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Abstract— This paper studies expurgated random-coding
bounds and exponents for channel coding with a given (possibly
suboptimal) decoding rule. Variations of Gallager’s analysis are
presented, yielding several asymptotic and nonasymptotic bounds
on the error probability for an arbitrary codeword distribution.
A simple nonasymptotic bound is shown to attain an expo-
nent of Csiszár and Körner under constant-composition coding.
Using Lagrange duality, this exponent is expressed in several
forms, one of which is shown to permit a direct derivation via
cost-constrained coding that extends to infinite and continuous
alphabets. The method of type class enumeration is studied, and
it is shown that this approach can yield improved exponents
and better tightness guarantees for some codeword distributions.
A generalization of this approach is shown to provide a
multiletter exponent that extends immediately to channels with
memory.

Index Terms— Expurgated error exponents, reliability func-
tion, random coding, mismatched decoding, maximum-likelihood
decoding, type class enumeration.

I. INTRODUCTION

ACHIEVABLE performance bounds for channel coding
are typically obtained by analyzing the average error

probability of an ensemble of codebooks with independently
generated codewords. For memoryless channels, random codes
with independent and identically distributed (i.i.d.) symbols
achieve the channel capacity [1], characterize the error expo-
nent of the best code at sufficiently high rates [2, Ch. 5], and
provide tight bounds on the finite-length performance [3].
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At low rates, the error probability of the best code in the
random-coding ensemble can be significantly smaller than the
average. In such cases, better performance bounds are obtained
by considering an ensemble in which a subset of the randomly
generated codewords are expurgated from the codebook.
In particular, the error exponents resulting from such tech-
niques are generally higher than the random-coding error
exponent at low rates. Existing works exploring such tech-
niques include those of Gallager [2, Sec. 5.7], Csiszár-Körner-
Marton [4], [5, Ex. 10.18] and Csiszár-Körner [6]. The
advantages of Gallager’s approach include its simplicity and
the fact that the analysis is not restricted to finite alphabets.
Conversely, as we will see in Section III, the exponents of
[4]–[6] can improve on that of [2] for a given input distribution
or decoding rule.

In this paper, we provide techniques that attain the best of
each of the above approaches. Using variations of Gallager’s
analysis, we obtain several asymptotic and non-asymptotic
bounds for an arbitrary codeword distribution. Using these
bounds, we provide derivations of both new and existing
expurgated exponents, each yielding various advantages such
as simplicity, generality, and guarantees of exponential tight-
ness. We explore the method of type class enumeration (e.g.
see [7]–[9]) for both discrete and continuous channels, and
show that it can yield improved exponents and tightness
guarantees, as well as providing a multi-letter exponent that
extends immediately to channels with memory.

A. System Setup

The input and output alphabets are denoted by X and Y
respectively. The channel is assumed to be memoryless,
yielding an n-letter transition law given by W n(y|x) �∏n

i=1 W (yi |xi ) for some conditional distribution W (y|x).
In the case that both X and Y are finite, the channel is a
discrete memoryless channel (DMC), but we do not assume
this to be the case in general. The encoder takes as input a
message m equiprobable on the set {1, . . . , M}, and transmits
the corresponding codeword x(m) from a codebook C =
{x(1), . . . , x(M)}. The decoder receives the vector y at the
output of the channel, and forms the estimate

m̂ = arg max
j∈{1,...,M}

qn(x( j ), y), (1)

where qn(x, y) �
∏n

i=1 q(xi , yi ), and q(x, y) is a
non-negative function called the decoding metric. An error
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is said to have occurred if m̂ �= m, and we assume that ties
are broken as errors. We let pe,m(C) be the error probability
induced by C given a particular message m, and we denote
the maximal error probability by pe(C) � maxm pe,m(C).

When q(x, y) = W (y|x), (1) is the optimal maximum-
likelihood (ML) decoding rule. For other decoding metrics,
this setting is that of mismatched decoding [10]–[13], which is
relevant when ML decoding is not feasible, e.g. due to channel
uncertainty or implementation constraints.

Throughout the paper, we consider channels with both
constrained and unconstrained inputs. In the former setting,
each codeword x must satisfy a constraint of the form

1

n

n∑

i=1

c(xi ) ≤ �, (2)

where c(·) is referred to as a cost function, and � is a constant.
Except where stated otherwise, it will be assumed that the
input is unconstrained, which corresponds to � = ∞.

For a given rate R, an error exponent E(R) is said to
be achievable if there exists a sequence of codebooks Cn of
length n and rate R whose error probability pe(Cn) satisfies

lim inf
n→∞ − 1

n
log pe(Cn) ≥ E(R). (3)

We focus on the maximal error probability rather than the
average error probability, but the two are equivalent for the
purposes of studying error exponents.

B. Previous Work

Considering ML decoding, Gallager [2, Ch. 5] studied an
ensemble in which 2M−1 codewords are generated at random,
and a subset of M codewords forms the codebook. Roughly
speaking, the codewords that are kept are those that have
the lowest error probability among the original codewords. A
different approach was taken by Csiszár, Körner and Marton
[4] (see also [5, Ex. 10.18]), who began by proving the
existence of a collection of constant-composition codewords
such that any two codewords have a joint empirical distribution
satisfying certain properties. By analyzing this collection of
codewords using the method of types, an error exponent
was obtained which coincides with that of Gallager after
the optimization of the input distribution. An exponent for
mismatched decoding was derived by Csiszár and Körner [6],
and was shown to coincide with that of [4] when particularized
to the case of ML decoding.

As stated in the introduction, the exponents of [4], [6]
can in fact improve on that of Gallager for a given input
distribution. However, the proofs rely heavily on techniques
that are valid only when the input and output alphabets are
finite. In particular, [4] uses the type packing lemma [5, Ch.
10], and [6] uses a combinatorial graph decomposition lemma.
For other related works, see [14]–[17].

Overviews of the mismatched decoding problem can be
found in [10]–[13]. Most of the literature has focused on
achievable rates, whereas this paper is concerned with the
performance at low rates. The mismatched decoding paper
most relevant to this one is [13], which studies random-coding
error exponents for various non-expurgated ensembles.

C. Contributions

In Section II, we present variations of Gallager’s analysis
which yield several asymptotic and non-asymptotic bounds on
the error probability. In particular, we consider the use of a
logarithmic function in the expurgation argument in place of
the power function [2, Sec. 7.3].

In Section III, we present an overview of various expur-
gated exponents and the connections between them. Using
the method of Lagrange duality [18], we relate the exponents
given in [2], [4], and [6]. Generalizations of the exponents
in [2] and [4] to the setting of mismatched decoding are
given, and an alternative form of the exponent in [6] is given
which extends readily to channels with infinite or continuous
alphabets.

In Section IV, we present several methods for deriving both
new and existing exponents:

• In Section IV-A, we present simple techniques for deriv-
ing exponents using a non-asymptotic bound from Section
II. Applying constant-composition coding and the method
of types recovers the exponent in [6], thus providing a
simple and concise proof. Furthermore, applying cost-
constrained coding with multiple auxiliary costs [13]
recovers the generalization of this exponent to more
general alphabets.

• In Section IV-B, we study the method of type class
enumeration (see [7]–[9]), which is shown to yield better
exponents than the simpler approach for some codeword
distributions, and better guarantees of exponential tight-
ness.

• In Section IV-C, we extend the type class enumeration
analysis to allow for infinite and continuous alphabets.
This is not only of interest in itself, but also yields a multi-
letter exponent that can be directly applied to channels
with memory and more general decoding metrics.

D. Notation

We use bold symbols for vectors (e.g. x), and denote the
corresponding i -th entry using a subscript (e.g. xi ).

The set of all probability distributions on an alphabet, say X ,
is denoted by P(X ), and the set of all empirical distributions
on a vector in X n (i.e. types [5, Ch. 2]) is denoted by Pn(X ).
For a given type Q ∈ Pn(X ), the type class T n(Q) is defined
to be the set of all sequences in X n with type Q.

The probability of an event is denoted by P[·], and the
symbol ∼ means “distributed as”. The marginals of a joint
distribution PXY (x, y) are denoted by PX (x) and PY (y).
We write PX = P̃X to denote element-wise equality between
two probability distributions on the same alphabet. Expectation
with respect to a joint distribution PXY (x, y) is denoted by
EP [·], or simply E[·] when the associated probability distri-
bution is understood from the context. Similarly, the mutual
information with respect to PXY is written as IP (X; Y ), or
simply I (X; Y ) when the distribution is understood from the
context. Given a distribution Q(x) and conditional distribution
W (y|x), we write Q × W to denote the joint distribution
defined by Q(x)W (y|x).
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For two positive sequences fn and gn, we write
fn

.= gn if limn→∞ 1
n log fn

gn
= 0, and we write fn ≤̇ gn

if lim supn→∞ 1
n log fn

gn
≤ 0, and analogously for ≥̇. We write

fn = O(gn) if | fn | ≤ c|gn| for some c and sufficiently
large n. All logarithms have base e, and all rates are in units
of nats except in the examples, where bits are used. We define
[c]+ = max{0, c}, and denote the indicator function by 1{·}.

