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A Counter-Example to the Mismatched
Decoding Converse for Binary-Input

Discrete Memoryless Channels
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Abstract— This paper studies the mismatched decoding
problem for binary-input discrete memoryless channels.
An example is provided for which an achievable rate based on
superposition coding exceeds the Csiszár-Körner-Hui rate, thus
providing a counter-example to a previously reported converse
result. Both numerical evaluations and theoretical results are
used in establishing this claim.

Index Terms— Mismatched decoding, channel capacity,
binary-input channels, converse bounds.

I. INTRODUCTION

IN THIS paper, we consider the problem of channel
coding with a given (possibly suboptimal) decoding rule,

i.e. mismatched decoding [1]–[4]. This problem is of interest
in settings where the optimal decoder is ruled out due to
channel uncertainty or implementation constraints, and also
has several connections to theoretical problems such as the
zero-error capacity. Finding a single-letter expression for the
channel capacity with mismatched decoding is a long-standing
open problem, and is believed to be very difficult; the vast
majority of the literature has focused on achievability results.
The only reported single-letter converse result for general
decoding metrics is that of Balakirsky [5], who considered
binary-input discrete memoryless channels (DMCs) and
stated a matching converse to the achievable rate of
Hui [1] and Csiszár and Körner [2]. However, in the present
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paper, we provide a counter-example to this converse, i.e. a
binary-input DMC for which this rate can be exceeded.

We proceed by describing the problem setup. The encoder
and decoder share a codebook C = {x(1), . . . x(M)}
containing M codewords of length n. The encoder receives
a message m equiprobable on the set {1, . . . M} and
transmits x(m). The output sequence y is generated according
to W n(y|x) = ∏n

i=1 W (yi |xi ), where W is a single-letter
transition law from X to Y . The alphabets are assumed to
be finite, and hence the channel is a DMC. Given the output
sequence y, an estimate of the message is formed as follows:

m̂ = arg max
j

qn(x( j ), y), (1)

where qn(x, y) �
∏n

i=1 q(xi , yi ) for some non-negative
function q called the decoding metric. An error is said to
have occurred if m̂ differs from m, and the error probability
is denoted by

pe � P[m̂ �= m]. (2)

We assume that ties are broken as errors. A rate R is said
to be achievable if, for all δ > 0, there exists a sequence of
codebooks with M ≥ en(R−δ) codewords having vanishing
error probability under the decoding rule in (1). The
mismatched capacity of (W, q) is defined to be the supremum
of all achievable rates, and is denoted by CM.

In this paper, we focus on binary-input DMCs, and
we will be primarily interested in the achievable rates
based on constant-composition codes due to Hui [1] and
Csiszár and Körner [2], an achievable rate based on superposi-
tion coding by Scarlett et al. [6], [8] and Somekh-Baruch [7],
and a reported converse by Balakirsky [5]. These are intro-
duced in Sections I-B and I-C.

A. Notation

The set of all probability mass functions (PMFs) on a
given finite alphabet, say X , is denoted by P(X ), and
similarly for conditional distributions (e.g. P(Y|X )). The
marginals of a joint distribution PXY (x, y) are denoted by
PX (x) and PY (y). Similarly, PY |X (y|x) denotes the condi-
tional distribution induced by PXY (x, y). We write PX = P̃X

to denote element-wise equality between two probability
distributions on the same alphabet. Expectation with respect to
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a distribution PX (x) is denoted by EP [·]. Given a distribution
Q(x) and a conditional distribution W (y|x), the joint distribu-
tion Q(x)W (y|x) is denoted by Q ×W . Information-theoretic
quantities with respect to a given distribution (e.g. PXY (x, y))
are written using a subscript (e.g. IP (X; Y )). All logarithms
have base e, and all rates are in nats/use.

B. Achievability

The most well-known achievable rate in the literature, and
the one of the most interest in this paper, is known as the LM
rate, and is given as follows for an arbitrary input distribution
Q ∈ P(X ):

ILM(Q) � min
P̃XY ∈P(X×Y):P̃X=Q, P̃Y =PY

EP̃ [log q(X,Y )]≥EP [log q(X,Y )]
IP̃ (X; Y ), (3)

where PXY � Q × W . This rate was derived independently
by Hui [1] and Csiszár and Körner [2]. The proof uses a
standard random coding construction in which each codeword
is independently drawn according to the uniform distribution
on a given type class. The following alternative expression was
given by Merhav et al. [4] using Lagrange duality:

ILM(Q)

� sup
s≥0,a(·)

∑

x,y

Q(x)W (y|x) log
q(x, y)sea(x)

∑
x Q(x)q(x, y)sea(x)

. (4)

Since the input distribution Q is arbitrary, we can optimize it
to obtain the achievable rate CLM � maxQ ILM(Q). In general,
CM may be strictly higher than CLM [2], [9].

