
2514 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 5, MAY 2009

Power Allocation for Block-Fading Channels with
Arbitrary Input Constellations

Khoa D. Nguyen, Albert Guillén i Fàbregas, and Lars K. Rasmussen

Abstract—We consider power allocation strategies for arbi-
trary input channels with peak, average and peak-to-average
power ratio (PAPR) constraints. We are focusing on systems with
a fixed and finite input constellation, as encountered in most prac-
tical systems. Generalizing previous results, we derive the optimal
power allocation scheme that minimizes the outage probability of
block-fading channels with arbitrary input constellations, subject
to PAPR constraints. We further show that the signal-to-noise
ratio exponent for any finite peak-to-average power ratio is the
same as that of the peak-power limited problem, resulting in an
error floor. We also derive the optimal power allocation strategies
that maximize the ergodic capacity for arbitrary input channels,
subject to average and PAPR constraints. We show that capacities
with peak-to-average power ratio constraints, even for small
ratios, are close to capacities without peak-power restrictions.
For both delay-limited and ergodic block-fading channels, the
optimal power allocation strategies rely on the first derivative
of the input-output mutual information, which may be compu-
tationally prohibitive for efficient practical implementation. To
overcome this limitation, we develop suboptimal power allocation
schemes that resemble the traditional water-filling technique.
The suboptimal power allocation schemes significantly reduce
computational and storage requirements, while enjoying minimal
performance losses as compared to optimal schemes.

Index Terms—Power allocation, block-fading channel, coded
modulation, minimum-mean squared error, diversity, outage
probability, channel capacity, peak-to-average power constraints.

I. INTRODUCTION

AMajor design challenge in wireless communication is to
effectively deal with the varying nature of the channel,

commonly referred to as fading [1]. When knowledge of the
channel fading coefficients, also known as channel state infor-
mation (CSI), is available at the transmitter, power allocation
schemes can be employed to improve performance [2]–[14].
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Transmitter CSI can be obtained by reusing the receiver CSI
for transmission in time-division duplex (TDD) systems [2],
or from a dedicated feedback channel [3], providing perfect
or quantized CSI [4],[5].

In a delay-limited system, codewords are transmitted over
channels with B degrees of freedom, where B is finite. Exam-
ple scenarios are transmission over slowly varying channels,
or OFDM transmission over frequency-selective channels. The
channel is conveniently modeled as a block-fading channel [6],
[7], where each codeword is transmitted over B corresponding
flat-fading blocks. In this case, the maximal achievable rate is
a random variable, depending on the channel realization. For
most fading statistics, the channel capacity is zero since there
is a non-zero probability that any positive rate is not supported
by the channel. A relevant performance measure in this case is
the information outage probability [7], which is the probability
that communication at a target rate R is not supported by
the channel. The outage probability is also a lower bound on
the word-error probability for communicating at rate R [8].
The optimal power allocation problem has been investigated
in [8] for channels with Gaussian inputs, and in [9], [10], [11]
for channels with arbitrary input constellations. References
[8], [10] consider systems with peak (per-codeword) and
average power constraints, and show that systems with average
constraints perform significantly better than systems with peak
constraints. However, systems with average constraints may
employ large (possibly infinite) peak power. As a compromise,
the optimal power allocation strategy for Gaussian input
channels enforcing both peak and average power constraints
is considered in [8], while the use of quantized power levels
is investigated in [12].

For transmission over a fast-varying fading channel, the
fading statistics are revealed within each codeword, and the
channel is ergodic, i.e. it has infinite degrees of freedom
(B → ∞). In this case, adaptive techniques aim at maximizing
the ergodic channel capacity, which is the maximum data
rate that can be transmitted over the channel with vanishing
error probability [15]. Optimal power allocation schemes,
such as water-filling for channels with Gaussian inputs [8],
[15] and mercury/water-filling for channels with an arbitrary
input [9], have been developed for systems with average
power constraints. The work in [13] derives the optimal power
allocation strategy for Gaussian input channels with both peak
and average power constraint, which results in a variation to
the classical water-filling algorithm [15].

In this paper, we consider power allocation strategies for ar-
bitrary input channels with peak, average and peak-to-average
power ratio (PAPR) constraints. We are focusing on cases with
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a fixed and finite input constellation, as encountered in most
practical systems. Generalizing the results in [8], [9] yields
the optimal power allocation scheme that minimizes outage
probability for transmission with arbitrary inputs over a block-
fading channel, subject to PAPR constraints. The optimal
power allocation schemes that maximize the ergodic capacity
for arbitrary input channels, subject to average and PAPR
constraints, are also derived. In both cases, the optimal power
allocation strategies rely on the first derivative of the input-
output mutual information, which may be computationally
prohibitive for practical implementation. We therefore develop
suboptimal power allocation schemes for systems with peak,
average and PAPR constraints that significantly reduce the
complexity, while enjoying minimal performance losses from
optimality.

The paper is organized as follows. Sections II and III
describe the system model and the information theoretic
framework. Section IV discusses power allocation algorithms
for minimizing the outage probability of delay-limited block-
fading channels, while algorithms for maximizing the ergodic
capacity is given in Section V. Concluding remarks are given
in Section VI.

