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Abstract—We revisit the information-theoretic analysis of
bit-interleaved coded modulation (BICM) by modeling the BICM
decoder as a mismatched decoder. The mismatched decoding
model is well defined for finite, yet arbitrary, block lengths, and
naturally captures the channel memory among the bits belonging
to the same symbol. We give two independent proofs of the achiev-
ability of the BICM capacity calculated by Caire et al., where
BICM was modeled as a set of independent parallel binary-input
channels whose output is the bitwise log-likelihood ratio. Our first
achievability proof uses typical sequences, and shows that due to
the random coding construction, the interleaver is not required.
The second proof is based on the random coding error exponents
with mismatched decoding, where the largest achievable rate is
the generalized mutual information. Moreover, the generalized
mutual information of the mismatched decoder coincides with
the infinite-interleaver BICM capacity. We show that the error
exponent—and hence the cutoff rate—of the BICM mismatched
decoder is upper-bounded by that of coded modulation and may
thus be lower than in the infinite-interleaved model; for binary
reflected Gray mapping in Gaussian channels the loss in error
exponent is small. We also consider the mutual information
appearing in the analysis of iterative decoding of BICM with
extrinsic information transfer (EXIT) charts: if the symbol metric
has knowledge of the transmitted symbol, EXIT mutual infor-
mation admits a representation as a pseudo-generalized mutual
information, which is in general not achievable. A different symbol
decoding metric, for which the extrinsic side information refers
to the hypothesized symbol, induces a generalized mutual infor-
mation lower than the coded modulation capacity. In this case,
perfect extrinsic side information turns the mismatched-decoder
error exponent into that of coded modulation.

Index Terms—Bit-interleaved coded modulation, coded modula-
tion, cutoff rate, error exponents, generalized mutual information,
iterative decoding, maximum-likelihood decoding, mismatched de-
coding.
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I. INTRODUCTION

I N the classical bit-interleaved coded modulation (BICM)
scheme proposed by Zehavi in [1], the channel observation

is used to generate decoding metrics for each of the bits of a
symbol, rather than the symbol metrics used in Ungerböck’s
coded modulation (CM) [2]. This decoder is suboptimal and
noniterative, but offers very good performance and is interesting
from a practical perspective due to its low implementation com-
plexity. In parallel, iterative decoders have also received much
attention [3]–[7] thanks to their improved performance.

Caire et al. [8] further elaborated on Zehavi’s decoder and,
under the assumption of an infinite-length interleaver, presented
and analyzed a BICM model as a set of parallel independent bi-
nary-input output symmetric channels. Based on the data pro-
cessing theorem [9], Caire et al. showed that the BICM mutual
information cannot be larger than that of CM. However, and
rather surprisingly a priori, they found that the cutoff rate of
BICM might exceed that of CM [10]. The error exponents for
the parallel-channel model were studied by Wachsmann et al.
[11].

In this paper, we take a closer look to the classical BICM
decoder proposed by Zehavi and cast it as a mismatched de-
coder [12]–[14]. The observation that the classical BICM de-
coder treats the different bits in a given symbol as independent,
even if they are clearly not, naturally leads to a simple model
of the symbol mismatched decoding metric as the product of bit
decoding metrics, which are in turn related to the log-likelihood
ratios. We also examine the BICM mutual information in the
analysis of iterative decoding by means of EXIT (extrinsic in-
formation transfer) charts [5]–[7], where the sum of the mutual
informations across the parallel subchannels is used as a figure
of merit of the progress in the iterative decoding process.