The first approach to obtaining achievable rates exceeding
CLM was given in [2]. The idea is to code over pairs
of symbols: If a rate R is achievable for the channel
W (2)((y1, y2)|(x1, x2)) � W (y1|x1)W (y2|x2) with the
metric q(2)((x1, x2), (y1, y2)) � q(x1, y1)q(x2, y2), then R

2 is
achievable for the original channel W with the metric q . Thus,
one can apply the LM rate to (W (2), q(2)), optimize the input
distribution on the product alphabet, and infer an achievable
rate for (W, q); we denote this rate by C(2)

LM. An example
was given in [2] for which C(2)

LM > CLM. Moreover,
as stated in [2], the preceding arguments can be applied to
the k-th order product channel for k > 2; we denote the
corresponding achievable rate by C(k)

LM. It was conjectured
in [2] that limk→∞ C(k)

LM = CM. It should be noted that the
computation of C(k)

LM is generally prohibitively complex even
for relatively small values of k, since ILM(Q) is non-concave
in general [10].

Another approach to improving on CLM is to use multi-user
random coding ensembles exhibiting more structure than the
standard ensemble containing independent codewords. This
idea was first proposed by Lapidoth [9], who used parallel
coding techniques to provide an example where CM = C
(with C being the matched capacity) but CLM < C . Building
on these ideas, further achievable rates were provided by
Scarlett et al. [6], [8] and Somekh-Baruch [7] using super-
position coding techniques. Of particular interest in this paper
is the following. For any finite auxiliary alphabet U and input

distribution QU X , the rate R = R0 + R1 is achievable for any
(R0, R1) satisfying1

R1 ≤ min
P̃U XY ∈P(U×X×Y):P̃U X =QU X , P̃UY =PUY

EP̃ [log q(X,Y )]≥EP [log q(X,Y )]
IP̃ (X; Y |U) (5)

R0 ≤ min
P̃U XY ∈P(U×X×Y):P̃U X =QU X , P̃Y =PY

EP̃ [log q(X,Y )]≥EP [log q(X,Y )]
IP̃ (U ; X) + [

IP̃ (X; Y |U) − R1
]+

, (6)

where PU XY � QU X × W . We define ISC(QU X ) to be the
maximum of R0+R1 subject to these constraints, and we write
the optimized rate as CSC � supU ,QU X

ISC(QU X ). We also
note the following dual expressions for (5)–(6) [6], [8]:

R1 ≤ sup
s≥0,a(·,·)

∑

u,x,y

QU X (u, x)W (y|x)

× log
q(x, y)sea(u,x)

∑
x QX |U (x |u)q(x, y)sea(u,x)

(7)

R0 ≤ sup
ρ1∈[0,1],s≥0,a(·,·)

−ρ1 R1 +
∑

u,x,y

QU X (u, x)W (y|x)

× log

(
q(x, y)sea(u,x)

)ρ1

∑
u QU (u)

(∑
x QX |U (x |u)q(x, y)sea(u,x)

)ρ1
.

(8)

Outlines of the derivations of both the primal and dual
expressions can also be found in an extended version of
this paper [11].

We note that CSC is at least as high as Lapidoth’s parallel
coding rate [6]–[8], though it is not known whether it can
be strictly higher. In [6], a refined version of superposition
coding was shown to yield a rate improving on ISC(QU X ) for
fixed (U, QU X ), but the standard version will suffice for our
purposes.

The above-mentioned technique of passing to the k-th order
product alphabet is equally valid for the superposition coding
achievable rate, and we denote the resulting achievable rate
by C(k)

SC . The rate C(2)
SC will be particularly important in

this paper, and we will also use the analogous quantity
I (2)
SC (QU X ) with a fixed input distribution QU X . Since the

input alphabet of the product channel is X 2, one might more
precisely write the input distribution as QU X (2) , but we omit
this additional superscript. The choice U = {0, 1} for the
auxiliary alphabet will prove to be sufficient for our purposes.

C. Converse

Very few converse results have been provided for the mis-
matched decoding problem. Csiszár and Narayan [3] showed
that limk→∞ C(k)

LM = CM for erasures-only metrics, i.e. metrics
such that q(x, y) = maxx,y q(x, y) for all (x, y) such that
W (y|x) > 0. More recently, multi-letter converse results were
given by Somekh-Baruch [12], yielding a general formula for

1The condition in (6) has a slightly different form to that in [6],
which contains the additional constraint IP̃ (U; X) ≤ R0 and replaces
the [·]+ function in the objective by its argument. Both forms are given
in [7], and their equivalence is proved therein. A simple way of seeing
this equivalence is by noting that both expressions can be written as
0 ≤ min P̃U XY

max
{

IP̃ (U, X; Y ) − (R0 + R1), IP̃ (U; X) − R0
}
.
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Fig. 1. Numerical evaluations of the LM rate ILM(Q) as a function of the (first entry of the) input distribution, and the corresponding superposition coding
rate I (2)

SC (QU X ) using the construction described in Section III-D. The matched capacity is C ≈ 0.4944 nats/use, and is achieved by Q(0) ≈ 0.5398.

the mismatched capacity in the sense of Verdú and Han [13].
However, these expressions are not computable.