II. EXPURGATED BOUNDS

In this section, we present a number of variations of
Gallager’s bounds and techniques that will provide the starting
points of the derivations of the exponents in Section IV. We let
PX denote a codeword distribution, and we define the random
variables (X, Y , X) distributed according to

(X, Y , X) ∼ PX (x)W n(y|x)PX (x). (4)

In the case that a cost constraint of the form (2) is present,
we assume that PX is chosen such that X satisfies the
constraint with probability one.

We let C = {X(1), . . . , X (M ′)} be a random codebook of
size M ′ with each codeword independently generated accord-
ing to PX . The symbol C is used to denote a fixed expurgated
codebook containing M ≤ M ′ codewords.

We begin with the following straightforward generalization
of [2, Lemma, p. 151].

Lemma 1: Fix a function f : [0, 1] → R and a codeword
distribution PX such that f (pe,m(C)) is non-negative for all m
with probability one. For any η > 0, there exists a codebook C
of size M such that M ′ η

1+η < M ≤ M ′, and

f
(

pe,m(C)
) ≤ (1 + η)E

[
f (pe,m(C))

]
(5)

for m = 1, . . . , M.
Proof: The proof is identical to [2, Lemma, p. 151], with

the assumption of f (pe,m(C)) being non-negative ensuring the
validity of Markov’s inequality.

While Lemma 1 is valid for any function f (·), it is primarily
of interest when f (·) is monotonically increasing, so that (5)
can be inverted in order to obtain an upper bound on pe,m(C).
Gallager [2] presented the lemma with the choices η = 1 and
f (·) = (·)1/ρ (where ρ > 0), thus proving the existence of a
codebook C of size M such that

pe(C) ≤ (
2E

[
pe,m(C)1/ρ

])ρ
, (6)

where C contains M ′ = 2M − 1 codewords. In the following
theorem, we provide non-asymptotic bounds on the error
probability which follow in a straightforward fashion from (6).
The proof alters Gallager’s arguments for the purpose of better
characterizing the non-asymptotic performance, and also for
dealing with suboptimal decoding rules.

Theorem 1: For any pair (n, M), codeword distribution
PX , and parameters ρ ≥ 1 and s ≥ 0, there exists a
codebook Cn with M codewords of length n whose maximal
error probability satisfies

pe(Cn) ≤ rcuxρ(n, M) ≤ rcuxρ,s(n, M) (7)

where

rcuxρ(n, M)

�
(

4(M−1)E
[
P
[
qn(X, Y )≥qn(X, Y )

∣
∣ X, X

]1/ρ
])ρ

(8)

rcuxρ,s (n, M)

�
(

4(M − 1)E

[
E

[(
qn(X, Y )

qn(X, Y )

)s ∣
∣
∣
∣ X, X

]1/ρ])ρ

. (9)

Proof: We obtain (8) from (6) by weakening the
expectation as follows:

E
[

pe,m(C)1/ρ
]

≤ E

[( ∑

m �=m

P
[
qn(X (m), Y )≥qn(X (m), Y )

∣
∣
∣X(m), X (m)

])1/ρ]

(10)

≤ E

[
2(M − 1)P

[
qn(X, Y) ≥ qn(X, Y )

∣
∣
∣ X, X

]1/ρ
]
, (11)

where (10) follows from the union bound, and (11) follows
using M ′ = 2M − 1 along with the inequality

(∑

i

ai

)1/ρ

≤
∑

i

a1/ρ
i , (12)

which holds for any ρ ≥ 1. We obtain (9) by applying
Markov’s inequality to the inner probability in (8).

Following the terminology of Polyanskiy et al. [3], we refer
to the bounds in (8)–(9) as expurgated random-coding union
(RCUX) bounds. These bounds are computable for sufficiently
symmetric setups, and are thus of independent interest for
characterizing the finite-length performance [3]. Both rcuxρ

and rcuxρ,s extend immediately to channels with memory and
general decoding metrics (not necessarily single-letter).

The bound rcuxρ,s was presented by Gallager [2] under ML
decoding with s = 1

2 . For the random-coding ensembles we
consider, it will be seen that this choice of s is optimal for ML
decoding, at least in terms of the error exponent. However, for
mismatched decoding it is important to allow for an arbitrary
choice of s ≥ 0.

The following theorem gives an asymptotic bound that
follows by using Lemma 1 with a choice of f (·) differing
from that of Gallager.

Theorem 2: Consider a sequence of codebooks Cn con-
taining M ′

n = enR codewords generated independently accord-
ing to PX . Suppose that there exists a non-negative sequence
E(n) growing subexponentially in n (i.e. E(n)

.= 1) such that

P
[
qn(x, Y) ≥ qn(x, Y )

∣
∣ X = x

] ≥ e−E(n) (13)

for all x and x on the support of PX . Then there exists a
sequence of codebooks Cn with Mn codewords such that

lim
n→∞

1

n
log Mn = R (14)

and

pe(Cn) ≤̇ exp
(
E[log pe,m(Cn)]) (15)

≤ exp
(
ρ E

[
log E

[
pe,m(Cn)1/ρ

∣∣ X(m)
]])

, (16)

where (16) holds for any ρ > 0.
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Proof: The error probability associated with the trans-
mitted codeword x is lower bounded by the left-hand side
of (13), where x is any incorrect codeword. The assumption
in (13) thus implies that the function f (pe,m(C)) = E(n) +
log pe,m(C) is non-negative for m = 1, . . . , M . Applying
Lemma 1, we conclude that for each n and any ηn > 0 there
exists a codebook Cn of size Mn = enR ηn

1+ηn
such that

E(n)+log pe(Cn) ≤ (1+ηn)
(

E(n)+E[log pe,m(Cn)]
)
. (17)

Since log α ≤ 0 for α ∈ (0, 1], it follows that

log pe(Cn) ≤ ηn E(n) + E[log pe,m(Cn)]. (18)

Choosing ηn = 1
E(n) , we obtain (15), and the assumption that

E(n)
.= 1 implies (14). We obtain (16) by writing log α =

ρ log(α1/ρ) and E[ · ] = E[E[ · |X(m)]], and applying Jensen’s
inequality.

The assumption of Theorem 2 is mild, allowing ensembles
for which the error probability associated with any two per-
missible codewords decays nearly double-exponentially fast.
However, it is a multi-letter condition, and may be difficult to
verify directly. A single-letter sufficient condition depending
only on the channel, metric and cost constraint (2) is that

lim
γ→∞

1

γ
log log

1

π(γ )
= 0, (19)

where

π(γ ) � min
(x,x) : c(x)≤γ,c(x)≤γ

P[Yx ∈ E(x, x)] (20)

E(x, x) �
{

y : q(x, y) ≥ q(x, y)
}
, (21)

where in (20) we define Yx ∼ W (·|x). Under this assumption,
the probability in (13) is lower bounded by the probability
that Yi ∈ E(Xi , Xi ) for i = 1, . . . , n, which in turn is lower
bounded by π(n�)n . Since n times a subexponential sequence
is also subexponential, the condition of Theorem 2 follows
from (19). Further discussion is given in Appendix A, along
with some examples.

From (15), we can see the advantage of the expurgated
ensemble over the non-expurgated one. The former yields
the exponent corresponding to − 1

n E[log pe,m(Cn)], which is
higher in general than that of − 1

n log E[pe,m(Cn)] due to
Jensen’s inequality.

Using L’Hôpital’s rule, it is easily shown that
limρ→∞ ρ log E[Z1/ρ] = E[log Z ] for any random variable Z .
It follows that the inequality in (16) is actually an equality
in the limit as ρ → ∞. At first glance, it may appear that
a similar argument can be used to show that (6) yields the
same exponent as (15). However, there is an issue with the
order of the limits of n and ρ. If we take ρ → ∞ in (6),
the factor 2ρ makes the right-hand side equal ∞. Letting ρ
grow slowly with n is also potentially problematic, since the
random variable pe,m(C) varies with n.