The following notation is used in the paper. Expectation
with respect to a random variable ξ is denoted Eξ [·], while
expectation with respect to ξ ∈ R is Eξ∈R [·]. Component-
wise inequalities are denoted �,�. The exponential equalities
f(ξ) .= Kξ−d indicates that limξ→∞ f(ξ)ξd = K , with ex-
ponential inequalities ≤̇, ≥̇ similarly defined. Finally, (f(ξ))+
denotes max{f(ξ), 0}.

II. SYSTEM MODEL

Consider transmission over a channel consisting of B blocks
of L channel uses, in which, block b, b = 1, . . . , B, undergoes
an independent fading gain hb, corresponding to a power
fading gain γb � |hb|2. Assume that h = (h1, . . . , hB)
and γ = (γ1, . . . , γB) are available at the receiver and
the transmitter, respectively. Suppose the transmit power is
allocated following the rule p(γ) = (p1(γ), . . . , pB(γ)). Then
the corresponding complex base-band equivalent is

yb =
√

pb(γ)hbxb + zb, b = 1, . . . , B, (1)

where yb ∈ CL, xb ∈ XL, with X ⊂ C being the signal
constellation set, are the received and transmitted signals in
block b, respectively, and zb ∈ C

L is the additive white Gaus-
sian noise (AWGN) vector with independently identically dis-
tributed circularly symmetric Gaussian entries, Z ∼ NC(0, 1).
Assume that the signal constellation X of size 2M satisfies∑

x∈X |x|2 = 2M , then the instantaneous received signal-to-
noise ratio (SNR) at block b is given by pb(γ)γb. We consider
systems with the following power constraints:

Peak power : 〈p(γ)〉 � 1
B

B∑
b=1

pb(γ) ≤ Ppeak,

Average power : Eγ [〈p(γ)〉] ≤ Pav.

For the fully-interleaved ergodic case, the channel model
can be obtained from (1) by letting B → ∞ and L = 1. Due
to ergodicity, power allocation for block b is only dependent

on γb. For simplicity of notation, denote p(γ) as the transmit
power corresponding to the power fading gain γ. The follow-
ing power constraints are considered:

Peak power : p(γ) ≤ Ppeak,

Average power : Eγ [p(γ)] ≤ Pav.

Here we study the performance of systems with peak and
average power constraints [8], [13], as well as systems with a
peak-to-average power ratio constraint Ppeak

Pav
≤ PAPR. The

fading gain hb is assumed to have a Nakagami-m distributed
magnitude and uniformly distributed phase, perfectly compen-
sated for. The probability density function (pdf) of the fading
gain |hb| is

f|hb|(ξ) =
2mmξ2m−1

Γ(m)
e−mξ2

, b = 1, . . . , B,

where Γ(a) is the Gamma function, Γ(a) =
∫∞
0 ta−1e−tdt.

The pdf of the power fading gain is

fγ(γ) =
mmγm−1

Γ(m)
e−mγ , γ ≥ 0. (2)

The Nakagami-m distribution represents a large class of
practical fading statistics. In particular, we can recover the
Rayleigh fading by setting m = 1 and approximate the Ricean
fading with parameter K by setting m = (K+1)2

2K+1 [1].

III. OUTAGE PROBABILITY AND ERGODIC CAPACITY

Let IX (ρ) be the input-output mutual information of an
AWGN channel with input constellation X and received SNR
ρ. Given a channel realization γ and a power allocation
scheme p(γ) satisfying the power constraint P , the instan-
taneous input-output mutual information of the delay-limited
block-fading channel given in (1) is

IB(p(γ), γ) =
1
B

B∑
b=1

IX (pbγb). (3)

For a fixed transmission rate R, communication is in outage
when IB(p(γ), γ) < R. The outage probability, which is a
lower bound to the word error probability, is given by

Pout(p(γ), P, R) � Pr(IB(p(γ), γ) < R). (4)

Also, the capacity of an ergodic fading channel with input
constellation X and power allocation rule p(γ) is given by
C � Eγ [IX (p(γ)γ)].

With Gaussian inputs, we have that IXG(ρ) = log2(1 + ρ),
while for coded modulation over uniformly-distributed fixed
discrete signal constellations, we have that

IX (ρ) = M − 1

2M

∑
x∈X

E

[
log2

(∑
x′∈X

e−|√ρ(x−x′)+Z|2+|Z|2
)]

where the expectation is taken over Z ∼ NC(0, 1).
In deriving optimal power allocation schemes, a useful

measure is the first derivative of the mutual information IX (ρ)
with respect to the SNR [9], [10]. From [16] we have that,

d

dρ
IX (ρ) =

1
log 2

MMSEX (ρ),
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where MMSEX (ρ) is the minimum mean-square error
(MMSE) in estimating an input symbol in X transmitted
over an AWGN channel with SNR ρ. For Gaussian inputs,
MMSEXG(ρ) = 1

1+ρ , while for a general constellation X , we
have that [9]

MMSEX (ρ) =
1

2M

∑
x∈X

|x|2− 1
π

∫
C

∣∣∣∑x∈X xe−|y−√
ρx|2

∣∣∣2∑
x∈X e−|y−√

ρx|2 dy.

The mutual information and its first derivative for bit-
interleaved coded modulation (BICM) using the classical non-
iterative BICM decoder proposed by Zehavi in [17] can also
be calculated as shown in [18].

