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Abstract—The wideband regime of bit-interleaved coded mod-
ulation (BICM) in Gaussian channels is studied. The Taylor ex-
pansion of the coded modulation capacity for generic signal con-
stellations at low signal-to-noise ratio (SNR) is derived and used
to determine the corresponding expansion for the BICM capacity.
Simple formulas for the minimum energy per bit and the wideband
slope are given. BICM is found to be suboptimal in the sense that
its minimum energy per bit can be larger than the corresponding
value for coded modulation schemes. The minimum energy per bit
using standard Gray mapping on � -PAM or ��-QAM is given
by a simple formula and shown to approach � 0.34 dB as � in-
creases. Using the low SNR expansion, a general tradeoff between
power and bandwidth in the wideband regime is used to show how
a power loss can be traded off against a bandwidth gain.

Index Terms—Additive white Gaussian noise (AWGN) channel,
bit-interleaved coded modulation, coded modulation, Rayleigh
fading channel, wideband regime.

I. INTRODUCTION AND MOTIVATION

B IT-interleaved coded modulation (BICM) was originally
proposed by Zehavi [1] and further elaborated by Caire et

al. [2] as a practical way of constructing efficient coded mod-
ulation schemes over nonbinary signal constellations. Refer-
ence [2] defined and computed the channel capacity of BICM
under a suboptimal noniterative decoder, and compared it to the
coded modulation capacity, assuming equiprobable signaling
over the constellation. When natural reflected Gray mapping
was used, the BICM capacity was found to be near optimal
at high signal-to-noise ratio (SNR). Nevertheless, plots of the
BICM capacity as a function of the energy per bit for reliable
communication (see Fig. 1) reveal the suboptimality of BICM
with the noniterative decoder of [1], [2] for low rates, that is in
the power-limited or wideband regime.
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Recent work by Verdú [3] presents a detailed treatment of the
wideband regime. He studied the minimum bit energy-to-noise
ratio for reliable communication and the wideband
slope, i. e., the first-order expansion of the capacity for low

, under a variety of channel models and channel state
information (CSI) assumptions. These results are obtained by
using a second-order expansion of the channel capacity at zero
SNR. Furthermore, using these results, he obtained a general
tradeoff between data rate, power, and bandwidth in the wide-
band regime. In particular, Verdú [3] studied the bandwidth
penalty incurred by using suboptimal signal constellations in
the low-power regime. An implicit assumption of this tradeoff
was that the power cannot change together with the bandwidth.

Motivated by the results of Fig. 1 and by Verdú’s analysis
[3], in this paper we give an analytical characterization of the
behavior of BICM in the low-power regime. Studying the be-
havior of BICM at low rates may prove useful in the design
of multirate communication systems, where rate adaptation is
carried out by modifying the binary code, while keeping the
modulation unchanged. In the process, we derive a number of
results of independent interest for coded modulation over the
Gaussian channel. In particular, the first two coefficients of the
Taylor expansion of the coded modulation capacity for arbi-
trary signal constellations at zero SNR are derived, and used
to obtain the corresponding coefficients for BICM. We also ob-
tain a closed-form expression for the minimum for BICM
using quadrature amplitude modulation (QAM) constellations
with natural reflected Gray mapping, and we show that for large
constellations it approaches 0.34 dB, resulting in a 1.25-dB
power loss with respect to coded modulation. Using these re-
sults, we derive the tradeoff between power and bandwidth in
the wideband regime that generalizes the results of [3] to cap-
ture the effects of changing both power and bandwidth.

This paper is organized as follows. Section II introduces the
system model, basic assumptions, and notation. Section III de-
fines the wideband regime, and presents the low-SNR expansion
for both coded modulation and BICM. Section IV introduces the
general tradeoff between power and bandwidth. Concluding re-
marks appear in Section V. Proofs of various results are in the
Appendices.

II. MODEL AND ASSUMPTIONS

We consider a complex-valued, discrete-time additive
Gaussian noise channel with fading. The th channel output
is given by

(1)
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Fig. 1. Channel capacity (in bits per channel use) as a function of with memoryless binary labeling and BICM-ML decoding for multiple signal constellations
with uniform inputs in the additive white Gaussian noise (AWGN) channel. Gray and set partitioning labeling rules correspond to thin dotted and dashed-dotted
lines, respectively. In thick solid lines, the capacity with Gaussian inputs; in thin solid lines the CM channel capacity with uniform inputs (3).