The only general single-letter converse result presented in
the literature is that of Balakirsky [14], who reported that
CLM = CM for binary-input DMCs. In the following section,
we provide a counter-example showing that in fact the strict
inequality CM > CLM can hold even in this case.

II. THE COUNTER-EXAMPLE

The main claim of this paper is the following; the details
are given in Section III.

Counter-Example 1: Let X = {0, 1} and Y = {0, 1, 2},
and consider the channel and metric described by the entries
of the |X | × |Y| matrices

W =
[

0.97 0.03 0
0.1 0.1 0.8

]

, q =
[

1 1 1
1 0.5 1.36

]

. (9)

Then the LM rate satisfies

0.136874 ≤ CLM ≤ 0.136900 nats/use, (10)

whereas the superposition coding rate obtained by considering
the second-order product of the channel is lower bounded by

C(2)
SC ≥ 0.137998 nats/use. (11)

Consequently, we have CM > CLM.
We proceed by presenting various points of discussion.

Numerical Evaluations: While (10) and (11) are obtained
using numerical computations, and the difference between
the two is small, we will take care in ensuring that the
gap is genuine, rather than being a matter of numerical
accuracy. All of the code used in our computations is available
online [15].

Figure 1 plots our numerical evaluations of ILM(Q)

and I (2)
SC (QU X ) for a range of input distributions; for the latter,

QU X is determined from Q in a manner to be described
in Section III-D. Note that this plot is only meant to help
the reader visualize the results; it is not sufficient to establish
Counter-Example 1 in itself. Nevertheless, it is reassuring
to see that the curves corresponding to the primal and dual
expressions are indistinguishable.

Our computations suggest that

CLM ≈ 0.136875 nats/use, (12)

and that the optimal input distribution is approximately

Q = [
0.75597 0.24403

]
. (13)

The matched capacity is significantly higher than CLM, namely
C ≈ 0.4944 nats/use, with a corresponding input distribution
approximately equal to [0.5398 0.4602]. As seen in the proof,
the fact that the right-hand side of (10) exceeds that of (12)
by 2.5 ×10−5 is due to the use of (possibly crude) bounds on
the loss in the rate when Q is slightly suboptimal.
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Other Achievable Rates: One may question whether (11)

can be improved by considering C(k)
SC for k > 2. However,

we were unable to find any such improvement when we
tried k = 3; see Section III-D for further discussion on
this attempt. Similarly, we observed no improvement on (12)
when we computed I (2)

LM(Q(2)) with a brute force search over
Q(2) ∈ P(X 2) to two decimal places. Of course, it may still
be that C(k)

LM > CLM for some k > 2, but optimizing Q(k)

quickly becomes computationally difficult.
Our numerical findings showed no improvement of

the superposition coding rate CSC for the original
channel (as opposed to the product channel) over the
LM rate CLM.

We were also able to obtain the achievable rate in (10)
using Lapidoth’s expurgated parallel coding rate [9] (or more
precisely, its dual formulation from [6]) to the second-order
product channel. In fact, this was done by taking the input
distribution QU X and the dual parameters (s, a, ρ1) used
in (7)–(8) (see Section III-D), and “transforming” them
into parameters for the expurgated parallel coding ensem-
ble that achieve an identical rate. Details are given in the
Appendix.

Choices of Channel and Metric: While the decoding metric
in (9) may appear to be unusual, it should be noted that any
decoding metric with maxx,y q(x, y) > 0 is equivalent to
another metric yielding a matrix of this form with the first
row and first column equal to one [5], [14].

One may question whether the LM rate can be improved
for binary-input binary-output channels, as opposed to our
ternary-output example. However, this is not possible, since
for any such channel the LM rate is either equal to zero or
the matched capacity, and in either case it coincides with the
mismatched capacity [3].

Unfortunately, despite considerable effort, we have been
unable to understand the analysis given in [14] in sufficient
detail to identify any major errors therein. We also remark that
for the vast majority of the examples we considered, CLM was
indeed greater than or equal to all other achievable rates that
we computed. However, (9) was not the only counter-example,
and others were found with minx,y W (y|x) > 0 (in contrast
with (9)). For example, a similar gap between the rates
was observed when the first row of W in (9) was replaced
by [0.97 0.02 0.01].

III. ESTABLISHING COUNTER-EXAMPLE 1

While Counter-Example 1 is concerned with the specific
channel and metric given in (9), we will present several
results for more general channels with X = {0, 1} and
Y = {0, 1, 2} (and in some cases, arbitrary finite alphabets).
To make some of the expressions more compact, we define
Qx � Q(x), Wxy � W (y|x) and qxy � q(x, y) throughout
this section.