IV. OUTAGE PROBABILITY MINIMIZATION

A. Peak Power Constraints

For power constraint Ppeak, the power allocation problem
is [8]

popt(γ) = arg min
〈p(γ)〉≤Ppeak

p(γ)	0

Pout (p(γ), Ppeak, R) . (5)

The solution is given by [9]–[11]

popt
b (γ) =

1
γb

MMSE−1
X

(
min

{
MMSEX (0),

η

γb

})
, (6)

for b = 1, . . . , B, where η is chosen such that the peak power
constraint is met with equality.

The optimal power allocation schemes in (6) involves an
inverse MMSE function, which may be excessively complex
for practical implementation. Moreover the MMSE function
provides little insight into the effects of system parameters. We
propose suboptimal power allocation schemes similar to water-
filling that tackle both drawbacks, leading to minor losses in
outage performance as compared to the optimal solution.

The complexity of the solution in (6) is due to the com-
plex expression of IX (ρ). Low complexity approximations
of the solution can be obtained by replacing IX (ρ) in (5)
with a simpler expression. For Gaussian input channels with
IXG(ρ) = log2(1 + ρ), solving (5) leads to the simple water-
filling scheme [15]. This motivates approximating IX (ρ) of
systems with discrete input constellations by

Iβ(ρ) � min{log2(1 + ρ), log2(1 + β)}, (7)

where β is a design parameter. Intuitively, β approximates
a threshold SNR beyond which IX (ρ) does not increase
significantly with ρ. Details on choosing β will be given later
in the section.

We obtain a suboptimal power allocation scheme given by

ptw(γ) = arg max
〈p(γ)〉≤Ppeak

p(γ)	0

B∑
b=1

Iβ(pbγb). (8)

Since Iβ(pbγb) = log2(1 + β) for pb ≥ β
γb

, a solution of (8)
can be obtained by solving

ptw(γ) = arg max
〈p(γ)〉≤Ppeak

0≤pb≤ β
γb

,b=1,...,B

B∑
b=1

log2(1 + pbγb). (9)

By applying the Karush-Kuhn-Tucker (KKT) conditions [19],
we have that

ptw
b = min

{
β

γb
,

(
η − 1

γb

)
+

}
, (10)

for b = 1, . . . , B, where η takes the largest value such that
〈ptw(γ)〉 ≤ Ppeak. The resulting power allocation scheme
is similar to water-filling, except for the truncation of the
allocated power at β

γb
. We refer to this scheme as truncated

water-filling. The outage performance obtained by the trun-
cated water-filling scheme depends on the choice of β.

Proposition 1: Consider transmission over the block-fading
channel defined in (1) with input constellation X and the
truncated water-filling power allocation scheme ptw(γ) given
in (10). Assume that the power fading gains follow the
distribution given in (2). Then, for large Ppeak, the outage
probability Pout (ptw(γ), Ppeak, R) is given by

Pout

(
ptw(γ), Ppeak, R

) .= Kpeak
β P

−mdβ(R)
peak , (11)

where dβ(R) � 1 +
⌊
B
(
1 − R

IX (β)

)⌋
.

Proof: See the Appendix.
Following [10], [20], the truncated water-filling obtains the
optimal outage diversity when dβ(R) = d(R) � 1 +⌊
B
(
1 − R

M

)⌋
, i.e.,

β ≥ I−1
X

(
BR

B − ⌊
B
(
1 − R

M

)⌋
)

� βR. (12)

Therefore, by letting β → ∞, the truncated water-filling power
allocation scheme given in (10), which now becomes the
classical water-filling algorithm for Gaussian inputs, provides
optimal outage diversity at any transmission rate. For any rate
R such that B

(
1 − R

M

)
is not an integer, we can design a

truncated water-filling scheme that obtains optimal diversity
by choosing β ≥ βR.

With the results above, we choose β as follows. For a
transmission rate R such that B

(
1 − R

M

)
is not an integer,

we perform a simulation to compute the outage probability
obtained by truncated water-filling with various β ≥ βR

and pick the β that gives the best outage performance. The
dashed lines in Figure 1 illustrate the performance of the
obtained schemes for block-fading channels with B = 4 and
QPSK input under Rayleigh fading. At all rates of interest,
the truncated water-filling schemes suffer only minor losses
in outage performance as compared to the optimal schemes
(solid lines), especially at high SNR. We also observe a
remarkable difference with respect to pure water-filling for
Gaussian inputs (dotted lines). As a matter of fact, pure water-
filling performs worse than uniform power allocation.