The bounds in Theorem 2 will prove useful for deriving
improved exponents compared to Theorem 1 for some code-
word distributions, and for extending the type class enumera-
tion method beyond the finite-alphabet setting.

III. EXPURGATED ENSEMBLES AND EXPONENTS

In this section, we present an overview of various expur-
gated exponents and the connections between them. Our focus
here is primarily on existing exponents or simple variations
thereof, though we also provide a dual form of the exponent in
[6] that is new to the best of our knowledge. Further exponents
appearing for the first time in this paper are given in Theorems
5 and 7 in Section IV.

Throughout the paper, we consider three expurgated ensem-
bles, each of which depends on an input distribution Q:

1) The i.i.d. ensemble is characterized by

PX (x) =
n∏

i=1

Q(xi ). (22)

This codeword distribution is valid for both discrete and
continuous alphabets, but it is not suitable for channels
with cost constraints, since in all non-trivial cases there
is a non-zero probability of violating the constraint.

2) The constant-composition ensemble is characterized by

PX (x) = 1

|T n(Qn)|1
{

x ∈ T n(Qn)
}
, (23)

where Qn is a type with the same support as Q such
that |Qn(x) − Q(x)| = O

( 1
n

)
for all x . This codeword

distribution relies on the input being finite. It is directly
applicable to channels with input constraints, since each
codeword satisfies (2) provided that EQn [c(X)] ≤ �,
which in turn can be achieved if EQ [c(X)] ≤ �.

3) The cost-constrained ensemble is characterized by

PX (x) = 1

μn

n∏

i=1

Q(xi )1
{

x ∈ Dn
}
, (24)

where

Dn �
{

x : 1

n

n∑

i=1

c(xi) ≤ �,

∣∣∣∣
1

n

n∑

i=1

al(xi ) − φl

∣∣∣∣ ≤ δ

n
, l =1, . . . , L

}
, (25)

and where δ is a positive constant (independent of n),
{al(·)}L

l=1 are functions with means φl � EQ [al(X)], and
μn is a normalizing constant. This codeword distribution
is valid for both discrete and continuous alphabets,
and ensures that each codeword satisfies (2). Both c(·)
and {al(·)} can be thought of as cost functions, and
we will distinguish between the two by referring to
them as the system cost and auxiliary costs respectively.
In contrast to the system cost, the auxiliary costs can
be optimized. That is, while the system cost is given
as part of the problem statement, the auxiliary costs are
introduced to improve the performance of the random-
coding ensemble itself [12], [13], [19].

We proceed by stating and comparing the exponents
obtained by the above ensembles; derivations will be given
in Section IV. Except where stated otherwise, we assume that
the channel is a DMC with unconstrained inputs.
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A straightforward generalization of Gallager’s i.i.d. expo-
nent to the setting of mismatched decoding is as follows:

E iid
ex (Q, R) � sup

ρ≥1
E iid

x (Q, ρ) − ρR, (26)

where

E iid
x (Q, ρ) � sup

s≥0

−ρ log
∑

x,x

Q(x)Q(x)

(∑

y

W (y|x)

(
q(x, y)

q(x, y)

)s)1/ρ

. (27)

The objective in (27) is concave in s, and under ML decoding
(i.e. q(x, y) = W (y|x)), it is also unchanged when s is
replaced by 1− s. From these properties, it follows that s = 1

2
is optimal for ML decoding, and thus the exponent is the same
as that of Gallager [2].

Csiszár and Körner [6] make use of the constant-
composition codeword distribution in (23). The analysis is
significantly different to that of Gallager, and yields an expo-
nent in a different form, namely

Ecc
ex(Q, R) � min

PX XY ∈T (Q)

IP (X;X)≤R

D(PX XY ‖Q × Q × W ) − R, (28)

where the notation Q × Q × W denotes the distribution
Q(x)Q(x)W (y|x), and

T (Q) �
{

PX XY ∈ P(X × X × Y) : PX = Q, PX = Q,

EP [log q(X , Y )] ≥ EP [log q(X, Y )]}. (29)

The objective in (28) follows from [6, eq. (32)] and since

D(PX XY ‖Q × Q × W )= D(PX XY ‖PX X × W ) + IP(X; X)

(30)

for any PX XY such that PX = PX = Q. Defining
PY (y) �

∑
x Q(x)W (y|x), we observe that Ecc

ex is positive
for sufficiently small R provided that EQ×W [log q(X, Y )] >
EQ×PY [log q(X, Y )]. It was shown in [11] that the mismatched
capacity is zero unless this holds for some Q.

The following theorem provides the means for comparing
the above two exponents, as well as that of [4].

Theorem 3: For any input distribution Q and rate R,
we have

Ecc
ex(Q, R)

= sup
s≥0

min
PX X : PX =Q,PX =Q,

IP (X;X)≤R

EP [ds(X, X)]+ IP(X; X)− R (31)

= sup
ρ≥1

Ecc
x (Q, ρ) − ρR, (32)

where

ds(x, x) � − log
∑

y

W (y|x)

(
q(x, y)

q(x, y)

)s

(33)

Ecc
x (Q, ρ) � sup

s≥0,a(·)
−ρ

∑

x

Q(x) log
∑

x

Q(x)

×
(∑

y

W (y|x)

(
q(x, y)

q(x, y)

)s ea(x)

ea(x)

)1/ρ

. (34)

Proof: See Appendix B.

Equations (32) and (34) strongly resemble (26)–(27). Equa-
tion (31) is a generalization of the exponent in [4], which is
recovered by setting q(x, y) = W (y|x) and s = 1

2 . Using the
same argument as the one following (27), it can be shown that
the latter choice is optimal. From the proof of Theorem 3, this
implies the optimality of s = 1

2 in (34) under ML decoding,
though the optimal choice of a(·) is unclear in general. To our
knowledge, the expression in (34) has not appeared previously
even for ML decoding.

As noted in [6] and [16], we can write (31) in the
language of rate-distortion theory [20, Ch. 10]. Fix s ≥ 0,
and define

Ds(Q, R) � min
PX X : PX =Q,PX =Q,

IP (X;X)≤R

EP [ds(X, X)]. (35)

This can be interpreted as the distortion-rate function of a
source X with a reproduction variable X , subject to the
additional constraint that each reproduction codeword x has
empirical distribution Q. For any s ≥ 0, the constraint on the
mutual information in (31) is active for sufficiently small R.
The supremum of all such rates is given by

Rs(Q) � IP∗(X; X), (36)

where

P∗
X X

� arg min
PX X : PX =Q,PX =Q

EP [ds(X, X)] + IP (X; X). (37)

For R ≤ Rs we have IP (X; X) = R under the minimizing
PX XY , whereas for R ≥ Rs the minimum in (31) decreases
linearly with R for any fixed s. It follows that

Ecc
ex(Q, R) = sup

s≥0
Ecc

ex(Q, R, s), (38)

where

Ecc
ex(Q, R, s) �

{
Ds(Q, R) R ≤ Rs(Q)

Ds(Q, Rs) + Rs(Q) − R R > Rs(Q).

(39)

By applying Jensen’s inequality to (34) and setting
a(x) = 0, we immediately obtain

Ecc
ex(Q, R) ≥ E iid

ex (Q, R). (40)

It was shown in [5, Ex. 10.18] that (40) holds with equality
under ML decoding with an optimized input distribution Q.
However, when either the decoding rule or input distribution
is fixed, the inequality in (40) can be strict; an example is
given at the end of this section. In Section IV-A, we show
that the stronger exponent Ecc

ex, in the form given in (32),
remains achievable in the case of continuous alphabets, with
the summations in (34) replaced by integrals. This is proved
using the cost-constrained ensemble in (24).

The following proposition generalizes Gallager’s expression
for the expurgated exponent as R → 0+ for channels whose
zero-error capacity [21] is zero, and shows that the inequality
in (40) becomes an equality in the limit.
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Fig. 1. Expurgated exponents for the channel described in (42) with minimum
Hamming distance decoding and ML decoding. The parameters are δ0 = 0.01,
δ1 = 0.05, δ2 = 0.25 and Q =

(
1
3 , 1

3 , 1
3

)
.

Proposition 1: Fix any input distribution Q such that all
pairs (x, x) with Q(x)Q(x) > 0 share a common output,
i.e. W (y|x)W (y|x) > 0 for some y. Then

lim
R→0+ Ecc

ex(Q, R) = lim
R→0+ E iid

ex (Q, R) = sup
s≥0

E[ds(X, X)],
(41)

where ds is defined in (33), and the expectation is taken with
respect to Q(x)Q(x).

