the bound 1{a ≤ b} ≤ a−sbs for s ≥ 0, the
function 1

k E (1)
s (ρ, Pk ) can be upper-bounded as

1

k
E (1)

s (ρ, Pk )

≤ 1

k
log

( ∑

v

Pk(v)
1

1+ρ 1
{

Pk(v) ≤ (γ ′)k
})1+ρ

(41)

≤ 1

k
log

( ∑

v

Pk(v)
1

1+ρ Pk(v)−s(γ ′)ks
)1+ρ

(42)

= log

( ∑
v

P(v)
1

1+ρ −s
(γ ′)s

)1+ρ

, (43)

for any s ≥ 0. Here we used that Pk(v) is memoryless. We
continue by choosing

s = max

(
0,

ρ0 − ρ

(1 + ρ0)(1 + ρ)

)
. (44)
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For ρ > ρ0, it follows that s = 0, and (43) gives (cf. (5))

1

k
E (1)

s (ρ, Pk ) ≤ Es(ρ, P). (45)

For ρ ≤ ρ0, the choice (44) yields s = ρ0−ρ
(1+ρ0)(1+ρ) , which

together with (43) yields

1

k
E (1)

s (ρ, Pk )

≤ (1 + ρ) log

(∑
v

P(v)
1

1+ρ0

)
− ρ − ρ0

1 + ρ0
log γ ′ (46)

= (1 + ρ0) log

(∑
v

P(v)
1

1+ρ0

)

+(ρ − ρ0) log

(∑
v

P(v)
1

1+ρ0

)
− ρ − ρ0

1 + ρ0
log γ ′ (47)

= Es(ρ0, P) + Es(ρ0, P) − log γ ′

1 + ρ0
(ρ − ρ0) , (48)

where in (47) we added and subtracted the term

ρ0 log

(∑
v P(v)

1
1+ρ0

)
; and (48) follows from the definition

of Es(ρ, P ) in (5). The inequality (37) follows by combining
(45) and (46)–(48) for ρ > ρ0 and ρ ≤ ρ0, respectively.

In an analogous way, the inequality (38) can be proved using
that 1{Pk(v) > γ k} = 1{Pk(v) > (γ ′)k} and 1{a > b} ≤
asb−s with s ≥ 0.

By applying Theorem 1 to the two-class partition (21)-(22)
with associated product distributions Qn

i , i = 1, 2, for the
optimal threshold γ we obtain

EB
J � max

γ∈[0,1]

⎧⎨
⎩lim inf

n→∞

⎧⎨
⎩− 1

n
log

(
h(k)

×
∑

i=1,2

e
− max

ρi ∈[0,1]
{

nE0(ρi ,W,Qi )−E(i)
s (ρi )

}⎞
⎠

⎫⎬
⎭

⎫⎬
⎭
(49)

= max
γ∈[0,1]

{
lim inf
n→∞ min

i=1,2

{
max

ρi ∈[0,1]

{
E0(ρi , W, Qi )

− 1

n
E (i)

s (ρi )

}}}
(50)

≥ max
γ ′≥0

max
ρ0,ρ1,ρ2∈[0,1] min

i=1,2

{
E0(ρi , W, Qi )

−t Ēs
(i)

(ρi , ρ0, γ
′)
}

(51)

≥ max
ρ0,ρ1,ρ2∈[0,1]:

ρ1≤ρ0≤ρ2

max
γ ′≥0

min
i=1,2

{
E0(ρi , W, Qi )

−t Ēs
(i)

(ρi , ρ0, γ
′)
}
, (52)

where (50) follows by noting that h(k) is subexponential
in k; in (51) we have applied Lemma 1 with ρ0 ∈ [0, 1]
and γ ′ ≥ 0 and have used that lim infn→∞ maxx { fn(x)} ≥
maxx {limn→∞ fn(x)}; and in (52) we have restricted the
range over which we maximize ρi , i = 0, 1, 2, and
interchanged the maximization order.

By substituting (37)-(38) with 0 ≤ ρ1 ≤ ρ0 ≤ ρ2 ≤ 1, the
minimization in (52) becomes

min
i=1,2

{
E0(ρi , W, Qi )

+ t
Es(ρ0, P) − log γ ′

1 + ρ0
(ρ0 − ρi ) − t Es(ρ0, P)

}
. (53)

We define γ0 ≥ 0 as the value satisfying

t
Es(ρ0, P) − log γ0

1 + ρ0
= E0(ρ2, W, Q2) − E0(ρ1, W, Q1)

ρ2 − ρ1
.