where is the th channel input, a fading coefficient, and
an independent sample of circularly symmetric complex-valued
Gaussian noise of unit variance; denotes the average SNR
at the receiver. The transmitted, received, noise, and fading sam-
ples are realizations of the random variables and .
The fading coefficients are independently drawn from a den-
sity and are assumed known at the receiver. For future
use we define the squared magnitudes of the fading coefficients
by . For a given fading realization , the condi-
tional output probability density is given by

(2)

The channel inputs are modulation symbols drawn from
a constellation set with probabilities . We denote
the cardinality of the constellation set by and by

the number of bits required to index a modulation
symbol. We define the constrained capacity (or coded
modulation capacity) as the corresponding mutual information
between channel input and output, namely

(3)

where the expectation is performed over and . If the
symbols are used with equal probabilities, i.e., ,

we refer to the constrained capacity as uniform capacity, and
denote it by .

As we will see later, it proves convenient to consider general
constellation sets with arbitrary first and second moments, re-
spectively denoted by and , and given by

Practical constellations have zero mean, i.e., , and
unit energy, that is, .

In order to transmit at rates close to the coded modulation ca-
pacity, multilevel coding or nonbinary codes are needed [4], [5].
Alternatively, in BICM binary codes are mapped with a binary
mapping rule onto nonbinary modulations [1], [2]. Caire et al.
found that BICM with natural reflected Gray mapping and low-
complexity noniterative demodulation attains very good perfor-
mance, close to that of coded modulation with equiprobable sig-
naling [2]. For infinite interleaving, the channel is separated into
a set of parallel independent subchannels, and one defines the
so-called BICM capacity, denoted by , given by

(4)

(5)
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where denotes the binary input random variable corre-
sponding to the th parallel channel (see [2] for details), are
the sets of constellation symbols with bit in the th position
of the binary label, and the expectation is performed over all
input symbols in for , and over all possible noise
and fading realizations, respectively, and . An equivalent,
yet alternative, definition is given by the following.

Proposition 1: The BICM capacity can be expressed as

(6)

where and are, respectively, the constrained capacities

for equiprobable signaling in and .
Proof: The proof is given in Appendix A.1

In general, the sets have nonzero mean and nonunit av-
erage energy. This result reduces the analysis of the BICM ca-
pacity to that of coded modulation over constellation sets with
arbitrary first and second moments.

III. WIDEBAND REGIME

In the wideband regime, as defined by Verdú in [3], the energy
of a single bit is spread over many channel degrees of freedom,
resulting in a low signal-to-noise ratio . It is then conve-
nient to study the asymptotic behavior of the channel capacity
as . In general, the capacity2 (in nats per channel use)
admits an expansion in terms of

(7)

where and depend on the modulation format, the receiver
design, and the fading distribution.

Among the several uses for the coefficients and , Verdú
[3] studied the transformation of expansion (7) into a function
of the bit-energy-to-noise ratio

(8)

In linear scale for , one obtains

(9)

where and

(10)

The parameter is Verdú’s wideband slope in linear scale [3].
We avoid using the word minimum for , since there exist
communication schemes with a negative slope , for which the
absolute minimum value of is achieved at nonzero rates. In
these cases, the expansion at low power is still given by (9). The
derivation of (9) can be found in Appendix B.

A second important use of the coefficients and was the
analysis of the bandwidth penalty incurred by using suboptimal

1This expression has been independently derived in [6].
2This capacity may be the coded modulation capacity, or the BICM capacity.

constellations in the low-power regime [3]. An implicit assump-
tion in [3] was that the power cannot change together with the
bandwidth. In Section IV, we relax this assumption and give a
formula for the tradeoff between power penalty and bandwidth
penalty and apply it to compare BICM with standard coded
modulation.

In the following, we determine the coefficients and in
the expansion (7) for generic constellations, and use them to
derive the corresponding results for BICM. Before proceeding
along this line, we note that Theorem 12 of [3] covers the effect
of fading. The coefficients and for a general fading distri-
bution are

(11)

where the coefficients and are in absence
of fading. Hence, even though we focus only on the AWGN
channel, all results are valid for general fading distributions.

A. Coded Modulation

For the unconstrained case, where the capacity is
, then and . In [7], Prelov and Verdú

determined the coefficients and for the so-called proper-
complex constellations introduced by Neeser and Massey [8],
which satisfy

where is a second-order pseudo-moment, borrowing no-
tation from the paper [8]. The coefficients for coded modulation
formats with arbitrary first and second moments are given by the
following result.

Theorem 1: Consider coded modulation schemes in the
Gaussian channel, over a signal set used with probabilities

. The first two coefficients of the Taylor expansion of the
constrained capacity around are given by

(12)

(13)

When (zero mean) and (unit energy)

(14)

and the bit-energy-to-noise ratio at zero is .
Proof: See Appendix C.