For rate R such that B
(
1 − R

M

)
is an integer, (12) requires

β → ∞ for optimal outage diversity. Therefore, especially at
high operating SNR, β needs to be relatively large to maintain
diversity. While IX (ρ) saturates at M , Iβ(ρ) saturates at
log2(1 + β). Hence, a large β results in a large discrepancy
between Iβ(ρ) and IX (ρ), which in turns causes a large
outage performance loss of the truncated water-filling scheme.
For β = 15, the sub-optimality of the truncated water-filling
scheme is illustrated by gap between the dashed and the
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Fig. 1. Outage performance of various short-term power allocation schemes
for QPSK-input block-fading channels with B = 4 and Rayleigh fading.
The solid-lines represent the optimal scheme; the solid lines with � represent
uniform power allocation; the dashed lines and dashed-dotted lines represent
truncated water-filling and its corresponding refinement, respectively; the
dotted lines represent the classical water-filling scheme.

solid lines in Figure 2. In the extreme case where β → ∞
(pure water-filling), we observe a significant loss in outage
performance as illustrated in Figure 1. To reduce this loss,
we propose a refined truncated water-filling scheme pref(γ),
which is based on a more accurate approximation,

Iref(ρ) =

{
log2(1 + ρ), ρ ≤ α

min{κ log2(ρ) + a, κ log2(β) + a}, otherwise,

where κ and a are chosen such that (in a dB scale) κ log2(ρ)+
a is a tangent to IX (ρ) at a given point ρ0; α is chosen such
that κ log2(α)+a = log2(1+α), and β is a design parameter.
Parameters of Iref(γ) for some schemes are collected in Table
I. Similar to the truncated water-filling case,

pref
b = min

{
β

γb
, κη,

α

γb
,

(
η − 1

γb

)
+

}
, (13)

where η takes the largest value such that
〈
pref(γ)

〉 ≤ Ppeak.
The refined scheme provides additional gain over the trun-

cated water-filling scheme, especially when the transmission
rate requires a relatively large β to maintain the outage
diversity. The dashed-dotted lines in Figure 2 show the outage
performance of the refined truncated water-filling scheme for
block-fading channels with B = 4, and QPSK input under
Rayleigh fading. The outage performance of the refined trun-
cated water-filling scheme is close to the outage performance
of the optimal case even at rates where the Singleton bound
is discontinuous.

B. Average Power Constraint

Under an average power constraint, the power allocation
problem is

popt
av = arg min

E[〈p(γ)〉]≤Pav
p(γ)	0

Pr(IB(p(γ), γ) ≤ R). (14)
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Fig. 2. Outage performance of various short-term power allocation schemes
for QPSK-input block-fading channels with B = 4 and Rayleigh fading.
The solid-lines represent the optimal scheme; the solid lines with � represent
the uniform power allocation; the dashed lines and dashed-dotted lines
correspondingly represent the truncated water-filling and its refinement with
β = 15.

From [8], [10], the solution popt
av (γ) of (14) is given by

popt
av (γ) =

{
℘opt(γ), 〈℘opt(γ)〉 ≤ s�

0, otherwise,
(15)

where ℘(γ) is the transmission strategy that satisfies the rate
constraint with minimum power,

℘opt(γ) = arg min
IB(℘(γ),γ)≥R

℘(γ)	0

〈℘(γ)〉 , (16)

and s� is given by

s� = max{s : P(℘opt(γ), s) ≤ Pav} (17)

with P(℘(γ), s) � E〈℘(γ)〉≤s [〈℘(γ)〉] being the aver-
age power consumed by using ℘ given a peak power
constraint s. The outage probability is given by [10]
Pout (popt

av (γ), Pav, R) = Pout (popt(γ), s�, R) . For com-
pleteness, ℘opt(γ) is given by [10]

℘opt
b =

1
γb

MMSE−1
X

(
min

{
MMSEX (0),

η

γb

})
, (18)

with η chosen such that IB(℘opt(γ), γ) = R.
The threshold s� in (17) is fixed for a given Pav and fading

statistic fγ(γ). Consequently, the complexity of the scheme
popt

av (γ) is governed by the complexity of ℘opt(γ). Therefore,
suboptimal alternatives can be employed in (15) to reduce
the complexity of popt

av (γ). Following the approach in Section
IV-A, we consider

℘�(γ) = arg min∑B
b=1 log2(1+℘bγb)≥BR

0≤℘b≤ β
γb

, b=1,...,B

〈℘(γ)〉 . (19)

Applying the KKT conditions, we have

℘�
b = min

{
β

γb
,

(
1 − η

γb

)
+

}
, (20)
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TABLE I
PARAMETERS ρ0, κ, a AND α FOR THE REFINED POWER ALLOCATION SCHEME.

Modulation Scheme

QPSK 8-PSK 16-QAM 64-QAM

CM BICM CM BICM CM BICM CM BICM
ρ0 3 3 7 7 15 15 63 63
κ 0.3528 0.3528 0.4693 0.4744 0.56 0.5608 0.6581 0.6460
a 1.1327 1.1327 1.1397 1.1234 1.347 1.3452 1.5255 1.5978
α 1.585 1.585 2.1677 2.0922 5.8884 5.8264 18.954 19.8884

where η is chosen such that
∑B

b=1 log2(1+℘�
bγb) = BR. The

power allocation rule ℘�(γ) does not meet the rate constraints
since log2(1 + ℘�

bγb) ≥ IX (℘�
bγb). By adjusting η, we obtain

℘tw
b = min

{
β

γb
,

(
1 − η

γb

)
+

}
, (21)

where η is chosen such that IB(℘tw(γ), γ) = R. The
truncated water-filling scheme for systems with average power
constraints can be obtained by employing ℘tw(γ) instead of
℘opt(γ) in (15),

ptw
av (γ) =

{
℘tw(γ), 〈℘tw(γ)〉 ≤ stw

0, otherwise,
(22)

where ℘tw(γ) is given in (21) and stw satisfies

stw = max{s : P(℘tw(γ), s) ≤ Pav}. (23)