A. Auxiliary Lemmas

The optimization of ILM(Q) over Q can be difficult,
since ILM(Q) is non-concave in Q in general [10].

Since we are considering the case |X | = 2, this optimization is
one-dimensional, and we thus resort to a straightforward
brute-force search of Q0 over a set of regularly-spaced points
in [0, 1]. To establish the upper bound in (10), we must
bound the difference CLM − ILM(Q0) for the choice of Q0
maximizing the LM rate among all such points. Lemma 2
below is used for precisely this purpose; before stating it, we
present a preliminary result on the continuity of the binary
entropy function H2(α) � −α log α − (1 − α) log(1 − α).

It is well-known that for two distributions Q and Q′ on a
common finite alphabet, we have |H (Q′)− H (Q)| ≤ δ log |X |

δ
whenever ‖Q′ − Q‖1 ≤ δ [16, Lemma 2.7]. The following
lemma gives a refinement of this statement for the case that
|X | = 2 and min{Q′

0, Q′
1} is no smaller than a predetermined

constant.
Lemma 1: Let Q′ ∈ P(X ) be a PMF on X = {0, 1}

such that min{Q′
0, Q′

1} ≥ Q′
min for some Q′

min > 0. For any
PMF Q ∈ P(X ) such that |Q0 − Q′

0| ≤ δ (or equivalently,
|Q1 − Q′

1| ≤ δ), we have

∣
∣H (Q′) − H (Q)

∣
∣ ≤ δ log

1 − Q′
min

Q′
min

. (14)

Proof: Set � � Q0 − Q′
0. Since H2(·) is concave,

the straight line tangent to a given point always lies above
the function itself. Assuming without loss of generality that
Q′

0 ≤ 0.5, we have

∣
∣H2(Q′

0 + �) − H2(Q′
0)

∣
∣ ≤ |�| · d H2

dα

∣
∣
∣
∣
α=Q ′

0

(15)

= |�| log
1 − Q′

0

Q′
0

. (16)

The desired result follows since
1−Q ′

0
Q ′

0
is decreasing in Q′

0,

and since Q′
0 ≥ Q′

min and |�| ≤ δ by assumption.
The following lemma builds on the preceding lemma, and

is key to establishing Counter-Example 1.
Lemma 2: For any binary-input mismatched DMC, we have

the following under the setup of Lemma 1:

ILM(Q) ≥ ILM(Q′) − δ log
1 − Q′

min

Q′
min

− δ log 2

Q′
min

. (17)

Proof: The bound in (17) is trivial when ILM(Q′) = 0,
so we consider the case ILM(Q′) > 0. Observing that
Q(x) > 0 for x ∈ {0, 1}, we can make the change of variable
a(x) = log eã(x)

Q(x) (i.e. eã(x) = Q(x)ea(x)) in (4) to obtain

ILM(Q) = sup
s≥0,ã(·)

∑

x,y

Q(x)W (y|x)

× log
q(x, y)seã(x)

Q(x)
∑

x q(x, y)seã(x)
, (18)

which can equivalently be written as

ILM(Q′) = H (Q′) − inf
s≥0,ã(·)

∑

x,y

Q′(x)W (y|x)

× log
(

1 + q(x, y)seã(x)

q(x, y)seã(x)

)
, (19)
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where x ∈ {0, 1} denotes the unique symbol differing from
x ∈ {0, 1}.

The following arguments can be simplified when the
infimum is achieved, but for completeness we consider the
general case. Let (sk, ãk) be a sequence of parameters such
that

H (Q′) − lim
k→∞

∑

x,y

Q′(x)W (y|x)

× log
(

1 + q(x, y)sk eãk(x)

q(x, y)sk eãk(x)

)
= ILM(Q′). (20)

Since the argument to the logarithm in (20) is no smaller than
one, and since H (Q′) ≤ log 2 by the assumption that the input
alphabet is binary, we have for x = 0, 1 and sufficiently large k
that

∑

y

Q′(x)W (y|x) log
(

1 + q(x, y)sk eãk(x)

q(x, y)sk eãk(x)

)
≤ log 2, (21)

since otherwise the left-hand side of (20) would be
non-positive, in contradiction with the fact that we are
considering the case ILM(Q′) > 0. Using the assumption
min{Q′

0, Q′
1} ≥ Q′

min, we can weaken (21) to

∑

y

W (y|x) log
(

1 + q(x, y)sk eãk(x)

q(x, y)sk eãk(x)

)
≤ log 2

Q′
min

. (22)

We now have the following:

ILM(Q)

≥ H (Q) − lim sup
k→∞

∑

x,y

Q(x)W (y|x)

× log
(

1 + q(x, y)sk eãk(x)

q(x, y)sk eãk(x)

)
(23)

≥ H (Q′) − lim sup
k→∞

∑

x

Q(x)
∑

y

W (y|x)

× log
(

1 + q(x, y)sk eãk(x)

q(x, y)sk eãk(x)