The formula for is known, and can be found as Theorem
4 of [3]. Also, for proper-complex constellations , as
found in [7]. The second-order coefficient is bounded by

, the maximum being attained when
the constellation has uncorrelated real and imaginary parts and
the energy is equally distributed among the real and imaginary
parts.

Applied to some practical signal constellations with
equiprobable symbols, Theorem 1 gives the following corol-
laries, whose respective proofs are straightforward.

Corollary 1: For uniform -PSK, if and
if .
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TABLE I
AND WIDEBAND SLOPE COEFFICIENTS � � � FOR BICM IN AWGN

This result extends Theorem 11.1 of [3], where the result held
for quaternary phase-shift keying (QPSK), a simple example of
proper-complex constellation.

Corollary 2: When represents a mixture of uniform
-PSK constellations for if and only

if for all rings/subconstellations .

This applies to amplitude-and-phase-shift keying (APSK)
modulations, for instance. In [3] Theorem 11.2 stated the result
for mixtures of QPSK constellations.

B. Bit-Interleaved Coded Modulation

First, for fixed label index and bit value , let us respectively
define the quantities and as the mean,
the second moment, and the average of the squared symbols in
the set . Then, we have the following.

Theorem 2: Assume a constellation set with zero mean and
unit average energy. The coefficients and for the BICM
capacity are given by

(15)

(16)

Proof: See Appendix D.

Table I reports the numerical values for the coefficients
and , as well as the bit SNR and wideband slope for
various cases, namely QPSK, 8-PSK, and 16-QAM modulations
and Gray and set partitioning (anti-Gray for QPSK) mappings.

In Fig. 2, the approximation in (9) is compared with the ca-
pacity curves. As expected, a good match for low rates is ob-
served. We use labels to identify the specific cases: labels 1 and 2
are QPSK, 3 and 4 are 8-PSK, and 5 and 6 are 16-QAM. Also de-
picted is the linear approximation to the capacity around ,
given by (9). Two cases with Nakagami fading are also included
in Fig. 2, which also show good match with the estimate, taking
into account that and for Nakagami-
fading. An exception is 8-PSK with set-partitioning, for which

the approximation is valid for a very small range of rates, since
is positive and very small, which implies a very large slope.
In general, it seems difficult to draw general conclusions for

arbitrary mappings from Theorem 2. A notable exception, how-
ever, is the analysis under natural reflected Gray mapping.

Theorem 3: For -PAM and -QAM and natural, binary-
reflected Gray mapping, the coefficient in the Taylor expan-
sion of the BICM capacity at low is

(17)

and the minimum is

(18)

As approaches 0.3424 dB from
below.

Proof: The proof can be found in Appendix E.

The results for BPSK, QPSK (2-PAM 2-PAM), and
16-QAM (4-PAM 4-PAM), as presented in Table I, match
with the theorem.

Somewhat surprisingly, the loss with respect to coded mod-
ulation at low is bounded. The loss represents about
1.25 dB with respect to the classical coded modulation (CM)
limit, namely, 1.59 dB. In the next section, we
examine in detail the precise extent to which this loss translates
into an equivalent loss in power. We will do so by allowing for
simultaneous variations in power and bandwidth and conclude
that using BICM over a fixed modulation for a large range
of SNR values, where the transmission rate is adjusted by
changing the code rate, needs not result in a large loss with
respect to more optimal schemes, where both the rate and
modulation change. Additionally, this loss can be traded off
against a large bandwidth reduction.

IV. BANDWIDTH AND POWER TRADEOFF

In the previous section we computed the first coefficients of
the Taylor expansion of the CM and BICM capacities around

. In this section, we use these coefficients to determine
the tradeoff between power and bandwidth in the low-power
regime. We will see how part of the power loss incurred by
BICM can be traded off against a large bandwidth reduction.

The data rate transmitted across a Gaussian channel is deter-
mined by two physical variables: the power , or energy per
unit time, and the bandwidth , or number of channel uses per
unit time. In this case, the signal-to-noise ratio is given
by , where is the noise spectral density.
Then, the capacity measured in bits per unit time is the natural
figure of merit for a communications system. With only a con-
straint on , this capacity is given by . For
low , we have that

(19)
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Fig. 2. BICM capacity (in bits per channel use). Labels 1 and 2 are QPSK, 3 and 4 are 8-PSK, and 5 and 6 are 16-QAM. Gray and set partitioning labeling rules
correspond to dashed (and odd labels) and dashed-dotted lines (and even labels), respectively. Dotted lines are cases 1 and 6 with Nakagami-0.3 and Nakagami-1
(Rayleigh) fading (an “f” is appended to the label index). Solid lines are linear approximation around .