The achieved outage probability is given by
Pout (ptw(γ), Pav, R) = Pr(〈℘tw(γ)〉 > stw). The following
Proposition helps analyzing the performance the power
allocation rule ptw

av (γ).
Proposition 2: Consider transmission at rate R over the

block-fading channel given in (1) with power allocation
scheme ptw

av (γ) and long-term power constraint Pav =
P(℘tw(γ), s). Then, independent of the fading statistics, the
outage probability satisfies

Pr(
〈
℘tw(γ)

〉
> s) = Pout

(
ptw(γ), s, R

)
. (24)

Proof: Given a γ, ℘tw(γ), ptw(γ) are determined by
an increasing function of η. Therefore, if 〈℘tw(γ)〉 >
s ≥ 〈ptw(γ)〉, we have ptw(γ) ≺ ℘tw(γ), which induces
IB(℘tw(γ), γ) < R. Similarly, IB(ptw(γ), γ) < R induces
〈℘tw(γ)〉 > s.
Therefore, from Proposition 1, under Nakagami-m fading,

Pout

(
ptw

av (γ),P(℘tw(γ), s), R
) .= Ks−mdβ(R). (25)

As shown in [10], the large-SNR performance of power
allocation with average power constraint is determined from
the large-SNR behavior of the corresponding power allocation
scheme with peak-power constraints. Using (25), and applying
the result from [10], the delay-limited capacity of systems
employing ptw

av (γ) is positive if mdβ(R) > 1, while if
mdβ(R) < 1, the outage diversity with respect to Pav is given
by mdβ(R)

1−mdβ(R) . Optimal outage diversity is then guaranteed if
dβ(R) = d(R).
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Fig. 3. Outage performance of various long-term power allocation schemes
for QPSK-input block-fading channels with B = 4 and Rayleigh fading.
The solid-lines represent the optimal scheme; the dashed lines and dashed-
dotted lines correspondingly represent the long-term truncated water-filling(
ptw

av (γ) with β1
)

and its refinement
(
pref

av (γ) with β2
)
.

Similar to Section IV-A, we propose the refinement of the
truncated water-filling scheme, which is obtained by employ-
ing the structure in (15) with ℘ref(γ), where

℘ref
b = min

{
β

γb
, κη,

α

γb
,

(
η − 1

γb

)
+

}
, (26)

and η is chosen such that IB(℘ref(γ), γ) = R.
Determining η for the power allocation rules in (21) and

(26) requires evaluating or tabulating IX (ρ), which may be
computationally complex. This can be avoided by using an
approximation ĨX (ρ) of IX (ρ). Let ΔR � maxρ(ĨX (ρ) −
IX (ρ)), then, a suboptimal ℘(γ) satisfies the rate constraint
when η is chosen such that

∑B
b=1 ĨX (℘bγb) = B(R + ΔR).

Following [21], we propose ĨX (ρ) = M(1−e−c1ρc2 )c3 . Using
numerical optimization to minimize the mean-squared-error
between IX (ρ) and ĨX (ρ), the parameters c1, c2, c3 for various
modulation schemes are showed in Table II. The performance
of the suboptimal schemes is illustrated by the dashed lines in
Figure 3. As we observe, the performance of the truncated
water-filling scheme is very close to that of the optimal
scheme; the refined truncated water-filling scheme provides
additional gains, especially for systems operate at rates close
to M .
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TABLE II
OPTIMIZED c1, c2 AND c3 PARAMETERS FOR THE APPROXIMATION OF ĨX (ρ).

Modulation Scheme

QPSK 8-PSK 16-QAM 64-QAM

CM BICM CM BICM CM BICM CM BICM
c1 0.77 0.77 0.61 0.81 0.48 0.59 0.47 0.4
c2 0.87 0.87 0.68 0.06 0.61 0.06 0.44 0.05
c3 1.16 1.16 1.45 1.75 1.48 1.65 1.87 1.63

ΔR 0.0033 0.0033 0.0241 0.0223 0.0414 0.0259 0.0977 0.0656

C. Peak-to-Average Power Ratio Constraints

For systems with average power Pav and peak-to-average
power ratio constraint PAPR, the power allocation rule is
subject to both average power constraint Pav and peak power
constraint Ppeak = PAPR ·Pav, the optimal power allocation
scheme solves [8],

p̂(γ) = arg min
〈p(γ)〉≤Ppeak
E[〈p(γ)〉]≤Pav

p(γ)	0

Pr(IB(p(γ), γ) < R) (27)

Following the arguments in [8], the optimal power allocation
rule p̂opt(γ) is given by

p̂opt(γ) =

{
℘opt(γ), 〈℘opt(γ)〉 ≤ ŝ

0, otherwise,
(28)

where ℘opt(γ) is given in (18) and ŝ = min{s�, Ppeak} with
s� defined as in (17).

We observe that, depending on Pav and the PAPR (which
is fixed), one of the power constraints is redundant and the
outage performance is dependent on the remaining constraint.
In particular we have that

Pout

(
p̂opt(γ), Pav, R

)
={

Pout (popt(γ), Ppeak, R) , s� > Ppeak

Pout (popt
av (γ), Pav, R) , s� ≤ Ppeak.