Proof: See Appendix C.
We conclude this section with a numerical example. The

channel is defined by the entries of the |X | × |Y| matrix
⎡

⎣
1 − 2δ0 δ0 δ0

δ1 1 − 2δ1 δ1
δ2 δ2 1 − 2δ2

⎤

⎦, (42)

and the decoding metric is defined similarly with a fixed δ ∈
(0, 1

3 ) in place of each δi (i = 1, 2, 3), yielding a minimum
Hamming distance rule. Figure 1 plots the exponents in the
case that δ0 = 0.01, δ1 = 0.05, δ2 = 0.25 and Q = ( 1

3 , 1
3 , 1

3

)
.

We observe that Ecc
ex > E iid

ex at all positive rates, and the gap
is particularly significant in the mismatched case. However,
consistent with Proposition 1, the two coincide as R → 0.

IV. DERIVATIONS OF THE EXPURGATED EXPONENTS

In this section, we provide several techniques for deriv-
ing the expurgated exponents, including those introduced in
Section III and a further two in Theorems 5 and 7 below.
The approaches given here have various advantages that were
outlined in Section I-C, and that are discussed further in
Section IV-D. Throughout the section, expectations are written
using summations for notational simplicity (e.g. EQ [ f (X)] =∑

x Q(x) f (x)). However, we will highlight that certain results
apply in the case of continuous alphabets upon replacing the
summations by integrals.

A. Derivations Using Theorem 1

1) i.i.d. Ensemble: We immediately obtain the exponent
in (26), as well as its generalization to continuous alphabets,
by substituting the i.i.d. distribution in (22) into rcuxρ,s

in (9).
2) Constant-Composition Ensemble: In the case of finite

alphabets, the method of types [5, Ch. 2] can be used to
obtain the exact exponents corresponding to rcuxρ and rcuxρ,s

for each of the ensembles defined in (22)–(24). The analysis
is similar for each of these, so we focus on the constant-
composition ensemble described by (23). We define

S(Q) �
{

P̃X X ∈ P(X × X ) : P̃X = Q, P̃X = Q
}

(43)

T (P̃X X ) �
{

PX XY ∈ P(X × X × Y) : PX X = P̃X X ,

EP [log q(X , Y )] ≥ EP [log q(X, Y )]} (44)

Sn(Q) � S(Q) ∩ Pn(X × X ) (45)

Tn(P̃X X ) � T (P̃X X ) ∩ Pn(X × X × Y). (46)

where we overload the symbol T (see (29)). It follows that
PX XY ∈ T (Q) (defined in (29)) if and only if PX XY ∈
T (P̃X X ) (defined in (44)) for some P̃X X ∈ S(Q). We note
the following properties of types [5, Ch. 2]:

1) For any P̃X X ∈ Sn(Qn),

P
[
(X, X) ∈ T n(P̃X X )

] .= e−nIP̃ (X;X). (47)

2) If (x, x) ∈ T n(P̃X X ), then for any PX XY ∈ Tn(P̃X X ),

P
[
(x, x, Y ) ∈ T n(PX XY )

∣
∣ X = x

]

.= e−nD(PX XY ‖P̃X X ×W ). (48)

Theorem 4: Consider a discrete memoryless channel, and
let the codeword distribution PX be the constant-composition
distribution in (23) for some input distribution Q. The bound
rcuxρ in (8) satisfies the following for any rate R > 0:

inf
ρ≥1

rcuxρ(n, enR)
.= e−nEcc

ex(Q,R). (49)

Proof: Using the codeword distribution in (23) and
expanding (8) in terms of types, we obtain

rcuxρ(n, M)1/ρ

= 4(M − 1)
∑

P̃X X ∈Sn(Qn)

P
[
(X, X) ∈ T n(PX X )

]

×
∑

PX XY ∈Tn( P̃X X )

P
[
(x, x, Y)∈T n(PX XY )

∣
∣ X = x

]1/ρ (50)

.= M max
P̃X X ∈Sn(Qn)

max
PX XY ∈Tn( P̃X X )

exp
(−nIP̃(X; X)

)

× exp

(
−n · 1

ρ
D

(
PX XY ‖P̃X X × W

))
(51)

.= M max
PX XY ∈T (Q)

exp

(
−n

(
1

ρ
D

(
PX XY ‖PX X × W

)

+ IP (X; X)

))
, (52)

where in (50) we define (x, x) to be an arbitrary pair with
joint type P̃X X , (51) follows from the properties of types in
(47)–(48) and the fact that the number of joint types is
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polynomial in n, and (52) follows from the definitions of Sn ,
Tn and T , and by using a standard continuity argument to
expand the maximization from types to general distributions
(see [22]). We thus obtain the exponent

sup
ρ≥1

min
PX XY ∈T (Q)

D(PX XY ‖PX X × W )+ρ
(

IP (X; X)− R
)

(53)

= min
PX XY ∈T (Q)

sup
ρ≥1

D(PX XY ‖PX X ×W ) + ρ
(

IP (X; X)− R
)
,

(54)

where (54) follows from Fan’s minimax theorem [23], the
conditions of which are satisfied here since the objective is
linear in ρ and convex in PX XY . Using

sup
ρ≥1

ρα =
{

∞ α > 0

α α ≤ 0
(55)

and (30), we see that (54) coincides with (28).
The preceding derivation of Ecc

ex provides a simple alter-
native to that of Csiszár and Körner [6], while yielding the
exponent in the same form.

3) Cost-Constrained Ensemble: Here we provide a deriva-
tion of Ecc

ex in the form given in (34), as well as its gener-
alization to continuous alphabets, using the cost-constrained
ensemble in (24). We allow for a system cost constraint of the
form given in (2). A key property of the ensemble that will
prove useful in the derivations is

x ∈ Dn 
⇒ er
(∑n

i=1 a(xi )−nφa

)

e|r |δ ≥ 1, (56)

which holds for any real number r , and follows immediately
from (25). Furthermore, we have the following.

Proposition 2 [13, Prop. 1]: Fix any input distribution Q
and set of cost functions {al}L

l=1 such that EQ [c(X)] ≤ �,
EQ[c(X)2] < ∞ and EQ [al(X)2] < ∞ for l = 1, . . . , L.
Then the normalizing constant μn in (24) satisfies

lim
n→∞

1

n
log μn = 0. (57)

The following theorem gives an achievable error exponent
for a fixed set of auxiliary costs.

Theorem 5: Consider a memoryless (possibly continuous)
channel, and fix any input distribution Q and functions {al}
satisfying the assumptions of Proposition 2. Under the cost-
constrained distribution in (24), we have

inf
ρ≥1,s≥0

rcuxρ,s (n, enR) ≤̇ e−nEcost
ex (Q,R,{al}) (58)

for any rate R > 0, where

Ecost
ex (Q, R, {al}) � sup

ρ≥1
Ecost

x (Q, ρ, {al }) − ρR, (59)

and1

Ecost
x (Q, R, {al }) � sup

s≥0,{rl },{rl }
−ρ log

∑

x,x

Q(x)Q(x)

×
(∑

y

W (y|x)

(
q(x, y)

q(x, y)

)s e
∑L

l=1 rl (al (x)−φl )

e
∑L

l=1 rl (al (x)−φl)

)1/ρ

. (60)

1In the case of continuous alphabets, the summations over sequences should
be replaced by integrals.

Proof: Let an
l (x) �

∑n
i=1 al(xi ) and Qn(x) �∏n

i=1 Q(xi ). We start with (9), and write

rcuxρ,s(n, M)1/ρ

= 4(M − 1)
∑

x,x

PX (x)PX(x)

×
(∑

y

W n(y|x)

(
qn(x, y)
qn(x, y)

)s)1/ρ

(61)

≤̇ M
∑

x,x

PX (x)PX(x)

×
(∑

y

W n(y|x)

(
qn(x, y)
qn(x, y)

)s e
∑L

l=1 rl (a
n
l (x)−nφl )

e
∑L

l=1 rl (an
l (x)−nφl )

)1/ρ

(62)

≤̇ M
∑

x,x

Qn(x)Qn(x)

×
(∑

y

W n(y|x)

(
qn(x, y)
qn(x, y)

)s e
∑L

l=1 rl (an
l (x)−nφl )

e
∑L

l=1 rl (an
l (x)−nφl )

)1/ρ

,

(63)

where (62) holds for any {rl} and {r l} from (56), and (63)
follows from (24) and Proposition 2. The proof is concluded
by expanding each term in (63) as a product from 1 to n and
optimizing ρ, s, {rl} and {r l}.