This paper is organized as follows. Section II introduces the
system model and notation. Section III gives a proof of achiev-
ability of the BICM capacity, derived in [8] for the indepen-
dent parallel channel model, by using typical sequences. Sec-
tion IV shows general results on the error exponents, including
the generalized mutual information and cutoff rate as particular
instances. The BICM error exponent (and in particular the cutoff
rate) is always upper-bounded by that of CM, as opposed to
the corresponding exponent for the independent parallel channel
model [8], [11], which can sometimes be larger. In particular,
Section IV-D studies the achievable rates of BICM under mis-
matched decoding and shows that the generalized mutual infor-
mation [12]–[14] of the BICM mismatched decoder yields the
BICM capacity. The section concludes with some numerical re-
sults, including a comparison with the parallel-channel models.
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In general, the loss in error exponent is negligible for binary re-
flected Gray mapping in Gaussian channels. In Section V, we
turn our attention to the iterative decoding of BICM. First, we
review how the mutual information appearing in the analysis of
iterative decoding of BICM with EXIT charts, where the symbol
decoding metric has some side knowledge of the transmitted
symbol, admits a representation as a pseudo-generalized mutual
information. A different symbol decoding metric, for which the
extrinsic side information refers to the hypothesized symbol, in-
duces a generalized mutual information lower in general than
the coded modulation capacity. Moreover, perfect extrinsic side
information turns the error exponent of this mismatched decoder
into that of coded modulation. Finally, Section VI gives some
concluding remarks.

II. CHANNEL MODEL AND CODE ENSEMBLES

A. Channel Model

We consider the transmission of information by means of a
block code of length . At the transmitter, a message is
mapped onto a codeword , according to one
of the design options described later, in Section II-B. We denote
this encoding function by . Each of the symbols are drawn
from a discrete modulation alphabet , with

and being the number of bits required
to index a symbol.

We denote the output alphabet by and the channel output
by , with . With no loss of generality,
we assume the output is continuous,1 so that the channel output

related to the codeword through a conditional probability
density function . Further, we consider memoryless
channels, for which

(1)

where is the channel symbol transition proba-
bility. Henceforth, we drop the words density function in our
references of . We denote by the underlying
random variables. Similarly, the corresponding random vectors
are

and

respectively, drawn from the sets .
A particularly interesting, yet simple, case is that of complex-

plane signal sets in additive white Gaussian noise (AWGN) with
fully interleaved fading where and

(2)

where are fading coefficients with average unit energy,
are the complex zero-mean unit-variance AWGN samples, and

is the signal-to-noise ratio (SNR). The decoder outputs an
estimate of the message according to a given codeword de-
coding metric, which we denote by as

(3)

1Our results are directly applicable to discrete output alphabets, by appropri-
ately replacing integrals by sums.

The codeword metrics we consider are the product of symbol
decoding metrics , for and , namely

(4)

Assuming that the codewords have equal probability,
this decoder finds the most likely codeword as long as

, where is a one-to-one in-
creasing function, i.e., as long as the decoding metric is a
one-to-one increasing mapping of the transition probability
of the memoryless channel. If the decoding metric is
not an increasing one-to-one function of the channel transition
probability, the decoder defined by (3) is a mismatched decoder
[12]–[14].

B. Code Ensembles

1) Coded Modulation: In a coded modulation (CM) scheme
, the encoder selects a codeword of modulation sym-

bols, according to the information message
. The code is in general nonbinary, as symbols are chosen ac-

cording to a probability law . Representing the informa-
tion message set , the rate of this scheme in bits
per channel use is given by , where
denotes the number of bits needed to represent every informa-
tion message. At the receiver, a maximum metric decoder (as
in (3)) acts on the received sequence to generate an estimate
of the transmitted message, . In CM constructions,
such as Ungerböck’s [2], the symbol decoding metric is pro-
portional to the channel transition probability, that is,

; the value of proportionality constant is irrelevant,
as long as it is not zero. Reliable communication is possible at
rates lower than coded modulation capacity or CM capacity, de-
noted by and given by

(5)

The expectation is done according to . We
often consider a uniform input distribution .

2) Bit-Interleaved Coded Modulation: In a bit-interleaved
coded modulation (BICM) scheme , the encoder is restricted
to be the serial concatenation of a binary code of length

and rate ( being defined as for CM), a bit inter-
leaver, and a binary labeling function which
maps blocks of bits to signal constellation symbols. The code-
words of are denoted by . The portions of
codeword allocated to the th bit of the label are denoted by

. We denote the inverse map-
ping function for labeling position as , that
is, is the th bit of symbol . Accordingly, we now de-
fine the sets as the set of signal
constellation points whose binary label has value
in its th position. With some abuse of notation, we will de-
note and the random variables and their
corresponding realizations of the bits in a given label position

.
The classical BICM decoder [1], [18] treats each of the

bits in a symbol as independent and uses a symbol decoding
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Fig. 1. Parallel channel model of BICM.