(54)

The existence of such a γ0 follows from the continuity of
the logarithm function. Choosing γ ′ = γ0 equalizes the two
terms in the minimization in (53), thus maximizing the lower
bound (52). As a result, substituting (53) into (52) we obtain

EB
J ≥ max

ρ0∈[0,1]

⎧⎪⎨
⎪⎩ max

ρ1,ρ2∈[0,1]:
ρ1≤ρ0≤ρ2

{
ρ2 − ρ0

ρ2 − ρ1
E0(ρ1, W, Q1)

+ρ0 − ρ1

ρ2 − ρ1
E0(ρ2, W, Q2)

}
− t Es(ρ0, P)

⎫⎪⎬
⎪⎭.

(55)

We now optimize the RHS of (55) over the assignments
(Q1, Q2) = (Q, Q′) and (Q1, Q2) = (Q′, Q). By denoting
by ρ (resp. ρ′) the variable ρi , i = 1, 2, associated to Q
(resp. Q′) and defining λ such that λρ + (1 − λ)ρ′ = ρ0, the
optimal assignment leads to

EB
J ≥ max

ρ0∈[0,1]

⎧⎪⎨
⎪⎩ max

ρ,ρ′,λ∈[0,1]:
λρ+(1−λ)ρ′=ρ0

{
λE0(ρ, W, Q)

+(1 − λ)E0(ρ
′, W, Q′)

}
− t Es(ρ0, P)

⎫⎪⎬
⎪⎭.

(56)

Theorem 2 follows from (56) by noting that [4, Th. 5.6]

Ē0(ρ0, W, {Q, Q′})
= max

ρ,ρ′,λ∈[0,1]:
λρ+(1−λ)ρ′=ρ0

{
λE0(ρ, W, Q) + (1 − λ)E0(ρ

′, W, Q′)
}
.

(57)

By inspection of the proof we conclude that the threshold γ
in (21)–(22) is given by γ = min(1, γ �

0 ) where γ �
0 is computed

from (54) for the values of ρ�
0, ρ�

1, ρ�
2 optimizing (55) and

(Q�
1, Q�

2) leading to (56).

APPENDIX III
PROOF OF THEOREM 3

Before proving the result, we introduce some definitions
that will ease the exposition. Let A be an arbitrary non-empty
discrete set. We denote the set of all probability distributions
on A by D(A) and the set of types in An by Dn(A). We further
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denote by T (PXY ) the type-class of sequences (x, y) with
joint type PXY . The set Ln(PXY ) is given by

Ln(PXY )�
{

P̄XY ∈Dn(X×Y) :
P̄Y = PY , E

[
log W (Ȳ |X̄)

]≥E
[
log W (Y |X)

]}
,

(58)

where (X̄ , Ȳ ) ∼ P̄XY and (X, Y ) ∼ PXY , and PY denotes
the marginal distribution of PXY . Here, and throughout this
appendix, we indicate that A is distributed according to the
distribution PA by writing A ∼ PA. Analogously, we define
the set L(PXY ) as

L(PXY ) �
{

P̄XY ∈ D(X × Y) :
P̄Y = PY , E

[
log W (Ȳ |X̄)

] ≥ E
[
log W (Y |X)

]}
,

(59)

with (X̄ , Ȳ ) ∼ P̄XY and (X, Y ) ∼ PXY .
Extending [11, Th. 1] to source-channel coding, we find

that

ε̄ ≥ 1

4

N ′
k∑

i=1

∑

v∈Ti

P(v)E

[

min

{

1,
∑

v̄∈Ti

Pr
{

Pk(v̄)W n(Y |X̄ i )

≥ Pk(v)W n(Y |X i )
∣
∣X i Y

}}]

,

(60)

where (X i , Y ) ∼ Qn
i × W n and X̄ i ∼ Qn

i . Here we lower-
bound ε̄ by considering in the inner sum only those v̄ that are
in the source type class Ti , i = 1, . . . , N ′

k .
We rewrite this bound in terms of summations over types,

ε̄ ≥ 1

4

N ′
k∑

i=1

∑

PXY

Pr {V ∈ Ti } Pr
{
(X i , Y ) ∈ T (PXY )

}

× min

⎧⎪⎨
⎪⎩1,

∑
P̄XY ∈Ln(PXY )

∣∣Ti
∣∣

× Pr
{

(X̄ i , y) ∈ T (P̄XY )
∣
∣ y ∈ P̄Y

}

⎫⎪⎬
⎪⎭, (61)

where V ∼ Pk .
Applying [12, Lemma 2.3] and [12, Lemma 2.6], we obtain

ε̄ ≥
N ′

k∑
i=1

∑
PXY

e−k D(Pi‖P)−nD(PXY ‖Qi×W )+δ′
k,n−log 4

× min

⎧⎨
⎩1,

∑
P̄XY ∈Ln(PXY )

ek H(Vi )−nD(P̄XY ‖Qi×P̄Y )+δ′
k,n

⎫⎬
⎭ ,

(62)

where Vi ∼ Pi and δ′
k,n � log(k + 1)−|V |(n + 1)−|X ||Y |.