We now show that we can recover Ecc
ex from Ecost

ex upon
setting L = 2 and optimizing the auxiliary costs; an analo-
gous statement was shown to be true for the random-coding
exponent in [13]. Setting r1 = r2 = 1 and r2 = r1 = 0, and
optimizing a1(·) and a2(·), we obtain

Ecost
x (Q, ρ)

= sup
s≥0,a1(·),a2(·)

−ρ log
∑

x,x

Q(x)Q(x)

×
(∑

y

W (y|x)

(
q(x, y)

q(x, y)

)s ea1(x)−φ1

ea2(x)−φ2

)1/ρ

(64)

≤ sup
s≥0,a1(·),a2(·)

−ρ
∑

x

Q(x)

× log
∑

x

Q(x)

(∑

y

W (y|x)

(
q(x, y)

q(x, y)

)s ea1(x)−φ1

ea2(x)−φ2

)1/ρ

,

(65)

where (65) follows from Jensen’s inequality. For any s and
a1(·), there exists a choice of a2(·) that makes Jensen’s
inequality hold with equality in (65), and hence the same is
true after taking the supremum. Hence, and by writing

−
∑

x

Q(x) log

(
e−φ1

ea2(x)−φ2

)1/ρ

= −
∑

x

Q(x) log
(
e−a1(x)

)1/ρ

(66)

= φ1

ρ
, (67)

we see that the a2(·) achieving the supremum in (64) is the
one yielding equality in (65). Renaming a1(·) as a(·) and
using (66), we obtain (34).
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In accordance with Proposition 2, the supremum over s
and a(·) in (34) should be restricted to choices such that
EQ[a(X)2] < ∞, and such that EQ [a2(X)2] < ∞ for the
a2(·) that makes Jensen’s inequality hold with equality in (65)
(expressed in terms of s and a(·)). This may rule out some
parameters in the case of infinite or continuous alphabets.

While the parameters {rl} and {r l} are not necessary for
obtaining (64), they can improve the exponent for a given
set of auxiliary costs [13]. That is, the more general exponent
of Theorem 5 serves as an indicator of the performance
when the auxiliary costs are chosen suboptimally. Using a
similar argument to that of (64)–(67), it is easily shown that
Ecost

ex ≤ Ecc
ex, and hence one cannot improve on the exponent

obtained using L = 2 optimally chosen auxiliary costs.

B. Derivation Using Type Class Enumerators

In the proof of Theorem 4, we gave an exponentially
tight analysis of rcuxρ . In this subsection, we show that an
exponentially tight analysis can be provided starting from
an earlier step using the method of type class enumeration
(see [7]–[9]). Once again, the analysis is similar for each
of the ensembles in (22)–(24), so we focus on the constant-
composition ensemble described by (23).

Substituting (10) into (6) and defining

dq(x, x) � − log P
[
qn(x, Y) ≥ qn(x, Y )

∣
∣ X = x

]
, (68)

we obtain the bound

pe(C) ≤ (
2An(R, ρ)

)ρ
, (69)

where

An(R, ρ) � E

⎡

⎣
( ∑

m �=m

e−dq (X(m),X(m))

)1/ρ
⎤

⎦ . (70)

This bound provides the starting point for our analysis. Note
that since we have not used the inequality in (12), we may
allow for ρ > 0 rather than just ρ ≥ 1.

Theorem 6: Consider a discrete memoryless channel, and
let the codeword distribution PX be the constant-composition
distribution in (23) for some input distribution Q. Then the
following holds for any rate R > 0:

inf
ρ>0

(
2An(R, ρ)

)ρ .= e−nEcc
ex(Q,R). (71)

Proof: For m = 1, . . . , M and each joint type P̃X X , we
define the random variable

Nm (P̃X X ) �
∑

m �=m

1
{
(X (m), X (m)) ∈ T n(P̃X X )

}
. (72)

Under the random-coding distribution in (23), we have
Nm (P̃X X ) = 0 with probability one if P̃X X /∈ Sn(Qn). That is,
the marginal distribution of each codeword must agree with Q.
Since dq depends only on the joint type of its arguments,
we define dq(P̃X X ) � 1

n dq(x, x), where (x, x) ∈ T n(P̃X X ).
Making repeated use of the fact that the number of joint

types is polynomial in n, we have the following:

An(R, ρ) = E

[(∑

P̃X X

Nm (P̃X X )e−ndq ( P̃X X )

)1/ρ]
(73)

.= E

[
max
P̃X X

Nm (P̃X X )1/ρe−ndq ( P̃X X )/ρ

]
(74)

.= E

[∑

P̃X X

Nm (P̃X X )1/ρe−ndq ( P̃X X )/ρ

]
(75)

.= max
P̃X X

E
[
Nm (P̃X X )1/ρ

]
e−ndq ( P̃X X )/ρ, (76)

where (76) follows by first taking the summation outside the
expectation. It follows from (76) that
(
2An(R, ρ)

)ρ .= max
P̃X X

(
E
[
Nm (P̃X X )1/ρ

])ρ
e−ndq ( P̃X X ). (77)

Similarly to [7, eq. (34)], we have for P̃X X ∈ Sn(Qn) that

E
[
Nm (P̃X X )1/ρ

]

.=
{

exp
(
n
(

R − IP̃ (X; X)
))

R < IP̃ (X; X)

exp
(
n
(

R − IP̃ (X; X)
)
/ρ

)
R ≥ IP̃ (X; X).

(78)

This follows from the fact that given X (m) = x, Nm (P̃X X ) is
the sum of enR − 1 binary independent random variables,

Um � 1
{
(x, X(m)) ∈ T n(P̃X X )

}
, (79)

whose expectations are of the exponential order of e−nIP̃ (X;X)

(see (47)). Furthermore, expanding (68) in terms of types and
using the property in (48), we obtain

e−ndq ( P̃X X )

.= exp

(
−n min

PX XY ∈T ( P̃X X )
D

(
PX XY ‖P̃X X × W

))
(80)

� e−nDq ( P̃X X ). (81)

Upon taking into account all the possible empirical distribu-
tions {P̃X X } in (79), we obtain from (77) that

(
2An(R, ρ)

)ρ .= e−n min{E1(R,ρ),E2(R)}, (82)

where

E1(R, ρ) � min
P̃X X ∈S(Q)

IP̃ (X;X)≥R

Dq (P̃X X ) + ρ
(

IP̃ (X; X) − R
)

(83)

and

E2(R) = min
P̃X X ∈S(Q)

IP̃ (X;X)≤R

Dq (P̃X X ) + IP̃ (X; X) − R. (84)

Combining (30), (81) and (84), we see that E2(R) coincides
with Ecc

ex in the form given in (28). It remains to show that
E1(R, ρ), for the optimum choice of ρ, is never smaller than
E2(R). This can be seen by noting that since (83) contains
the constraint IP̃ (X; X) ≥ R, the term multiplying ρ in (83)
is non-negative. Thus, the best choice of ρ is to take the limit
as ρ → ∞, and hence the minimum in (83) is achieved by
some P̃X X satisfying IP̃(X; X) = R. Since this joint distri-
bution also satisfies the constraints in (84), we conclude that
E1 ≥ E2, thus completing the proof.

While the exponents of Theorems 4 and 6 coincide for
the constant-composition ensemble, the type enumeration
approach can yield strictly higher exponents for other code-
word distributions; see Section IV-D for details.
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C. Derivation Using Distance Enumerators

In this subsection, we extend the preceding type enumer-
ation analysis to channels with infinite or continuous alpha-
bets, and then discuss the further extension to channels with
memory. We make use of Theorem 2, and we assume that the
technical assumption therein is satisfied (see Appendix A for
discussion). We fix s ≥ 0 and make use of ds in (33) (or its
counterpart for continuous outputs with an integral in place of
the summation), as well as its multi-letter extension

dn
s (x, x) �

n∑

i=1

ds(xi , xi ). (85)

Theorem 7: Consider a memoryless (possibly continuous)
channel, and fix any codeword distribution PX satisfying the
assumption of Theorem 2. The exponent

Eex(R) � E

[
inf

D : R(D,X)≤R
D + R(D, X) − R

]
(86)

is achievable for any function R(D, x) (possibly equal to ∞)
such that R(·, x) is lower semicontinuous and P

[
dn

s (x, X) <

nD] ≤̇ e−nR(D,x), uniformly in x.
Proof: We claim that (16) implies the following analog

of (69) for a sequence of codebook Cn of rate approaching R:

pe(Cn) ≤̇ exp
(
ρ E

[
log An(R, ρ, X (m))

])
, (87)

where

An(R, ρ, X (m)) � E

[( ∑

m �=m

e−[dn
s (X(m),X(m))]+

)1/ρ∣
∣
∣
∣X(m)

]

.