(29)

Consequently, the outage probability can also be evaluated as

Pout

(
p̂opt(γ), Pav, R

)
=max

{
Pout

(
popt(γ), Ppeak, R

)
,

Pout

(
popt

av (γ), Pav, R
)}

. (30)

Suboptimal schemes based on truncated and refined trun-
cated water-filling follow directly from the approach de-
scribed above. For example, the truncated water-filling so-
lution p̂tw(γ) is obtained from (22) by replacing stw with
ŝtw = min{Ppeak, s

tw}. For large Pav, we have the following.
Proposition 3: Consider transmission at rate R over the

block-fading channel given in (1) with power allocation
scheme p̂opt(γ) (or p̂tw(γ)). Assume input constellation X of
size 2M . Further assume that the power fading gains γ follow
the Nakagami-m distribution given in (2). Then, for large Pav

and any PAPR < ∞, the outage probability behaves like

Pout

(
p̂opt(γ), Pav, R

) .= KP−md(R)
av (31)

Pout

(
p̂tw(γ), Pav, R

) .= KβP
−mdβ(R)
av . (32)

Proof: For sufficiently large Ppeak we have that [10]

Pout

(
popt(γ), Ppeak, R

) .= KpeakP
−md(R)
peak . (33)

Let P(℘opt(γ), s) be the average power constraint as a
function of the threshold s in the allocation scheme popt

av (γ)
in (15). Asymptotically with s [10],

d

ds
P(℘opt(γ), s) .= Kpeakd(R)s−d(R).

Therefore, from L’Hôpital’s rule, we have for any PAPR

lim
s→∞

PAPR · P(℘opt(γ), s)

s
= lim

s→∞
d

ds
PAPR · P(℘opt(γ), s)

= 0.

It follows that for any PAPR, there exists an s0 and the
corresponding average power constraint P0 = P(℘opt(γ), s0)
such that s0 = PAPR · P0 and s > P(℘opt(γ), s) · PAPR if
P(℘opt(γ), s) > P0. Consequently, Pout

(
p̂opt(γ), Pav, R

)
=

Pout (popt(γ), PAPR · Pav, R) for Pav > P0. Thus, together
with (33), at large Pav, we have

Pout

(
p̂opt(γ), Pav, R

) .= Pout

(
popt(γ), PAPR · Pav, R

)
.= KpeakPAPR−md(R)P−md(R)

av .

By noting that Pout (ptw(γ), Ppeak, R) .= Kpeak
β P

−mdβ(R)
peak ,

the proof for the suboptimal scheme p̂tw(γ) follows using
the same arguments as above.

The threshold P0 in the proof is the average power con-
straint such that the threshold s in (17) satisfies s = PAPR·P0.
Equivalently, P0 satisfies∫

γ:〈℘opt(γ)〉≤PAPR·P0

〈
℘opt(γ)

〉
dFγ(γ) = P0, (34)

where Fγ(γ) is the joint pdf of γ = (γ1, . . . , γB). We
therefore have that

Pout

(
p̂opt(γ), Pav, R

)
= Pout

(
popt(γ), PAPR · Pav, R

)
for Pav > P0. Thus, for asymptotically large Pav, the outage
probability for systems with a PAPR constraint is determined
by the outage probability of systems with peak power con-
straint Ppeak = PAPR ·Pav. As a consequence, we have that
the delay-limited capacity [22] is zero for any finite PAPR.
For simplicity, we first consider the outage performance of
systems with B = 1 under Nakagami-m fading statistic. Let
Fγ(γ) be the cumulative distribution function (cdf) of γ. For
Pav > P0 (s > PAPR · Pav) the outage probability is

Pout

(
popt(γ), PAPR · Pav, R

)
= Fγ

(
I−1
X (R)

PAPR · Pav

)
.

For Pav < P0 (s < PAPR · Pav), s in (15) is obtained from

mI−1
X (R)

Γ(m)
Γ
(

m − 1,
mI−1

X (R)
s

)
= Pav,
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Fig. 4. Outage probability for systems with PAPR constraints over Nakagami-
m block-fading channels B = 1, m = 1, R = 1, 16-QAM inputs. The solid
and dashed lines correspondingly represent outage probability of systems with
coded modulation and BICM.
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Fig. 5. Outage probability for systems with PAPR constraints over Nakagami-
m block-fading channels B = 4, m = 1, R = 3, 16-QAM inputs. The solid
and dashed lines correspondingly represent outage probability of systems with
coded modulation and BICM.

and the outage probability is given by

Pout

(
popt

av (γ), Pav, R
)

= Fγ

(
I−1
X (R)

s

)
.

The analytical result for B = 1 is illustrated in Figure 4 for
a 16-QAM input, Rayleigh fading channel at rate R = 1. We
observe that as we increase the PAPR constraint, the error
floor occurs at lower error probability values, and eventually,
at values below a target quality-of-service error rate. We also
observe that the loss incurred by BICM is minimal.