metric proportional to the product of the a posteriori marginals
. More specifically, we have that

(6)

where the th bit decoding metric is given by

(7)

This metric is proportional to the transition probability of the
output given the bit at position , which we denote for later
use by

(8)

The set of probabilities can be used as a depar-
ture point to define an equivalent BICM channel model. Ac-
cordingly, Caire et al. defined a BICM channel [8] as the set
of parallel channels having bit as input and the bit
log-metric (log-likelihood) ratio for the th symbol

(9)

as output, for and . This channel
model is schematically depicted in Fig. 1. With infinite-length
interleaving, the parallel channels were assumed to be inde-
pendent in [8], [11], or in other words, the correlations among
the different subchannels are neglected. For this model, Caire et
al. defined a BICM capacity , given by

(10)

(11)

where the expectation is taken according to , for
and .

In practice, due to complexity limitations, one might be inter-
ested in the following lower complexity version of (7):

(12)

In the log-domain this is known as the max-log approximation.

Summarizing, the BICM decoder of uses a mismatched
metric of the form given in (4) where the decoder of outputs
a binary codeword according to

(13)

III. ACHIEVABILITY OF THE BICM CAPACITY:
TYPICAL SEQUENCES

In this section, we provide an achievability proof for the
BICM capacity based on typical sequences. The proof is
based on the usual random coding arguments [9] with typ-
ical sequences, with a slight modification to account for the
mismatched decoding metric. This result is obtained without
recurring to an infinite interleaver to remove the correlation
among the parallel subchannels of the classical BICM model.
We first introduce some notation needed for the proof.

We say that a rate is achievable if, for every and for
sufficiently large, there exists an encoder, a demapper, and a

decoder such that and .
We define the joint probability of the channel output and the
corresponding input bits as

(14)

for all and infinitely small . We denote the de-
rived marginals by , for , and . The
marginal distributions with respect to bit and are special,
and are denoted by . We have then the following the-
orem.

Theorem 1: The BICM capacity is achievable.
Proof: Fix an . For each we generate a

binary codeword with probabilities .
The codebook is the set of all codewords generated with this
method.

We consider a threshold decoder, which outputs only if
is the unique integer satisfying

(15)

where is a set defined as

(16)
for . Otherwise, the decoder out-
puts an error flag.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on May 20, 2009 at 04:38 from IEEE Xplore.  Restrictions apply.



MARTINEZ et al.: BIT-INTERLEAVED CODED MODULATION REVISITED: A MISMATCHED DECODING PERSPECTIVE 2759

The usual random coding argument [9] shows that the error
probability, averaged over the ensemble of randomly generated
codes, , is upper-bounded by

(17)

where is the probability that the received does not belong
to the set

(18)

and is the probability that another randomly chosen code-
word would be (wrongly) decoded, that is,

(19)

First, we prove that , where
is the corresponding jointly typical set [9]. By definition, the
sequences in the typical set satisfy (among other
constraints) the following:

(20)

(21)

(22)

Here are the entropies of the corresponding random
variables. Multiplying the last equation by , and summing
them, we have

(23)

(24)

where is the corresponding mutual information. Now,
summing over we obtain

(25)
Hence, all typical sequences belong to the set , that is,

. This implies that and, therefore, the probability
in (18) can be upper-bounded as

(26)

for sufficiently large. The last inequality follows from the
definition of the typical set.

We now move on to . For , and from
the definition of , we have that

(27)

Rearranging terms we have

(28)

Therefore, the probability in (19) can be upper-bounded

(29)

(30)

(31)

(32)

Now we can write for

(33)

for and large enough . We conclude that for
large enough there exist codes such that

(34)

and . The rate is thus achiev-
able.

To conclude, we verify that the BICM decoder is able to de-
termine the probabilities required for the decoding rule defining

in (16). Since the BICM decoder uses the metric
, the log-metric-ratio, or equivalently the a posteriori

bit probabilities , it can also compute

(35)

where the bit probabilities are known, .