(88)

In the absence of the [·]+ function in the exponent, this follows
directly from the union bound and Markov’s inequality, simi-
larly to the proof of Theorem 1. The introduction of the [·]+
function corresponds to instead taking the better of Markov’s
inequality and the trivial bound P[·] ≤ 1.2

For a fixed transmitted codeword X(m) = x, we analyze
An(R, ρ, x) using distance enumerators:

∑

m �=m

e−[dn
s (x,X(m))]+ ≤

∞∑

k=0

e−nkδ Nm (k, x), (89)

where δ > 0 is arbitrary, and we define

Nm (0, x) �
∑

m �=m

1
{

dn
s (x, X (m)) < nδ

}
(90)

Nm(k, x) �
∑

m �=m

1
{

nkδ ≤ dn
s (x, X (m)) < n(k + 1)δ

}
,

(91)

where (91) holds for integers k ≥ 1.
Using Markov’s inequality, we can upper-bound the left-

hand side of (13) by e−dn
s (x,x). It thus follows from the

assumption of Theorem 2 that the highest value of k,

kmax(n) � max
x : PX (x)>0

max
{

k : P
[
Nm (k, x) > 0

] �= 0
}
, (92)

2This analysis corrects an error in the conference version of this work [24],
where the [·]+ function was omitted. This omission does not affect the analysis
for ML decoding, since the Bhattacharyya distance is non-negative. However,
in general, the function ds (·, ·) may be negative.

grows subexponentially in n for all s ≥ 0. Thus, analogously
to (77), the quantity An(R, ρ, x) defined in (88) satisfies

An(R, ρ, x)ρ ≤̇ max
k≥0

(
E
[
Nm (k, x)1/ρ

])ρ
e−nkδ . (93)

We further upper bound this expression by removing the lower
inequality in the indicator function in (91). The key issue is
now to assess the exponential rate of decay of the binary
random variable

Um(x) � 1
{

dn
s (x, X (m)) < n(k + 1)δ

}
(94)

for a given transmitted codeword x, i.e. to find the exponent
of P

[
dn

s (x, X) < nD]. This can be done using standard large
deviations techniques such as the Chernoff bound. Letting
R(D, x) be as defined in the theorem statement, we have
similarly to (82) that

An(R, ρ, x)ρ ≤̇ e−n min{E1(R,ρ,δ,x),E2(R,δ,x)}, (95)

where

E1(R, ρ, δ, x) � min
k : R((k+1)δ,x)≥R

kδ + ρ
(
R((k + 1)δ, x)− R

)

(96)

E2(R, δ, x) � min
k : R((k+1)δ,x)≤R

kδ + R((k + 1)δ, x)− R.

(97)

Upon taking the limit δ → 0 and using the assumption that
R(·, x) is lower semicontinuous, these become

E1(R, ρ, x) � inf
D : R(D,x)≥R

D + ρ
(
R(D, x) − R

)
(98)

E2(R, x) � inf
D : R(D,x)≤R

D + R(D, x) − R. (99)

Analogously to Section IV-B, the optimal choice of ρ is in the
limit as ρ → ∞, and we obtain E2 ≤ E1, and hence

inf
ρ≥0

An(R, ρ, x)ρ ≤̇ e−nE2(R,x). (100)

Substituting (100) into (87), we obtain pe(C) ≤̇ e−nE[E2(R,X)],
thus yielding (86).

After a suitable modification of the definition of dn
s (x, x),

(86) extends immediately to more general channels and
metrics (e.g. channels with memory). The ability to simplify
the exponent (e.g. to a single-letter expression) depends on
the form of R(D, x), which in turn depends strongly on the
codeword distribution PX . In some cases, PX can be chosen in
such a way that R(D, x) is the same for all x with PX(x) > 0,
thus greatly simplifying (86).

In Appendix D, we particularize Theorem 7 to the
cost-constrained ensemble with a single auxiliary cost
a1(x) = a(x), and show that after optimizing a(·), (86) yields
the exponent Ecc

ex(Q, R) in (32). In accordance with Propo-
sition 2, we require the auxiliary cost a(·) to satisfy
EQ [a(X)2] < ∞.

D. Comparison of Techniques

For the constant-composition codeword distribution, the
approaches of Sections IV-A and IV-B led to the same expo-
nent, namely Ecc

ex. It should be noted, however, that the type
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enumeration approach can yield a strictly higher exponent than
that of rcuxρ in Theorem 1 for some codeword distributions.
Here we discuss the simple example of the i.i.d. distribution
in (22). Applying properties of types in the same way in
Section IV-A, it is easily verified that the exponent of rcuxρ is

min
PX XY : D(PX X ‖Q×Q)≤R,

EP [log q(X,Y )]≥EP [log q(X,Y )]
D(PX XY ‖Q × Q × W ) − R.

(101)

On the other hand, the analysis of Section IV-B yields an expo-
nent of the same form as (101) with an additional constraint
PX = Q in the minimization. To see this, we note that the
quantity Nm (P̃X X ) defined in (72) satisfies

E

[
Nm(P̃X X )1/ρ

]
= P

[
X(m) ∈ T n(P̃X )

]

×E

[
Nm(P̃X X )1/ρ

∣∣ X (m) ∈ T n(P̃X )

]
.

(102)

We have P
[
X(m) ∈ T n(P̃X )

] .= e−nD( P̃X‖Q), and the
expectation in (102) behaves analogously to (78) with
D(P̃X X‖P̃X × Q) in place of IP̃(X; X). The additional
factor e−nD( P̃X‖Q) leads to an additive ρD(P̃X ‖Q) term in
the exponent E2 in (84). The optimal choice of ρ is again in
the limit as ρ → ∞, and under this choice the minimizing
P̃X X must satisfy P̃X = Q so that the divergence is forced to
zero.

Depending on the channel, metric and input distribution,
adding the constraint PX = Q to (101) may yield a strict
improvement in the exponent. Since both derivations are expo-
nentially tight from the step at which they start, we conclude
that the weakness of the simpler derivation is in the inequality
in (11), or more precisely, the use of (12). While this step
simplifies the derivations, the above example shows that it is
not exponentially tight in general.

Another approach to recovering the constraint P̃X = Q is to
follow the steps of Theorem 1 and Section IV-A starting with
Theorem 2. Since the expectation of the transmitted codeword
is outside the logarithm in (16), we obtain the constraint
P̃X = Q in the final minimization using the fact that the
empirical distribution of X is close to Q with high probability.
We conclude that the inequality in (12) is exponentially tight
for the i.i.d. ensemble when we start with (16), even though
it is not tight when we start with (6).

We have provided two derivations of Ecc
ex using the cost-

constrained ensemble, namely, those in Sections IV-A and
IV-C (along with Appendix D). A notable difference between
the derivations is the method for ensuring that the average
over x is outside the logarithm in (34), which is desirable due
to Jensen’s inequality. In Theorem 5, the expectation is inside
the logarithm, but the desired result is obtained by choosing
a2(·) to make Jensen’s inequality hold with equality. On the
other hand, in Appendix D the expectation arises outside the
logarithm even in the case that L = 1.

Provided that the assumption of Theorem 2 is met, we can
combine the two approaches and apply the techniques of

Theorem 1 and Section IV-A to (16), in which case Ecost
x

in (60) is improved to

Ecost∗
x (Q, R, {al }) � sup

s≥0,{rl }
−ρ

∑

x

Q(x) log
∑

x

Q(x)

×
(∑

y

W (y|x)

(
q(x, y)

q(x, y)

)s

e
∑L

l=1 rl (al (x)−φl )

)1/ρ

, (103)

where the outer-most summation arises using Proposition 3 in
Appendix D. This exponent can also be derived by extending
the analysis of Appendix D to include multiple auxiliary
costs.

In the case that L = 0 (i.e. i.i.d. coding), the Lagrange
duality techniques of Theorem 3 reveal that (103) is in fact
identical to (101) with the added constraint PX = Q. That
is, the additional constraint PX = Q in the primal expression
corresponds to an average over x outside the logarithm in the
dual expression.

V. DISCUSSION AND CONCLUSION

We have presented asymptotic and non-asymptotic expur-
gated bounds for channels with a given decoding rule. Several
expurgated exponents have been derived, including that of
Csiszár-Körner [6] and its generalization to continuous alpha-
bets. The type class enumeration approach has been shown to
provide better exponents for some codeword distributions, bet-
ter guarantees of exponential tightness, and the opportunity for
deriving expurgated exponents for channels with memory. We
conclude by presenting discussions that are further explored
an extended version of this paper [25].