)
− δ log

1 − Q′
min

Q′
min

(24)

= H (Q′) − lim sup
k→∞

∑

x

(Q(x) + Q′(x) − Q′(x))

×
∑

y

W (y|x) log
(
1+ q(x, y)sk eãk(x)

q(x, y)sk eãk(x)

)
− δ log

1 − Q′
min

Q′
min

(25)

≥ H (Q′) − lim sup
k→∞

∑

x

Q′(x)
∑

y

W (y|x)

× log
(

1 + q(x, y)sk eãk(x)

q(x, y)sk eãk(x)

)
− δ log

1 − Q′
min

Q′
min

− δ log 2

Q′
min
(26)

= ILM(Q′) − δ log
1 − Q′

min

Q′
min

− δ log 2

Q′
min

, (27)

where (23) follows by replacing the infimum in (19) by
the particular sequence of parameters (sk , ãk) and taking
the lim sup, (24) follows from Lemma 1, (26) follows by
applying (22) for the x value where Q(x) ≥ Q′(x) and lower
bounding the logarithm by zero for the other x value, and (27)
follows from (20).

B. Establishing the Upper Bound in (10)

As mentioned in the previous subsection, we optimize Q
by performing a brute force search over a set of regularly
spaced points, and then using Lemma 2 to bound the difference
CLM − ILM(Q). We let the input distribution therein be
Q′ = arg maxQ ILM(Q). Note that this maximum is always
achieved, since ILM is continuous and bounded [3]. If there are
multiple maximizers, we choose one arbitrarily among them.

To apply Lemma 2, we need a constant Q′
min such that

min{Q′
0, Q′

1} ≥ Q′
min. We present a straightforward choice

based on the lower bound on the left-hand side of (10)
(proved in Section III-C). By choosing Q′

min such that even
the mutual information I (X; Y ) is upper bounded by the
left-hand side of (10) when min{Q′

0, Q′
1} < Q′

min, we see
from the simple identity ILM(Q) ≤ I (X; Y ) [3] that Q cannot
maximize ILM. For the example under consideration (see (9)),
the choice Q′

min = 0.042 turns out to be sufficient, and in fact
yields I (X; Y ) ≤ 0.135. This can be verified by computing
I (X; Y ) to be (approximately) 0.0917, 0.4919 and 0.1348 for
Q0 = 0.042, Q0 = 0.5 and Q0 = 1 − 0.042 respectively,
and then using the concavity of I (X; Y ) in Q to handle
Q0 ∈ [0, 0.042) ∪ (1 − 0.042, 1].

Let h � 10−5, and suppose that we evaluate ILM(Q) for
each Q0 in the set

A �
{

Q′
min, Q′

min + h, . . . , 1 − Q′
min − h, 1 − Q′

min

}
. (28)

Since the optimal input distribution Q′ corresponds to some
Q′

0 ∈ [Q′
min, 1 − Q′

min], we conclude that there exists some
Q0 ∈ A such that |Q′

0 − Q0| ≤ h
2 . Substituting δ = h

2 =
0.5 × 10−5 and Q′

min = 0.042 into (17), we conclude that

max
Q0∈A

ILM(Q) ≥ CLM − 0.982 × 10−4. (29)

We now describe our techniques for evaluating ILM(Q) for
a fixed choice of Q. This is straightforward in principle, since
the corresponding optimization problem is convex whether we
use the primal expression in (3) or the dual expression in (4).
Nevertheless, since we need to test a large number of Q0
values, we make an effort to find a reasonably efficient method.

We avoid using the dual expression in (4), since it is a
maximization problem; thus, if the final optimization
parameters obtained differ slightly from the true optimal
parameters, they will only provide a lower bound on ILM(Q).
In contrast, the result that we seek is an upper bound. We also
avoid evaluating (3) directly, since the equality constraints in
the optimization problem could, in principle, be sensitive to
numerical precision errors.

Of course, there are many ways to circumvent these
problems and provide rigorous bounds on the suboptimality
of optimization procedures, including a number of generic
solvers. We instead take a different approach, and reduce the
primal optimization in (10) to a scalar minimization problem
by eliminating the constraints one-by-one. This minimization
will contain no equality constraints, and thus minor variations
in the optimal parameter will still produce a valid upper bound.