For systems with B > 1, analytical results are not available
in closed form. However, from (30), the outage probability of
systems with PAPR constraints can be obtained from systems
with peak power constraints and systems with average power
constraints separately. Moreover, at high Pav, the outage prob-
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Fig. 6. Outage probability for systems with peak and average power
constraints using 16-QAM input constellation over Nakagami-m block-fading
channels with B = 4, m = 1, R = 3 and peak-to-average power ratio PAPR.
The solid and dashed lines correspondingly represent outage probability of
systems with optimal and truncated water-filling schemes with β = 19 dB.

ability can be obtained by the outage probability of systems
with only a peak power constraint Pav · PAPR. Simulation
results for a 16-QAM input, Rayleigh fading channel with
B = 4 blocks at rate R = 3 are given in Figure 5. In both
cases the outage probability at high Pav resulting from the
optimal power allocation scheme is governed by the peak
power constraints, and therefore, the optimal outage diversity
is given by the Singleton bound.

The outage performance of systems with 16-QAM inputs,
Rayleigh fading channel with B = 4, R = 3, employing the
truncated water-filling scheme is illustrated in Figure 6. As
pointed out in Section IV-A, relatively high β (19 dB) is
required to maintain the optimal outage diversity up to the
Pav of interest. In this case, the refined truncated water-filling
power allocation scheme, as discussed in the previous section,
can be used to reduce the gap from optimality. For rates where
smaller β can be used, small gaps from the optimal outage
probability are observed, as for systems with peak and with
average power constraints.

V. ERGODIC CAPACITY MAXIMIZATION

We now consider the capacity of the ergodic channel, where
B is sufficiently large to reveal the statistics of the channel
within one codeword. For a given power allocation rule p(γ),
the ergodic capacity of the channel is

C = Eγ [IX (p(γ)γ)] =
∫

γ>0

IX (p(γ)γ)fγ(γ)dγ. (35)

A. Average Power Constraint

For a system with an average power constraint Pav, the
power allocation problem is

popt(γ) = arg max
Eγ [p(γ)]≤Pav

p(γ)≥0

Eγ [IX (p(γ)γ)] . (36)
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The solution is given by [9]

popt(γ) =
1
γ

MMSE−1
X

(
min

{
MMSEX (0),

η

γ

})
, (37)

where η is chosen such that Eγ [popt(γ)] = Pav. The resulting
capacity is

Copt =
∫ ∞

η
MMSEX (0)

IX

(
MMSE−1

X

(
η

γ

))
fγ(γ)dγ. (38)

As before, the suboptimal truncated water-filling scheme
can be obtained by solving

ptw(γ) = arg max
Eγ [p(γ)]≤Pav

0≤p(γ)≤ β
γ

Eγ [log2(1 + p(γ)γ)] . (39)

Using the KKT conditions, we have that

ptw(γ) = min

{
β

γ
,

(
η − 1

γ

)
+

}
, (40)

where η is chosen such that Eγ [ptw(γ)] = Pav. The resulting
capacity is

Ctw =

∫ β+1
η

1
η

IX (ηγ − 1)fγ(γ)dγ + IX (β)

(
1 − Fγ

(
β + 1

η

))
.

(41)

B. Peak-to-Average Power Constraint

For systems with a PAPR constraints, the optimal power
allocation rule is given by

popt
papr(γ) = arg max

Eγ [0≤p(γ)]≤Pav
p(γ)≤Ppeak

Eγ [IX (p(γ)γ)] , (42)

where Ppeak = PAPR · Pav. Applying the KKT conditions,
the optimal power allocation is

popt
papr(γ) =

min
{

Ppeak,
1
γ

MMSE−1
X

(
min

{
MMSEX (0),

η

γ

})}
,

where η is chosen such that Eγ

[
popt
papr(γ)

]
= Pav.

The suboptimal power allocation rule based on the truncated
water-filling algorithm is

ptw
papr(γ) = arg max

Eγ [p(γ)]≤Pav

0≤p(γ)≤min{Ppeak, β
γ }

Eγ [log2(1 + p(γ)γ)] .

Letting α(γ) = min
{

Ppeak,
β
γ

}
, then a truncated water-filling

scheme is given by

ptw
papr(γ) = min

{
α(γ),

(
η − 1

γ

)
+

}
, (43)

where η is chosen such that Eγ

[
ptw
papr(γ)

]
= Pav. It can be

seen that if η ≤ Ppeak or β+1
η ≤ 1

η−Ppeak
, (43) is equivalent to

(40). Therefore, the resulting ergodic capacity is given in (41).
Otherwise, let a = 1

η−Ppeak
and b = β

Ppeak
, then the resulting

ergodic capacity can be written as

Ctw
papr =

∫ a

1/η

IX (ηγ − 1)fγ(γ)dγ+

∫ b

a

IX (Ppeakγ)fγ(γ)dγ + (1 − Fγ (b)) IX (β).
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Fig. 7. Capacity of ergodic fading channel with m = 1, 16-QAM coded
modulation inputs and average power constraint. The dashed line represents
capacity of the unfaded AWGN channel, and the solid, dashed-dotted and
dotted lines correspondingly represent capacities with optimal, truncated
water-filling and uniform power allocation.
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Fig. 8. Capacity of ergodic fading channel with m = 1, 16-QAM coded
modulation inputs and PAPR = 3dB. The dashed line represents capacity
of the unfaded AWGN channel and the solid, dashed-dotted and dotted lines
correspondingly represent 16-QAM capacities with optimal, truncated water-
filling and uniform power allocation.

