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Abstract—This paper determines the range of feasible values of
standard error exponents for binary-input memoryless symmetric
channels of fixed capacity and shows that extremes are attained
by the binary symmetric and the binary erasure channel. The proof
technique also provides analogous extremes for other quantities re-
lated to Gallager’s function, such as the cutoff rate, the Bhat-
tacharyya parameter, and the channel dispersion.
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channel dispersion, cutoff rate, discrete memoryless channels,
error exponents, error probability, random coding, symmetric
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I. INTRODUCTION

I N the context of coded communication, the channel coding
theorem relates the error probability and the code rate,

showing that there exist codes whose error probability tends
to zero provided that the code rate is smaller than the channel
capacity. For uncoded systems, the error probability and the
channel capacity are also related. In particular, in [1]–[3], it
is shown that given one of the two values, tight bounds on
the other can be given for the family of binary-input mem-
oryless and symmetric (BIMS) channels. Such channels are
described by the channel transition probability ,
where and . We assume that the channel
output alphabet has finite size, though our approach also
holds for well-behaved channels with infinite alphabet size,
like the binary-input additive white Gaussian noise (BIAWGN)
channel. We adopt Gallager’s definition of symmetric channel
[4, p. 94], that is, a channel is said symmetric if the channel
transition probability matrix (rows corresponding to input
values) is such that it can be partitioned in submatrices for
which each row is a permutation of any other row and each
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column is a permutation of any other column. Both the binary
erasure channel (BEC) and the binary symmetric channel
(BSC) are symmetric.
More precisely, in [1]–[3], it is shown that the uncoded error

probability of any BIMS channel with capacity is upper-
bounded by that of the BEC and lower-bounded by that of the
BSC of the same capacity. Similar results have been found in
[5] and [6] for the Bhattacharyya parameter, a simple upper
bound to the uncoded error probability; here, only the extremal
property of the BEC was proved. In the context of iterative de-
coding, analogous extremal properties of the BEC and BSC
have been found [7], [8] for the building blocks of iterative
decoders for low-density parity-check codes, namely variable-
node and check-node decoders.
Upper and lower bounds to the error probability of good

codes can be given in terms of error exponents, e.g., Gallager’s
random coding bound [4, Th. 5.6.3], the sphere-packing bound
by Shannon et al. [9] and Arimoto’s strong converse bound
[10]. These exponents are expressed as optimization problems
involving Gallager’s function [4, Eq. 5.6.14]

(1)

where

(2)

and the pair is distributed according to . Here
and throughout this paper, denotes the expectation of a
random variable and all logarithms are in base 2.
Equiprobable inputs maximize the function for BIMS

channels [11, p. 203], and we henceforth assume such distribu-
tion, i.e., .
In this paper, we characterize the feasible values of

for an arbitrary BIMS channel of fixed channel capacity
and show that the function is upper-bounded (respectively,
lower-bounded) by that of the BEC (respectively, BSC) of
the same capacity. Since the aforementioned exponents are
expressed using the function, we are able to find their
extremal values. In fact, our analysis leads to similar results
for the cutoff rate, the Bhattacharyya parameter, the channel
dispersion, and to a number of other extensions.

II. FEASIBLE PAIRS OF CAPACITY AND FUNCTION

The functions for the BEC and BSC of era-
sure/crossover probability , respectively, denoted by
and , are given by

(3)

(4)
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Fig. 1. Region of feasible points for . The upper
curves correspond to the BSC and the lower straight lines to the BEC.

Using the capacity expressions for the BEC, , and
BSC, , we can find the erasure/crossover prob-
ability corresponding to a given capacity and parametrize the

and function as functions of , namely

(5)

(6)

where is the binary entropy
function, and denotes the inverse of for .

are, respectively, defined as the in-
verses of (5) and (6) with respect to .
For BIMS channels, one has the bounds and

for and for . This
is a consequence of the facts that is nonnegative and non-
increasing for [4, App. 5B], that ,
and that . It is, however, not apparent whether further
limitations exist on the feasible pairs of capacity and .
Against this first impression, the next theorem tightly character-
izes the set of possible pairs of capacity and function
for any BIMS channel (see Fig. 1). In the next section, we apply
this theorem and prove several analogous characterizations for
other relevant quantities in the analysis of the error probability
over BIMS channels.

Theorem 1: For any BIMS channel with capacity and func-
tion for , the following statements hold:
1) the function of the channel satisfies

(7)

2) the capacity of the channel satisfies

(8)

(9)

The extremes in (7)–(9) are attained by the BEC and the BSC.
Furthermore, for a given pair satisfying the in-

equalities in (7) or (8), there exists a BIMS channel with ca-
pacity and function . Conversely, if the inequalities do
not hold for the pair , there exists no such BIMS
channel with capacity and function .