Prefactor to the i.i.d. Exponent: The precise bound on the
error probability resulting from the simple derivation of E iid

ex
in Section IV-A is of the form pe ≤ αn(Q, R)e−nE iid

ex (Q,R),
where αn = O(1). In the setting of non-expurgated random
coding, there has recently been interest in deriving the expo-
nents with improved prefactors [13], [26], [27]. Such results
are valuable from a finite block length perspective [3], and
provide a more refined characterization of the system perfor-
mance than the exponent alone. Building on the analysis of
[13], [27], we show in [25, Sec. V] that, under some technical
assumptions, the prefactor can be improved to O

( 1√
n

)
in the

case of finite alphabets. Moreover, we explicitly characterize
the implied constant.

Connections With Statistical Mechanics: It is instructive
to look at the analysis of Section IV-C from the statistical-
mechanical perspective. The quantity

Z(x) =
∑

m �=m

e−[dn
s (x,X(m))]+, (104)

can be interpreted as the partition function of a physi-
cal system, where the various configurations (microstates)
are {x(m)}m �=m , and the energy function (Hamiltonian) is
[dn

s (x, x)]+. As discussed in [9, Ch. 6–7] and the references
therein, this setting is analogous to the random energy model
in the literature of statistical physics of magnetic materials.
This model exhibits a phase transition between a glassy phase,
where the partition function is dominated subexponential
number of “configurational energies” {[dn

s (x, X (m))]+} in the
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ground-state, and a paramagnetic phase, where the partition
function is dominated by exponentially many configurations.

When PX is the constant-composition distribution in (23),
these phases respectively correspond to two cases in (39). For
the curved part of the exponent where R < Rs (see (36)), the
dominant contribution to E[Z(x)1/ρ] is due to a subexponen-
tial number of codewords whose “distance” from x (i.e. their
“energy”) is roughly nDs(Q, R). For the straight-line part
of the exponent where R > Rs , roughly en(R−Rs) incorrect
codewords at distance nDs (Q, Rs) dominate the behavior.
Thus, the passage between the curved part and the straight-line
part at R = Rs can be interpreted as a glassy phase transition.
We refer the reader to [25, Sec. IV-E] for further discussion.

APPENDIX

A. Technical Condition of Theorem 2

We begin by providing an example of a class of continuous
channels and metrics satisfying the single-letter condition
given in (19). Consider an additive noise channel Y = X + Z ,
and let q(x, y) be any decreasing function of |y−x |. If the cost
constraint is of the form c(x) = |x |β for some constant β, then
c(x) ≤ γ if and only if |x | ≤ γ 1/β . Thus, any two permissible
points are separated by a distance of at most 2γ 1/β , and the
single-letter condition is satisfied if the additive noise satisfies
P[Z > 2γ 1/β ] ≥ e−E ′(γ ) and P[Z < −2γ 1/β] ≥ e−E ′(γ )

for some E ′(γ ) growing subexponentially in γ . In particu-
lar, this holds for noise distributions with exponential tails
(e.g. Gaussian). On the other hand, if the cost function is
logarithmic, say c(x) = log(1+|x |), then (19) fails for additive
noise distributions with exponential tails, since in this case the
limit on the left-hand side of (19) equals a positive constant.

For any DMC whose zero-error capacity [21] is zero, the
condition of Theorem 2 is satisfied under ML decoding, since
the error probability can only decay exponentially. On the
other hand, the condition could fail for sufficiently “bad”
metrics (e.g. one for which there exist x and x on the support
of PX such that qn(x, y) > qn(x, y) for all y). Furthermore,
the condition fails under ML decoding whenever the zero-
error capacity is positive and there exist two non-confusable
codewords on the support of PX .

B. Proof of Theorem 3

Using the definitions in (43)–(44), we write (28) as

Êcc
ex(Q, R) = min

P̃X X ∈S(Q)

IP̃ (X;X)≤R

min
PX XY ∈T ( P̃X X )

D(PX XY ‖P̃X X × W ) + IP̃ (X; X) − R, (105)

where the objective follows from (30). We will study (105)
one minimization at a time.

Step 1: For a given P̃X X ∈ S(Q), IP̃(X; X)− R is constant,
and we thus consider the optimization problem

min
PX XY ∈T ( P̃X X )

D(PX XY ‖P̃X X × W ). (106)

The Lagrangian [18, Sec. 5.1.1] is given by

L1 =
∑

x,x,y

PX XY (x, x, y) log
PX XY (x, x, y)

P̃X X (x, x)W (y|x)

+ s

(∑

x,y

PXY (x, y) log q(x, y)

−
∑

x,y

PXY (x, y) log q(x, y)

)

+
∑

x,x

μ(x, x)
(

P̃X X (x, x) − PX X (x, x)
)
, (107)

where s ≥ 0 and μ(·, ·) are Lagrange multipliers. The
optimization problem is convex with affine constraints, and
thus the optimal value is equal to L1 for some choice of
PX XY and the Lagrange multipliers satisfying the Karush-
Kuhn-Tucker (KKT) conditions [18, Sec. 5.5.3].

The simplification of (107) using the KKT conditions
uses standard arguments, so we omit some details. Setting

∂L1
∂ PX XY (x,x,y) = 0, using the constraint PX X = P̃X X to solve
for μ(·, ·), and substituting the resulting expressions back
into (107), we obtain

L1 = −
∑

x,x

P̃X X (x, x) log
∑

y

W (y|x)

(
q(x, y)

q(x, y)

)s

. (108)

Renaming P̃X X as PX X , taking the supremum over s ≥ 0,
and adding IP (X; X) − R (see (105)–(106)), we obtain the
right-hand side of (31) with the minimum and supremum in
the opposite order. Using Fan’s minimax theorem [23], we can
safely interchange the two.

Since we have taken the supremum over the parameter s ≥ 0
without verifying that it satisfies the KKT conditions, we have
only proved that (31) holds with the equality replaced by an
inequality (≤). To prove the reverse inequality, we use the log-
sum inequality [20, Th. 2.7.1] similarly to [10, Appendix A].
For any PX XY ∈ T (P̃X X ), we have

D(PX XY ‖P̃X X × W )

≥ D(PX XY ‖P̃X X × W ) − s
∑

x,x,y

PX XY (x, x, y) log
q(x, y)

q(x, y)

(109)

=
∑

x,x,y

PX XY (x, x, y) log
PX XY (x, x, y)

P̃X X (x, x)W (y|x)
(q(x,y)

q(x,y)

)s (110)

≥
∑

x,x

PX X (x, x) log
1

∑
y W (y|x)

( q(x,y)
q(x,y)

)s , (111)

where (109) holds for any s ≥ 0 from the constraint
EP [log q(X , Y )] ≥ EP [log q(X, Y )] in (29), (110) follows
from the definition of divergence, and (111) follows using the
log-sum inequality [20, Th. 2.7.1] and the constraint PX X =
P̃X X . Equation (111) coincides with (108), thus completing
the proof of (31).
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Step 2: We now turn to the proof of (32). For any fixed
s ≥ 0, the Lagrangian corresponding to (31) is given by

L2 = −
∑

x,x

PX X (x, x) log
∑

y

W (y|x)

(
q(x, y)

q(x, y)

)s

+ (1 + λ)
∑

x,x

PX X (x, x) log
PX X (x, x)

Q(x)Q(x)
− (1 + λ)R

+
∑

x

ν1(x)
(

Q(x)− PX (x)
)+

∑

x

ν2(x)
(

Q(x)− PX (x)
)
,

(112)

where λ ≥ 0, ν1(·) and ν2(·) are Lagrange multipliers.
Setting ∂L2

∂ PX X (x,x) = 0, using the constraint PX = Q to solve
for ν1(·), and substituting the resulting expressions back
into (112), we obtain

L2 = −(1 + λ)
∑

x

Q(x) log
∑

x

Q(x)

×
(∑

y

W (y|x)

(
q(x, y)

q(x, y)

)s) 1
1+λ

× e
1

1+λ (ν2(x)−ν2(x)) − (1 + λ)R. (113)

Taking the supremum over ν2(·), s ≥ 0 and λ ≥ 0, we obtain
the right-hand side of (32) after suitable renaming.