We first note that the inequality constraint can be replaced
by an equality whenever ILM(Q) > 0 [3, Lemma 1], which is
certainly the case for the present example. Moreover, since
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the X-marginal is constrained to equal Q, we can let the
minimization be over P(Y|X ) instead of P(X ×Y), yielding

ILM(Q) = min
W̃∈P(Y |X ):P̃Y =PY

EQ×W̃ [log q(X,Y )]=EP [log q(X,Y )]
IQ×W̃ (X; Y ), (30)

where P̃Y (y) �
∑

x Q(x)W̃ (y|x) (recall also that
PXY = Q × W ). Let us fix a conditional distribution W̃
satisfying the specified constraints, and write W̃xy � W̃ (y|x).
The analogous matrix to W in (9) can be written as follows:

W̃ =
[

W̃00 W̃01 1 − W̃00 − W̃01

W̃10 W̃11 1 − W̃10 − W̃11

]

. (31)

Since P̃Y = PY implies H (P̃Y ) = H (PY ), we can write the
objective in (30) as

IQ×W̃ (X; Y ) = H (PY ) − HQ×W̃ (Y |X) (32)

= H (PY ) + Q0
(
W̃00 log W̃00 + W̃01 log W̃01

+ (1 − W̃00 − W̃01) log(1 − W̃00 − W̃01)
)

+ Q1
(
W̃10 log W̃10 + W̃11 log W̃11

+ (1 − W̃10 − W̃11) log(1 − W̃10 − W̃11)
)
.

(33)

We now show that the equality constraints can be used to
express each W̃xy in terms of W̃10. Using P̃Y (y) = PY (y) for
y = 0, 1, along with the constraint containing the decoding
metric, we have

Q0W̃00 + Q1W̃10 = PY (0) (34)

Q0W̃01 + Q1W̃11 = PY (1) (35)

Q1
(
W̃11 log q11 + (1 − W̃10 − W̃11) log q12

)

= EP [log q(X, Y )], (36)

where in (36) we used the fact that log q(x, y) = 0 for four of
the six (x, y) pairs (see (9)). Re-arranging (34)–(36), we obtain

W̃00 = PY (0) − Q1W̃10

Q0
(37)

W̃01 = PY (1) − Q1W̃11

Q0
(38)

W̃11 = 1

log q11 − log q12

×
(

EP [log q(X, Y )]
Q1

− (1 − W̃10) log q12

)
, (39)

and substituting (39) into (38) yields

W̃01 = 1

Q0

(

PY (1) − 1

log q11 − log q12

×
(
EP [log q(X, Y )] − Q1(1 − W̃10) log q12

))

.

(40)

We have thus written each entry of (33) in terms of W̃10,
and we are left with a one-dimensional optimization problem.
However, we must still ensure that the constraints W̃xy ∈ [0, 1]
are satisfied for all (x, y). Since each W̃xy is an affine
function of W̃10, these constraints are each of the form

W (x,y) ≤ W̃10 ≤ W
(x,y)

, and the overall optimization is
given by

min
W≤W̃10≤W

f (W̃10), (41)

where f (·) denotes the right-hand side of (33) upon
substituting (37), (39) and (40), and the lower and upper limits
are given by W � maxx,y W (x,y) and W � minx,y W

(x,y)
.

Note that the minimization region is non-empty, since
W̃ = W is always feasible. In principle one could observe
W = W = W10, but in the present example we found that
W < W for every choice of Q0 that we used.

The optimization problem in (41) does not appear to permit
an explicit solution. However, we can efficiently compute
the solution to high accuracy using standard one-dimensional
optimization methods. Since the convexity of any optimization
problem is preserved by the elimination of equality con-
straints [17, Sec. 4.2.4], and since the optimization problem
in (30) is convex for any given Q, we conclude that f (·) is
a convex function. Its derivative is easily computed by noting
that

d

dz
(αz + β) log(αz + β) = α + α log(αz + β) (42)

for all α, β and z yielding a positive argument to the logarithm.
We can thus perform a bisection search as follows, where f ′(·)
denotes the derivative of f , and ε is a termination parameter:

1) Set i = 0, W (0) = W and W
(0) = W ;

2) Set Wmid = 1
2 (W (i) + W

(i)
); if f ′(Wmid) ≥ 0 then

set W (i+1) = W (i) and W
(i+1) = Wmid; otherwise set

W (i+1) = Wmid and W
(i+1) = W

(i)
;

3) If | f ′(Wmid)| ≤ ε then terminate; otherwise increment i
and return to Step 2.

As mentioned previously, we do not need to find the exact
solution to (41), since any value of W̃10 ∈ [W , W ] yields a
valid upper bound on ILM(Q). However, we must choose ε
sufficiently small so that the bound in (10) is established.
We found ε = 10−6 to suffice.

We implemented the preceding techniques in C (see [15]
for the code) to upper bound ILM(Q) for each Q0 ∈ A; see
Figure 1. As stated following Counter-Example 1, we found
the highest value of ILM(Q) to be the right-hand side of (12),
corresponding to the input distribution in (13). We found the
corresponding minimizing parameter in (41) to be roughly
W̃10 = 0.4252347.