A. Proof of Theorem 1

The proof is built around the idea that every BIMS channel
admits a decomposition into subchannels that are BSCs. This
decomposition follows directly from Gallager’s definition of
symmetric channels [4, p. 94] as used in this paper. A formal
description may be found e.g., in [3] and [7]. Here, we deem
identical the BEC with erasure probability 1 and the BSC with
crossover probability . In this decomposition, each channel
output is associated with an index which is in-
dependent of the input and depends on the channel output only.
We denote by the probability mass or density function
of subchannel , and by the corresponding binary-output
alphabet of the BSC with index . Assuming such a decompo-
sition, and since [3], [7],
we have

(10)

(11)

(12)

where denotes the capacity of subchannel .
The following lemma is proved in Appendix I.

Lemma 1: The function is concave in
for any , nondecreasing for , and nonin-
creasing for .
Noting that , and given the concavity of the

function , we apply Jensen’s inequality to obtain

(13)

(14)

(15)

The bound is obviously achieved when the channel is a BSC.
Since is concave, we can lower-bound it by

a straight line joining the points and
(see Fig. 1), and then evaluate the expec-

tation, i.e.,

(16)

(17)

(18)

This bound is obviously achieved when the channel is a BEC,
thus proving (7).
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Equation (7) determines the boundaries of the region of
feasible pairs . Since is concave and

is convex, the region of feasible pairs is convex.
Moreover, the functions and are nonde-
creasing for and nonincreasing for . Fixing
the value of , the convexity of the region implies (8).
We next prove that the region of feasible pairs is

connected by constructing a BIMS channel with corresponding
capacity and function . Consider a binary symmetric-
erasure channel (BSEC) with input alphabet , output al-
phabet , cross-over probability and erasure proba-
bility . Its transition probabilities are given by

, ,
and . The capacity
and function are, respectively:

(19)

(20)

For fixed , there exist several BSEC channels with capacity ,
among them a BSC and a BEC. Each of them is characterized
by a pair of probabilities and . The corresponding
function is given by (20). Since the function is contin-
uous in and , one can always find a BSEC with capacity
whose function coincides with the desired .

B. Applications

In the proof of Theorem 1, we exploited the fact that the re-
gion of feasible pairs is convex and connected to
characterize the extreme values of the capacity or the function

. In this section, we apply the theorem to provide extreme
values for other relevant quantities in the error probability anal-
ysis of channel coding. A simple extension to channel param-
eters given by , where is a monotonic
continuous function, will prove convenient.

Theorem 2: Let the channel parameter be given by
, where is a monotonic strictly increasing contin-

uous function. For any BIMS channel, we have that
1) the channel parameter satisfies

(21)

2) the channel capacity satisfies

(22)

(23)

Inequalities (21)–(23) are reversed if is monotonic, strictly
decreasing and continuous.

Gallager’s function: By letting , the pre-
vious theorem readily gives the extremes of Gallager’s function

for a fixed capacity, and the extremes of
the capacity for a fixed .

Fig. 2. Upper and lower bounds to the capacity as a function of the
Bhattacharyya parameter . Arıkan’s upper and lower bounds [6, Eqs. (1), (2)]
and the BIAWGN channel curve (dashed line) are also shown for reference.

Cutoff rate: A particular case of the function is the
cutoff rate, given by . Thus, the above result also
gives the extremes of the cutoff rate.

Bhattacharyya parameter: A related quantity is the Bhat-
tacharyya parameter , given by

(24)

The BSC/BEC have the largest/smallest possible Bhattacharyya
parameter for BIMS channels of capacity , interestingly
giving the reverse extremes of the uncoded error probability
[1]–[3]. This result recovers Sason’s [5] and Arıkan’s [6] bound
for the BEC, and provides the extreme in the other direction
attained by the BSC. Fig. 2 shows the bounds to for a given
value of from Theorem 2, as well as Arıkan’s generic bounds
for binary-input discrete memoryless channels [6, Eqs. (1),
(2)], illustrating some improvement.

Random coding exponent: The random coding exponent
[4, Sec. 5.6], given by

(25)

provides an upper bound to the error probability of codes of rate
. This exponent involves a maximization of a function that, for

fixed falls under the conditions for applicability of Theorems
1 and 2. Therefore, the exponent satisfies

(26)

Fig. 3 illustrates the extremes of random-coding error exponents
. The random-coding error exponent of an arbitrary BIMS

channel must lie in the shaded area; two such examples are
the BIAWGN channel of the same capacity (with and without
fading).
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Fig. 3. Random coding error exponents of the BEC, BSC, BIAWGN (dashed),
and Rayleigh fading BIAWGN (dash-dotted).

Expurgated error exponent: For rates below the channel
critical rate, the expurgated error exponent [4, Sec. 5.7],
given by

(27)

provides a tighter estimate of the error probability of good codes
than the random-coding exponent. The function is ex-
pressed in terms of the Bhattacharyya parameter as

(28)

Theorem 2 provides the extremes of the expurgated exponent.
Strong converse exponent: In [10], Arimoto lower-

bounded the error probability of block codes at rates above
capacity in terms of the function given by

(29)

Theorem 2 also provides the extremes of this exponent.
Sphere-packing exponent: The error probability of codes

of rate is lower-bounded by a bound that depends on the
sphere-packing exponent [9] , given by

(30)

Again, Theorem 2 provides the extremes of this exponent.
Threshold-decoding error exponents: The exponent of

random-coding bounds based on threshold decoding can also
be expressed in closed form. Shannon [12] derived the expo-
nent of Feinstein’s bound to the error probability [13]. More
generally, the exponent corresponding to a generalized form of
Feinstein’s bound [14] can be expressed as

(31)

Fig. 4. Extremes of the channel dispersion .