Once again, we have only proved that (32) holds with
an inequality (≤) in place of the equality, and we obtain
a matching lower bound similarly to (109)–(111). For any
PX X ∈ S(Q) with IP̃(X; X) ≤ R, we can lower bound the
objective in (31) as follows:

−
∑

x,x

PX X (x, x) log
∑

y

W (y|x)

(
q(x, y)

q(x, y)

)s

+ IP (X; X) − R

≥ −
∑

x,x

PX X (x, x)

× log
∑

y

W (y|x)

(
q(x, y)

q(x, y)

)s

+ ρ
(

IP (X; X) − R
)

(114)

= −ρR − ρ
∑

x,x

PX X (x, x)

× log
Q(x)Q(x)

(∑
y W (y|x)

(q(x,y)
q(x,y)

)s
ea(x)−φa

)1/ρ

PX X (x, x)

(115)

≥ −ρR − ρ
∑

x

Q(x) log
∑

x

Q(x)

×
(∑

y

W (y|x)
(q(x, y)

q(x, y)

)s
ea(x)−φa

)1/ρ

, (116)

where (114) holds for any ρ ≥ 1 from the constraint
IP̃ (X; X) ≤ R, (115) holds for any function a(x) with mean
φa = EQ [a(X)] by expanding the logarithm and applying
simple manipulations, and (116) follows from the log-sum
inequality [20, Th. 2.7.1] and the constraint PX = Q.
Using the definition of φa and again expanding the logarithm,
it is easily shown that (116) is unchanged when ea(x)−φa is
replaced by ea(x)

ea(x) , thus completing the proof.

C. Proof of Proposition 1

The result for the i.i.d. exponent follows similarly to
Gallager [2, Sec 5.7], so we only explain the differences. Let
E iid

x (Q, ρ, s) be the function E iid
x in (27), with a fixed value

of s rather than a supremum. We claim that

lim
R→0+ sup

ρ≥1,s≥0
E iid

x (Q, ρ, s)−ρR = sup
ρ≥1,s≥0

E iid
x (Q, ρ, s).

(117)

It is easily seen that the left-hand side of (117) cannot exceed
the right-hand side, since ρR is positive for any sequence of
R values approaching zero from above. It remains to prove
the converse. We have for all R that

sup
ρ≥1,s≥0

E iid
x (Q, ρ, s)−ρR ≥ E iid

x (Q, ρ, s)−ρR. (118)

Taking R → 0 and then taking the supremum over s ≥ 0
and ρ ≥ 1 yields the desired result. The remainder of the
proof follows using Gallager’s argument: For any fixed s, the
supremum over ρ is in the limit as ρ → ∞, and this limit is
easily evaluated using L’Hôpital’s rule.

The result for the constant-composition exponent fol-
lows in the same way using the fact that sups,a1(·),a2(·)
Ecost

x (Q, ρ, {a1, a2}) = Ecc
x (Q, ρ) (see Section IV-A;

in particular, Ecost
x is defined in (60)). Once again, the supre-

mum over ρ is in the limit as ρ → ∞ when the remaining
parameters are fixed.

D. Derivation of Ecc
ex Using Theorem 7

Using similar arguments to those in Section IV-A, we can
evaluate the lower tail probability of dn

s (x, X) as follows:
∑

x

PX (x)1
{

dn
s (x, x) ≤ nD

}

≤
∑

x

PX (x)et (nD−dn
s (x,x)) (119)

≤̇
∑

x

Qn(x)et (nD−dn
s (x,x))er(an(x)−nφa ) (120)

= en(t D−rφa )
n∏

i=1

∑

x

Q(x)era(x)−tds(xi ,x), (121)

where (119) holds or any t ≥ 0 by upper bounding the indi-
cator function, and (120) holds for any r using (56) and (57).
From (121), we may set

R(D, x) = sup
t≥0,r

rφa − t D − 1

n

n∑

i=1

θ(xi , r , t), (122)

where

θ(x, r , t) � log EQ
[
era(X)−tds(x,X)

]
. (123)

Before proceeding, we present the following proposition.
Proposition 3: Consider the cost-constrained distribution

PX in (24), and assume that the input distribution Q and
auxiliary costs {al}L

l=1 are such that assumptions of
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Proposition 2 are satisfied. For any function f : X → R,
we have

lim
n→∞ E

[
1

n

n∑

i=1

f (Xi )

]
= EQ [ f (X)] (124)

provided that EQ [ f (X)] exists.
Proof: See Appendix E.

We can now simplify the exponent in (86) as follows:

E

[
inf

D : R(D,X)≤R
D + R(D, X) − R

]
(125)

= E

[
inf
D

sup
ρ≥1

D + ρ
(

R(D, X) − R
)
]

(126)

≥ sup
ρ≥1

E

[
inf
D

D + ρ
(

R(D, X) − R
)
]

(127)

= sup
ρ≥1

E

[
inf
D

sup
t≥0,r

D(1 − ρt)

− ρ

(
−rφa + 1

n

n∑

i=1

θ(Xi , r , t) + R

)]
(128)

≥ sup
ρ≥1

sup
r

−ρ

(
−rφa + E

[
1

n

n∑

i=1

θ(Xi , r , 1/ρ)

]
+ R

)

(129)

→ sup
ρ≥1

sup
r

ρ
(
rφa − EQ [θ(X, r , 1/ρ)] − R

)
, (130)

where (126) follows from (55), (128) follows from
(122), (129) follows by replacing the supremum over t ≥ 0
by the choice t = 1/ρ, and (130) follows from Proposition 3.

Substituting (123) into (130) setting r = 1
ρ , and taking the

supremum over a(·), we obtain (34), as desired.

E. Proof of Proposition 3

We first present the proof in the case that there is L = 1
auxiliary cost a(·) (with mean φa) and no system cost
constraint, and then discuss the changes required to handle
the general case. Throughout the proof, we define an(x) �∑n

i=1 a(xi) and f n(x) �
∑n

i=1 f (xi ). We use summations
to denote averaging with respect to Q, but the proof remains
valid in the continuous case upon replacing these by integrals.

Let X be the random cost-constrained codeword, and define
X ′ ∼ Qn(x′). From (24), we have

1

n
E
[

f n(X)
] = 1

n

1

μn
E
[

f n(X ′)1
{|an(X ′) − nφa| ≤ δ

}]
.

(131)

By a direct differentiation, this is equal to d
dλ

( 1
n log Z(λ)

)

evaluated at λ = 0, where

Z(λ) � E
[
eλ f n (X′)1

{|an(X ′) − nφa | ≤ δ
}]

. (132)

Expanding the expectation and using the inverse Laplace
transform relation

1{z ≥ 0} = 1

2π j

∫ u+ j∞

u− j∞
etz

t
dt (133)

for u > 0, we have the following:

Z(λ) =
∑

x′
Qn(x′)eλ f n (x′)(1{an(x′) ≤ nφa + δ}

−1{an(x′) ≤ nφa − δ}) (134)

= 1

2π j

∑

x′
Qn(x′)eλ f n(x′)

∫ u+ j∞

u− j∞
et (nφa−an(x′)) etδ − e−tδ

t
dt (135)

= 1

2π j

∫ u+ j∞

u− j∞
etδ − e−tδ

t
enφat

×
(∑

x ′
Q(x ′)e−ta(x ′)+λ f (x ′)

)n

dt . (136)

Denoting the derivative of Z(·) by Z ′(·), we have

Z ′(0) = n

2π j

∫ u+ j∞

u− j∞
etδ−e−tδ

t
enφa t

(∑

x ′
Q(x ′)e−ta(x ′)

)n−1

×
∑

x ′
Q(x ′) f (x ′)e−ta(x ′)dt (137)

= n

2π j

∫ u+ j∞

u− j∞
etδ−e−tδ

t
enφa t

(∑

x ′
Q(x ′)e−ta(x ′)

)n

×
∑

x ′ Q(x ′) f (x ′)e−ta(x ′)
∑

x ′ Q(x ′)e−ta(x ′) dt . (138)

Finally, using the assumption that EQ [a(X)2] < ∞ and
applying the saddlepoint method [28, Ch. 4–5] (see also
[9, Sec. 4.2–4.3]), we obtain

d

dλ

(
1

n
log Z(λ)

) ∣∣∣
λ=0

= Z ′(0)

Z(0)
→

∑
x ′ Q(x ′) f (x ′)e−t0a(x ′)
∑

x ′ Q(x ′)e−t0a(x ′) ,

(139)

where t0 is the zero of the derivative (saddlepoint) of the
function h(t) = φat + log EQ [e−ta(X)]. Since φa = EQ [a(X)]
by definition, it is easily verified that t0 = 0, and thus the
right-hand side of (139) equals EQ [ f (X)], as desired.

In the case of multiple auxiliary costs, the argument is
similar, but with ta(·) replaced by

∑
l tlal(·). The system cost

c(·) in (25) can be handled similarly provided that EQ [c(X)] ≤
�, which is an assumption of the proposition.
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