C. Numerical Results

Numerical results for the ergodic capacity of Rayleigh
fading channels with 16-QAM inputs are presented in Figures
7, 8, 9. Figures 7 and 8 show the performance of the
truncated water-filling scheme with average power constraints
and PAPR constraints, respectively, where β has been chosen
to maximize capacity at each Pav. The results show that the
performance of the truncated water-filling scheme is close to
optimal for both systems with average power constraints and
systems with PAPR constraints. Figure 9 shows the ergodic
capacity for various PAPR constraints. Loss in capacity due
to PAPR constraints occurs at low and high Pav. Still, the loss
is minimal, even with relatively small PAPR (4dB).
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Fig. 9. Capacity of ergodic fading channel with m = 1, 16-QAM coded mod-
ulation inputs and PAPR constraints. The solid line with crosses represents
capacity of the unfaded AWGN channel; the dotted line represents the capacity
with uniform power allocation and the solid, dashed-dotted and dashed lines
correspondingly represent 16-QAM capacities with PAPR = ∞, 4, 1dB.

VI. CONCLUSIONS

We have studied power allocation schemes under peak,
average and peak-to-average power constraints for ergodic
and delay-limited block-fading channels with arbitrary in-
put distributions. We propose suboptimal schemes with low
computational and storage capabilities, while still perform-
ing close to optimal. In the delay-limited block-fading case,
we have shown that the suboptimal scheme maintains the
optimal outage diversity in most cases. A refined truncated
water-filling scheme is proposed to reduce the performance
loss when optimal outage diversity cannot be obtained by
truncated water-filling. For systems with PAPR constraints,
the optimal and suboptimal solutions can be easily computed
from the corresponding solutions with independent peak and
average power constraints. The asymptotic performance for
finite PAPR is always determined by the peak power, and
the exponent is therefore given by the exponent of systems
with peak power constraints. In the ergodic case, the truncated
water-filling scheme yields insignificant loss compare to the
optimal scheme for the entire SNR range. Also, even small
PAPR values entail minimal loss to the ergodic capacity.

APPENDIX

Let

Iβ
1 (ρ) �

{
IX (β) ρ > β

0, otherwise.
(44)

Since ptw
b γb ≤ β, we have that,

B∑
b=1

Iβ
1 (ptw

b γb) ≤
B∑

b=1

IB(ptw(γ), γ) ≤
B∑

b=1

Iβ(BPpeakγb)

(45)
We further lower bound IB(ptw(γ), γ) by the following.

Proposition 4: Consider the truncated water-filling scheme
given in (10). We have that

B∑
b=1

Iβ
1 (ptw

b γb) ≥
B∑

b=1

Iβ
1 (Ppeakγb) (46)

for any channel realization γ, where Iβ
1 (ρ) is given in (44).

Proof: According to (44), Iβ
X (Ppeakγb) is non-zero only

if γb ≥ β
Ppeak

. Therefore, we need to prove that if γb ≥ β
Ppeak

then ptw
b ≥ β

γb
for all realization of γ. Without loss of

generality, assume that γ1 ≤ . . . ≤ γB . If γB < β
Ppeak

, (46) is
certainly true. Otherwise, there exists a k, 1 ≤ k ≤ B, such
that γk−1 < β

Ppeak
≤ γk ≤ . . . ≤ γB . Consider the following

two cases.

• If
∑B

b=1
1
γb

< BP
β then from (10), ptw

b = β
γb

, b =
1, . . . , B.

• Otherwise, from (10), the power allocation solution is

ptw
b = min

{
β

γb
,

(
η − 1

γb

)
+

}
, b = 1, . . . , B, (47)

where η is chosen such that
∑B

b=1 ptw
b = BP . Since

γk ≥ β
P , we have from (10) that ptw

b ≤ β
γb

≤ β
γk

≤
P, b = k, . . . , B. Therefore,

k∑
b=1

ptw
b =

B∑
b=1

ptw
b −

B∑
b=k+1

ptw
b ≥ kP. (48)

Now, suppose η < β+1
γk

, then, for b = 1, . . . , k, ptw
b ≤ η−

1
γb

< β+1
γk

− 1
γk

= β
γk

≤ P . Thus,
∑k

b=1 ptw
b < kP , which

contradicts to (48). Therefore, assumption η < β+1
γk

is

invalid. We then conclude that η ≥ β+1
γk

≥ β+1
γb

, b =
k, . . . , B. Therefore from (47), ptw

b = β
γb

, b = k, . . . , B.

Thus, in all cases, we have ptw
b = β

γb
if γb ≥ β

P . This
concludes the proof of the proposition.
Therefore, from (45), we have that

Pr

(
B∑

b=1

Iβ(BPpeak) < BR

)
≤ Pout

(
ptw(γ), Ppeak, R

)

≤ Pr

(
B∑

b=1

Iβ
1 (Ppeakγb) < BR

)

With similar arguments to the analysis in [20], we have that
with Nakagami-m fading,

Pr

(
B∑

b=1

Iβ(BPpeakγb) < BR

)
.= K	P

−mdβ(R)
peak

Pr

(
B∑

b=1

Iβ
1 (Ppeakγb) < BR

)
.= KuP

−mdβ(R)
peak ,

which leads to Pout (ptw(γ), Ppeak, R) .= Kpeak
β P

−mdβ(R)
peak .
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