Theorem 2 directly gives the error exponent extremes for the
generalized Feinstein’s bound.
The exponent of the dependence-testing bound [15] is [14]

(32)

where , for , and

(33)

Following similar and somewhat simpler steps to those in the
proof of Lemma 1, one can prove that , evaluated
for a BSCwith capacity , is concave in . Therefore, Theorem
2 holds and shows that the exponent of the DT bound has similar
extreme values.

Channel dispersion: Recently, the Gaussian approxima-
tion to the error probability of length- codes at rates close
to the capacity has received renewed attention. In this approxi-
mation, a key channel parameter is the dispersion , which for
BIMS channels [12], [15] is given by

(34)

Moreover, it can be proved that one can choose either the
function or the simpler to compute the latter derivative,
that is . As proved in Appendix I,
the third derivative of at is bounded for BIMS
channels. Thus, a second-order Taylor expansion of
around shows that has the same extremes as

. As illustration, Fig. 4 depicts the possible values of
channel dispersion as a function of the capacity of the BIMS
channel. The dashed line, which lies within the shaded area in-
dicating the feasible region of pairs capacity/dispersion, corre-
sponds to the BIAWGN channel.
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Error probability of specific codes: Our theorems may also
be applied to specific codes with a given distance spectrum by
means of the Shulman–Feder bound [16] (see also [17]) given
by

(35)

where is a function of the distance spectrum of the code that
quantifies how far the distance spectrum of is from that of the
ensemble average.

Exact error probability: One might wonder whether our
extremal results extend to the actual error probability. The an-
swer is not immediately obvious. For uncoded transmission (a
code of length and rate ) over a given BIMS
channel of capacity , the error probability is upper- and
lower-bounded by that of the BEC and the BSC, respectively,

[2]. In contrast, the extremes
of the exponential bounds to the error probability, including the
Bhattacharyya parameter, are reversed. This phenomenon sug-
gests the existence of a pair such that a crossing point
occurs, in the sense that for rates above (respectively, below)
the extremes may be those of uncoded transmission (respec-

tively, the error exponents).
Connection with Arıkan, Telatar, and Alsan: Unpublished

work by Arıkan and Telatar [18] uncovered results of similar
nature to those reported in this paper, showing that for channels
with a fixed rate , for , the random coding
exponent satisfies

(36)

For , we have that and we obtain the trivial re-
sult that . Instead,
our results compare channels of a fixed capacity and provide
the extremal values of the random-coding exponent and other
quantities. The suitability of either of these two approaches to
the problem may depend on the specific application. A more re-
cent result by Alsan [19] recovers both Theorem 1 in this paper
and the results in [18] as particular cases, for BIMS channels in
the interval .

APPENDIX I
PROOF OF LEMMA 1

We aim at proving the concavity of the function

(37)

where is itself a function of , namely .
Without loss of generality, we limit our attention to the interval

. The function is concave if .
Applying the chain rule of derivation, we have that

(38)

(39)

Direct computation gives

(40)

(41)

An application of the inverse function theorem yields

(42)

(43)

The derivatives with respect to are, therefore, given by

(44)

(45)

Since we have that for and for
, we conclude that is increasing and decreasing in

the respective ranges of .
The term before the brackets

(46)

is always nonpositive for . Therefore, it suffices
to show that the function

(47)
is nonnegative for and .
Let . With this change of variables, we obtain

(48)

We wish to show that . The partial derivative with
respect to is given by

(49)

(50)
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We are interested in the sign of , whose derivative is in
turn given by

(51)

We readily see that

(52)

(53)

Summarizing, since is continuous in for ,
we have that
1) in , since is nondecreasing
and ;

2) in , since is nondecreasing
and ;

3) in , since is nonincreasing
and .

The fact that concludes the proof.

APPENDIX II

We wish to prove that the partial derivative
is bounded. To this end, we first note that the function

can be expressed as

(54)

where is the information density, defined as

(55)

The function is a cumulant generating function.
Its third derivative evaluated at gives the third-order
cumulant, that is the third-order central moment,

(56)
The next result shows that the th absolute moment of the

information density is bounded.

Lemma 2: Consider a memoryless channel with discrete
input alphabet and arbitrary output alphabet . Then, with
equiprobable inputs, we have

(57)

Proof: We will make use of Minkowski’s inequality
where . Using the

definition of , we now have that

(58)

(59)

(60)

(61)

(62)

where we have used that [20, Eq. (4.1.37)].

Using Lemma 2, we have that for BIMS channels

(63)
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