IV. ACHIEVABILITY OF THE BICM CAPACITY: ERROR

EXPONENTS, GENERALIZED MUTUAL INFORMATION

AND CUTOFF RATE

A. Random Coding Exponent

The behavior of the average error probability of a family
of randomly generated codes, decoded with a maximum-like-
lihood decoder, i.e., with metric , was
studied by Gallager in [15]. In particular, Gallager showed the
error probability decreases exponentially with the block length

according to a parameter called the error exponent, provided
that the code rate is below the channel capacity . For mem-
oryless channels, the average error probability over the random
coding ensemble [15] can be bounded as

(36)
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where is the Gallager function, given by

(37)

and is a free parameter. For a particular input distri-
bution , the tightest bound is obtained by optimizing over

, which determines the random coding exponent

(38)

For uniform input distribution, we define the coded modula-
tion exponent as the exponent of a decoder which uses
metrics , namely

(39)
The expectation is carried out according to the joint probability

.
Gallager’s derivation can easily be extended to memoryless

channels with generic codeword metrics decomposable as
product of symbols metrics, that is, .
Details can be found in [13]. The error probability is
upper-bounded by the expression

(40)

where the generalized Gallager function is given by

(41)

For an input distribution , the random coding error expo-
nent is then given by [13]

(42)

For the specific case of BICM, assuming uniformly dis-
tributed inputs and a generic bit metric , we have that
Gallager’s generalized function is given by

(43)
Since the cutoff rate is given by , we analogously

define the generalized cutoff rate as

(44)

B. Data Processing Inequality for Error Exponents

In [13], it was proved that the data-processing inequality
holds for error exponents, in the sense that for a given input
distribution we have that for any .

Next, we rederive this result by extending Gallager’s reasoning
in [15] to mismatched decoding.

The generalized Gallager function in (41) can be
expressed as

(45)

As long as the metric does not depend on the transmitted symbol
, the function inside the logarithm can be rewritten as

(46)

For a fixed channel observation , the integrand is reminis-
cent of the right-hand side of Hölder’s inequality (see of [15,
Exercise 4.15 ]), which can be expressed as

(47)

Hence, with the identifications

(48)

(49)

we can lower-bound (46) by the quantity

(50)

Recovering the logarithm in (45), for a general mismatched
decoder, arbitrary , and any input distribution, we obtain
that

(51)

Note that the expression in (50) is independent of and of
the specific decoding metric . Nevertheless, evaluation of
Gallager’s generalized function for the specific choices
and attains the lower bound, which is
also (39).

Equality holds in Hölder’s inequality if and only if for all

and some positive constant (see [15, Exercise
4.15 ]). In our context, simple algebraic manipulations show that
the necessary condition for equality to hold is that

for all (52)

for some constants and . In other words, the metric
must be proportional to a power of the channel transition proba-
bility , for the bound (51) to be tight, and therefore,
to achieve the coded modulation error exponent.
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C. Error Exponent for BICM With the Parallel-Channel Model

In their analysis of multilevel coding and successive de-
coding, Wachsmann et al. provided the error exponents of
BICM modeled as a set of parallel channels [11]. The corre-
sponding Gallager’s function, which we denote by , is
given by

(53)

which corresponds to a binary-input channel with input ,
output , and bit metric matched to the transition probability

.
This equation can be rearranged into a form similar to the one

given in previous sections. First, we insert the summation in the
logarithm

(54)

Then, we notice that the output variables are dummy vari-
ables which possibly vary for each value of . Let us denote the
dummy variable in the th subchannel by . We have then

(55)

(56)

Here we carried out the multiplications, defined the vector
to be the collection of the channel outputs, and denoted by

and the symbols se-
lected by the bit sequences. This equation is the Gallager func-
tion of a mismatched decoder for a channel output , such that
for each of the subchannels sees a statistically independent
channel realization from the others. In general, since the orig-
inal channel cannot be decomposed into parallel, conditionally
independent subchannels, this parallel-channel model fails to
capture the statistics of the channel.

The cutoff rate with the parallel-channel model is given by

(57)

The cutoff rate was given in [8] as times the cutoff rate of an
averaged channel

(58)

From Jensen’s inequality one easily obtains that .