Similarly, for CM systems with capacity , we have

(20)

Following Verdú [3], we consider the following scenario. Let
two alternative transmission systems with respective powers
and bandwidths , achieve respective capacities per
channel use . The corresponding first- and second-order ex-
pansion coefficients are denoted by for the first system,
and for the second. A natural comparison is to fix a
power ratio and then solve for the corresponding
bandwidth ratio so that the data rate is the
same, that is . For instance, option 1 can be
QPSK modulation and option 2 use of a high-order modulation
with BICM.

A. An Approximation to the Tradeoff

When the capacities and can be evaluated, the exact
tradeoff curve can be computed. For low power, a
good approximation is obtained by keeping the first two terms
in the Taylor series. Under this approximation, we have the fol-
lowing result.

Theorem 4: In a neighborhood of the capacities in
bits per second, and are equal when the expansion
factors and are related as

(21)

for as a function of and, if

(22)

for as a function of .
Proof: The proof can be found in Appendix F .

Replacing the value of from (22) into (21) gives
, which is not exact, but valid within the

approximation order, since we assume .
The previous theorem leads to the following derived results.

For simplicity, we drop the terms and replace the
equality signs by approximate equalities.

Corollary 4: For , we obtain

(23)

and for the specific case .

The latter formula has also been obtained by Verdú [3] as a
ratio of wideband slopes.

As noticed in [3], the loss in bandwidth may be significant
when . But this point is just one of a curve relating
and . For instance, with no bandwidth expansion we have
the following.

Corollary 4: For , and choosing
.
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Fig. 3. Tradeoff between�� and�� between QPSK and 16-QAM with Gray mapping. Solid lines correspond to the exact tradeoff, while dashed lines corre-
spond to the low-SNR tradeoff.

For SNRs below 10 dB, the approximation in Theorem 4
seems accurate for “reasonable” power or bandwidth expansion
ratios. A quantitative definition would lead to the problem of the
extent to which the second-order approximation to the capacity
is correct, a question on which we do not dwell further.

Another example concerns the effect of fully interleaved
fading. Let us consider a Nakagami- fading model, such
that the squared fading coefficient follows a
gamma distribution. The parameter is a real positive number,

. Using the values of the moments of the gamma
distribution and , we have that

and .

Corollary 5: Consider a modulation set with average unit
energy and used with power , bandwidth , and signal-to-
noise ratio ; its capacity in absence of fading is character-
ized at low by the coefficients and . When used
in the Nakagami- channel with power and bandwidth ,
if , , and if ,

. As expected, for unfaded AWGN, when , there
is no loss. Rayleigh fading incurs in a bandwidth expan-
sion of a factor if the power is to be fixed. On the other hand, if
bandwidth is kept unchanged, there is a power penalty in deci-
bels of about

decibels, a negligible amount to all practical ef-
fects since . The worst possible fading is ,
which requires an unbounded bandwidth expansion or an un-
limited power penalty.

B. Tradeoff for BICM

The tradeoff between power and bandwidth can also be ap-
plied to determine the expansion factors when BICM with a non-
binary modulation is used rather than, say, QPSK modulation.
Fig. 3 shows the tradeoff between power and bandwidth expan-
sion factors when BICM over 16-QAM with Gray mapping is
used, having taken QPSK as the reference transmission method.
Results are presented for two values of the SNR for the QPSK
baseline. The exact result, obtained by using the exact formulas
for and , respectively, (3) and (6), is plotted along the
result by using Theorem 4.

As expected, for very low values of , the curve for
diverges as approaches the value , or 0.97 dB.
This is in line with the fact that the minimum energy per bit
required for 16-QAM/BICM is 0.63 dB, as given in Table I.
Close to this limit, small improvements in power efficiency are
extremely costly in bandwidth resources. On the other hand, this
loss may be accompanied by a significant reduction in band-
width, which might be of interest in some applications. For in-
stance, a loss of 2.4 dB from the baseline at 18 dB requires a
tiny fraction of the original bandwidth, about 2%.

Concerning the last point, the results are exclusive to BICM
and the same analysis can be applied to a single transmission
method with coefficients and , trading off power against
bandwidth. In this case, for a given we would have

(24)
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Using QPSK and for 18 dB,
a loss of 2.4 dB is linked to using only 3% of the original
bandwidth. We see that QPSK is slightly more inefficient than
BICM/16-QAM in using the bandwidth, the reason being that it
has a lower coefficient instead of . To any extent,
it should not be surprising that communication in the wideband
regime can be inefficient in using the bandwidth, since we are
working in a regime where the main limitation is in power.