The error probability can be further bounded by keeping
only the leading exponential term in each summation in (62).
Taking logarithms on both sides of (62), multiplying the

result by − 1
n , and using the notation [x]+ = max(x, 0) we

obtain

− log ε̄

n
≤ min

i=1,...,N ′
k

min
PXY

min
P̄XY ∈Ln(PXY )

{
k

n
D(Pi‖P)

+D(PXY ‖Qi × W )

+
[

D(P̄XY ‖Qi × P̄Y ) − k

n
H (Vi)

]+}
− δk,n

n
,

(63)

where we define δk,n � 2δ′
k,n+log 4. Here we use that [nx]+ =

n[x]+, for n > 0, that [x]+ = max(0, x) is monotonically
non-decreasing, and that [x + a]+ ≤ [x]+ + a, a > 0.

Any distribution in D(A) can be written as the limit of a
sequence of types in Dn(A) [6, Sec. IV]. Hence, the uniform
continuity of D(A‖B) over the pair (A, B) [6] ensures that
for every PXY , and every ξ1 > 0, there exists a sufficiently
large n such that

− log ε̄

n
≤ min

i=1,...,N ′
k

min
PXY

min
P̄XY ∈L(PXY )

{
k

n
D(Pi‖P)

+D(PXY ‖Qi × W )

+
[

D(P̄XY ‖Qi × P̄Y )− k

n
H (Vi)

]+}
− δk,n

n
+ξ1,

(64)

where we have replaced Ln(PXY ) by L(PXY ), and used that
[x + a]+ ≤ [x]+ + a, a > 0.

It follows from [11, Th. 4] that

min
PXY

min
P̄XY ∈L(PXY )

{
D(PXY ‖Q×W )+[D(P̄XY ‖Q× P̄Y )− R]+}

= max
ρ∈[0,1]

{
E0(ρ, W, Q) − ρR

}
, (65)

so (64) is equivalent to

− log ε̄

n
≤ min

i=1,...,N ′
k

{
k

n
D(Pi‖P) + max

ρ∈[0,1]

{
E0(ρ, W, Qi )

− ρ
k

n
H (Vi)

}}
− δk,n

n
+ ξ1. (66)

Maximizing (66) over Qi ∈ Q for each i = 1, . . . , N ′
k

yields

− log ε̄

n
≤ min

i=1,...,N ′
k

{
k

n
D(Pi‖P) + max

ρ∈[0,1]

{
E0(ρ, W,Q)

− ρ
k

n
H (Vi)

}}
− δk,n

n
+ ξ1. (67)

It follows from (3) that for every ξ2 > 0 there exists a
sufficiently large n0 such that

∣∣ k
n − t

∣∣ < ξ2 for all n ≥ n0.
Consequently, we can upper-bound (67) by

− log ε̄

n
≤ min

i=1,...,N ′
k

{
t D(Pi ‖P) + max

ρ∈[0,1]

{
E0(ρ, W,Q)

− ρt H (Vi)

}}
− δk,n

n
+ ξ1 + ξ2. (68)

Using now the uniform continuity of the RHS of (68) as a
function of Pi [1, p. 323] and that any distribution in D(V)
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can be written as the limit of a sequence of source types in
k, it follows that for every ξ3 > 0 there exists a sufficiently
large n such that

− log ε̄

n
≤ min

P ′

{
t D(P ′‖P) + max

ρ∈[0,1]

{
E0(ρ, W,Q)

− ρt H (V ′)
}}

− δk,n

n
+ξ1+ξ2+ξ3, (69)

where V ′ ∼ P ′. By taking the limit superior in n, we obtain

lim sup
n→∞

− log ε̄

n

≤ min
P ′

{
t D(P ′‖P) + max

ρ∈[0,1]
{

E0(ρ, W,Q) − ρt H (V ′)
}}

+ ξ1 + ξ2 + ξ3 (70)

= min
0≤R≤t log |V |

{
te

(
R

t
, P

)
+ max

ρ∈[0,1]
{

E0(ρ, W,Q) − ρR
}}

+ ξ1 + ξ2 + ξ3 (71)

= max
ρ∈[0,1]

{
Ē0(ρ, W,Q) − t Es(ρ, P)

} + ξ1 + ξ2 + ξ3, (72)

where (71) follows from the definition of the source reliability
function [1, eq. (7)] with R = t H (V ′); and (72) can be proved
by the same methods that relate (15) and (16). Finally, letting
ξ1, ξ2, and ξ3 tend to zero from above yields the desired
result.
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