Instead of directly adding 10−4 to (12) in accordance
with (29), we obtain a refined estimate by “updating” our
estimate of Q′

min. Specifically, using (29) and observing the
values in Figure 1, we can conclude that the optimal value
of Q0 lies in the range [0.7, 0.8] (we are being highly
conservative here). Thus, setting Q′

min = 0.2 and using the
previously chosen value δ = 0.5 × 10−5, we obtain the
following refinement of (29):

max
Q0∈A

ILM(Q) ≥ CLM − 2.43 × 10−5. (43)

Since our implementation in C is based on floating-point
calculations, the final values may have precision errors.
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We therefore checked our numbers using Mathematica’s
arbitrary-precision arithmetic framework [18], which allows
one to work with exact expressions that can then be displayed
to arbitrarily many decimal places. More precisely, we loaded
the values of W̃10 into Mathematica and rounded them
to 12 decimal places (this is allowed, since any value of
W̃10 yields a valid upper bound). Using the exact values of all
other quantities (e.g. Q and W ), we performed an evaluation
of f (W̃10) in (41), and compared it to the corresponding value
of ILM(Q) produced by the C program. The maximum discrep-
ancy across all of the values of Q0 was less than 2.1 ×10−12.
Our final bound in (10) was obtained by adding 2.5 × 10−5

(which is, of course, greater than 2.43 × 10−5 + 2.1 × 10−12)
to the right-hand side of (12).

C. Establishing the Lower Bound in (10)

For the lower bound, we can afford to be less careful
than we were in establishing the upper bound; all we need
is a suitable choice of Q and the parameters (s, a) in (4).
We choose Q as in (13), along with the following:

s = 9.031844 (44)

a = [
0.355033 −0.355033

]
, (45)

In [11, Appendix A], we provide details on how these
parameters were obtained, though the desired lower bound
can readily be verified without knowing such details.

Using these values, we evaluated the objective in (4) using
Mathematica’s arbitrary-precision arithmetic framework [18],
thus eliminating the possibility of arithmetic precision errors.
See [15] for the relevant C and Mathematica code.

D. Establishing the Lower Bound in (11)

We establish the lower bound in (11) by setting U = {0, 1}
and forming a suitable choice of QU X , and then using the dual
expressions in (7)–(8) to lower bound I (2)

SC (QU X ).
1) Choice of Input Distribution: Let Q = [Q0 Q1] be some

input distribution on X , and define the corresponding product
distribution on X 2 as

Q(2) = [
Q2

0 Q0 Q1 Q0 Q1 Q2
1

]
, (46)

where the order of the inputs is (0, 0), (0, 1), (1, 0), (1, 1).
Consider now the following choice of superposition coding
parameters for the second-order product channel (W (2), q(2)):

QU = [
1 − Q2

1 Q2
1

]
(47)

QX |U=0 = 1

1 − Q2
1

[
Q2

0 Q0 Q1 Q0 Q1 0
]

(48)

QX |U=1 = [
0 0 0 1

]
. (49)

This choice yields an X-marginal QX precisely given by (46),
and it is motivated by the empirical observation from [6] that
choices of QU X where QX |U=1 and QX |U=2 have disjoint
supports tend to provide good rates. We let the single-letter
distribution Q = [Q0 Q1] be

Q = [
0.749 0.251

]
. (50)

which we chose based on a simple brute force search
(see Figure 1). Note that this choice is similar to that in (13),
but not identical.

One may question whether the choice of the supports of
QX |U=0 and QX |U=1 in (48)–(49) is optimal. For example,
a similar construction might set QU (0) = Q2

0 + Q0 Q1,
and then replace (48)–(49) by normalized versions of
[Q2

0 Q0 Q1 0 0] and [0 0 Q0 Q1 Q2
1]. However, after

performing a brute force search over the possible support
patterns (there are no more than 24, and many can be ruled
out by symmetry considerations), we found the above pattern
to be the only one to give an improvement on ILM, at least
for the choices of input distribution in (13) and (50). In fact,
even after setting |U | = 3, considering the third-order product
channel (W (3), q(3)), and performing a similar brute force
search over the support patterns (of which there are no
more than 38), we were unable to obtain an improvement
on (11).

2) Choices of Optimization Parameters: We now specify the
choices of the dual parameters in (7)–(8). In [11, Appendix A],
we give details of how these parameters were obtained.
We claim that the choice

(R0, R1) = (0.0356005, 0.2403966) (51)

is permitted; observe that summing these two values and
dividing by two (since we are considering the product channel)
yields (11). These values can be verified by setting the
parameters as follows: On the right-hand side of (7), set

s = 9.4261226 (52)

a =
[

0.4817048 −0.2408524 −0.2408524 0
0 0 0 0

]

, (53)

and on the right-hand side of (8), set

ρ1 = 0.7587516 (54)

s = 9.3419338 (55)

a =
[

0.7186926 −0.0488036 −0.0488036 0
0 0 0 −0.6210855

]

.

(56)

Once again, we evaluated (7)–(8) using Mathematica’s
arbitrary-precision arithmetic framework [18], thus ensuring
the validity of (11). See [15] for the relevant C and
Mathematica code.