For SNRs larger than those reported in the figure, the assump-
tion of low loses its validity and the results derived from
the Taylor expansion are no longer accurate.

V. CONCLUSION

In this paper, we have computed the first two derivatives of the
constrained capacity at zero for rather general modulation
sets, and used the result to characterize analytically the behavior
of BICM in the low-power regime. For binary reflected Gray
mapping, the capacity loss at low with respect to coded
modulation is shown to be bounded by approximately 1.25 dB.
This fact may be useful for the design of systems operating at
low SNRs.

Moreover, we have determined the tradeoff at low
between power penalty and bandwidth expansion between two
alternative systems. The tradeoff presented here generalizes
Verdú’s analysis of the wideband regime, where the bandwidth
expansion for a fixed power was estimated. We have shown
that no bandwidth expansion may be achieved at a negligible
(but nonzero) cost in power. A similar tradeoff between power
penalty and bandwidth expansion for general Nakagami-
fading has been computed, with similar conclusions as in the
point above: bandwidth expansion may be large at no power
cost, but absent at a tiny power penalty. We have applied the
tradeoff to a comparison between QPSK and 16-QAM.

APPENDIX A
PROOF OF PROPOSITION 1

By definition, the BICM capacity is the sum over
of the mutual informations . We

rewrite this mutual information as

(25)

(26)

where we have modified the variable in the logarithm by in-
cluding a factor in both numerator and de-
nominator. Splitting the logarithm

(27)

For fixed , the quantity

(28)

is the mutual information achievable by using equiprobable sig-
naling in the set , and, similarly, the quantity

(29)

is the mutual information achieved by equiprobable signaling in
.

APPENDIX B
LINEAR EXPANSION CAPACITY

We start with (7) and use Lagrange’s inversion formula. The
inversion formula transforms a function

(30)

into its inverse

(31)

We do an expansion around , which is also .
Applied to our case, the inversion formula becomes

(32)

Using the expansion in (7), after some simplifications we get

(33)

Letting and rearranging we obtain

(34)

which leads to

and hence the desired result.

APPENDIX C
CM CAPACITY EXPANSION AT LOW SNR

The assumption that the constellation moments are finite im-
plies that for . Therefore, as ,
for , the technical condition

(35)

necessary to apply Theorem 5 of [7] holds.
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Let us define a vector , with com-
ponents the real and imaginary parts of symbol , respectively,
denoted by and . The covariance matrix of , denoted
by , is given by

(36)

where and are the mean values of the real and imaginary
parts of the constellation.

Theorem 5 of [7] gives and
, or

(37)

(38)

The coefficient coincides with that in (12).
As for , let us add a subtract a term

to (38). Then

(39)

which, in turn, can be written as

(40)

a form which coincides with (13), by noting that

(41)

(42)

APPENDIX D
PROOF OF THEOREM 2

In (6) for the BICM capacity, the summands and
admit each a Taylor expansion given in Theorem 1. Hence

(43)

(44)

(45)

(46)

since by construction.
As for , it follows from a similar application of Theorem 1.

APPENDIX E
FIRST-ORDER COEFFICIENT FOR BICM WITH GRAY MAPPING

For -PAM, the Gray mapping construction makes
, for and all bit positions except one,

which we take with no loss of generality to be . Therefore

(47)
The last equalities follow from the symmetry between and .

Symbols lie on a line in the complex plane with values
, with a normalization factor

. This factor follows by setting in the
formula , The average symbol
has modulus , and therefore

(48)

Extension to -QAM is clear, by taking the Cartesian
product along real and imaginary parts. Now, two indices con-
tribute, each with an identical form to that of pulse amplitude
modulation (PAM). As the energy along each axis of half that
of PAM, the normalization factor also halves and overall

does not change.

APPENDIX F
DETERMINATION OF THE POWER AND BANDWIDTH TRADE-OFF

In order to have the same capacities, bandwidth and/or power
must change to account for the difference in capacity, so that

(49)

Simplifying common factors, we obtain

(50)

Or, with the definitions , and

(51)

and

(52)

This equation gives the tradeoff between and , for a
fixed (small) , so that the capacities of scenarios 1 and 2
coincide.

Next we solve for the inverse, i.e., for as a function of
. First, let us define the quantities
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and . Then, rearranging (52), we
have and therefore

(53)

(54)

Often we have , and then the negative root is a spurious
solution. We choose then the positive root. Since is of order

, we can use the Taylor expansion
, to write

(55)

(56)

Since , we group the nonlinear terms in and
so get

(57)

(58)
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