IV. CONCLUSION

We have used our numerical findings, along with an analysis
of the gap to suboptimality for slightly suboptimal input
distributions, to show that it is possible for CM to exceed CLM
even for binary-input mismatched DMCs. This is in contrast
with the claim in [14] that CM = CLM for such channels.

An interesting direction for future research is to find a purely
theoretical proof of Counter-Example 1; the non-concavity
of ILM(Q) observed in Figure 1 may play a role in such an
investigation. Furthermore, it would be of significant interest to
develop a better understanding of [14], including which parts
may be incorrect, under what conditions the converse remains
valid, and in the remaining cases, whether a valid converse



5394 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 10, OCTOBER 2015

lying in between the LM rate and matched capacity can be
inferred.

APPENDIX

ACHIEVING (11) VIA EXPURGATED PARALLEL CODING

Here we outline how the achievable rate of
0.137998 nats/use in (11) can be obtained using Lapidoth’s
expurgated parallel coding rate. We verified this value by
evaluating the primal expressions in [9] using CVX [19],
and also by evaluating the equivalent dual expressions in [6]
by a suitable adaptation of the dual optimization parameters
for superposition coding given in Section III-D. Here we
focus on the latter, since it immediately provides a concrete
lower bound even when the optimization parameters are
suboptimal.

The parameters to Lapidoth’s rate are two finite alphabets
X1 and X2, two corresponding input distributions Q1 and Q2,
and a function φ(x1, x2) mapping X1 and X2 to the channel
input alphabet. For any such parameters, the rate R = R1 + R2
is achievable provided that [6], [8]

R1 ≤ sup
s≥0,a(·,·)

E

[

log
q(φ(X1, X2), Y )sea(X1,X2)

E
[
q(φ(X 1, X2), Y )sea(X1,X2)|X2, Y

]

]

(57)

R2 ≤ sup
s≥0,a(·,·)

E

[

log
q(φ(X1, X2), Y )sea(X1,X2)

E
[
q(φ(X1, X2), Y )sea(X1,X2)|X1, Y

]

]

,

(58)

and at least one of the following holds:

R1 ≤ sup
ρ2∈[0,1],s≥0,a(·,·)

−ρ2 R2

+ E

⎡

⎢
⎣log

(
q(φ(X1, X2), Y )sea(X1,X2)

)ρ2

E

[(
E
[
q(φ(X 1, X2), Y )sea(X1,X2)

∣
∣X 1

])ρ2 ∣∣Y
]

⎤

⎥
⎦

(59)

R2 ≤ sup
ρ1∈[0,1],s≥0,a(·,·)

−ρ1 R1

+ E

⎡

⎢
⎣log

(
q(φ(X1, X2), Y )sea(X1,X2)

)ρ1

E

[(
E
[
q(φ(X 1, X2), Y )sea(X1,X2)

∣
∣X 2

])ρ1 ∣∣Y
]

⎤

⎥
⎦,

(60)

where (X1, X2, Y, X1, X 2) are distributed according to
Q1(x1)Q2(x2)W (y|φ(x1, x2))Q1(x1)Q2(x2).

Recall the input distribution QU X for superposition coding
on the second-order product channel given in (47)–(49).
Denoting the four inputs of the product channel as
{(0, 0), (0, 1), (1, 0), (1, 1)}, we set X1 = {(0, 0),
(0, 1), (1, 0)}, X2 = U = {0, 1}, and

QX1 = 1

1 − Q2
1

[
Q2

0 Q0 Q1 Q0 Q1
]

(61)

QX2 = [
1 − Q2

1 Q2
1

]
(62)

φ(x1, x2) =
{

x1 x2 = 0

(1, 1) x2 = 1.
(63)

This induces a joint distribution QX1 X2 X (x1, x2, x) =
QX1(x1)QX2(x2)1{x = φ(x1, x2)}. The idea behind this
choice is that the marginal distribution QX2 X coincides with
our choice of QU X for SC.

By the structure of our input distributions, there is in fact a
one-to-one correspondence between (u, x) and (x1, x2), thus
allowing us to immediately use the dual parameters (s, a, ρ1)
from SC for the expurgated parallel coding rate. More
precisely, using the superscripts (·)sc and (·)ex to distinguish
between the two ensembles, we set

Rex
1 = Rsc

1 (64)

Rex
2 = Rsc

0 (65)

sex = ssc (66)

aex(x1, x2) = asc(x2, φ(x1, x2)) (67)

ρex
1 = ρsc

1 . (68)

Using these identifications along with the choices of the
superposition coding parameters in (52)–(56), we verified
numerically that the right-hand side of (57) (respectively, (60))
coincides with that of (7) (respectively, (8)). Finally,
to conclude that the expurgated parallel coding rate
recovers (11), we numerically verified that the rate R2 result-
ing from (57) and (60) (which, from (51), is 0.0356005)
also satisfies (58). In fact, the inequality is strict, with the
right-hand side of (58) being at least 0.088.
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