D. Generalized Mutual Information for BICM

The largest achievable rate with mismatched decoding is not
known in general. Perhaps the easiest candidate to deal with is
the GMI [12]–[14], given by

(59)

where

(60)

As in the case of matched decoding, this definition can be re-
covered from the error exponent

(61)

We next see that the generalized mutual information is equal
to the BICM capacity of [8] when the metric (7) is used. Simi-
larly to Section III, the result does not require the presence of an
interleaver of infinite length. Further, the interleaver is actually
not necessary for the random coding arguments. First, we have
the following,

Theorem 2: The generalized mutual information of the
BICM mismatched decoder is equal to the sum of the gener-
alized mutual informations of the independent binary-input
parallel channel model of BICM

(62)

The expectation is carried out according to the joint distribution
, with .

Proof: For a given , and uniform inputs, i.e.,
, (60) gives

(63)

We now have a closer look at the denominator in the loga-
rithm of (63). The key observation here is that the sum over the
constellation points of the product over the binary label posi-
tions can be expressed as the product over the label position is
the sum of the probabilities of the bits being zero and one, i.e.,

(64)
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(65)

Rearranging terms in (63) we obtain

(66)

(67)

the expectation being done according to the joint distribution
, with .

There are a number of interesting particular cases of the above
theorem.

Corollary 1: For the classical BICM decoder with metric
in (7)

(68)

Proof: Since the metric is proportional to
, we can identify the quantity

(69)

as the generalized mutual information of a matched binary-input
channel with transitions . Then, the supremum over
is achieved at and we get the desired result.

Corollary 2: For the max-log metric in (12)

(70)
Szczecinski et al. studied the mutual information with this de-
coder [16], using this formula for . Clearly, the optimiza-
tion over may induce a larger achievable rate, as we see in
the next section. More generally, as we shall see later, letting

in the mismatched error exponent can yield some
degradation.

E. BICM With Mismatched Decoding: Numerical Results

The data-processing inequality for error exponents yields
, where the quantity in the right-hand

side is the coded modulation exponent. On the other hand, no
general relationship holds between and . As it
will be illustrated in the following examples, there are cases for
which can be larger than , and vice versa.

Figs. 2, 3, and 4 show the error exponents for coded modula-
tion (solid), BICM with independent parallel channels (dashed),
BICM using mismatched metric (7) (dash-dotted), and BICM
using mismatched metric (12) (dotted) for 16-QAM with Gray
mapping, Rayleigh fading, and 5,15, -25 dB, respec-
tively. Dotted lines labeled with correspond to the
error exponent of BICM using mismatched metric (12) letting

Fig. 2. Error exponents for coded modulation (solid), BICM with independent
parallel channels (dashed), BICM using mismatched metric (7) (dash-dotted),
and BICM using mismatched metric (12) (dotted) for 16-QAM with Gray map-
ping, Rayleigh fading, and � 5 dB.

Fig. 3. Error exponents for coded modulation (solid), BICM with independent
parallel channels (dashed), BICM using mismatched metric (7) (dash-dotted),
and BICM using mismatched metric (12) (dotted) for 16-QAM with Gray map-
ping, Rayleigh fading, and � 15 dB.

. The parallel-channel model gives a larger exponent
than the coded modulation, in agreement with the cutoff rate
results of [8]. In contrast, the mismatched-decoding analysis
yields a lower exponent than coded modulation. As mentioned
in the previous section, both BICM models yield the same ca-
pacity.

In most cases, BICM with a max-log metric (12) incurs in
a marginal loss in the exponent for mid-to-large SNR. In this
SNR range, the optimized exponent and that with
are almost equal. For low SNR, the parallel-channel model and
the mismatched-metric model with (7) have the same exponent,
while we observe a larger penalty when metrics (12) are used.
As we observe, some penalty is incurred at low SNR for not
optimizing over . We denote with crosses the corresponding
achievable information rates.
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Fig. 4. Error exponents for coded modulation (solid), BICM with independent
parallel channels (dashed), BICM using mismatched metric (7) (dash-dotted),
and BICM using mismatched metric (12) (dotted) for 16-QAM with Gray map-
ping, Rayleigh fading, and � �25 dB. Crosses correspond to (from right
to left) coded modulation, BICM with metric (7), BICM with metric (12), and
BICM with metric (12) with � � �.

Fig. 5. Error exponents for coded modulation (solid), BICM with independent
parallel channels (dashed), BICM using mismatched metric (7) (dash-dotted),
and BICM using mismatched metric (12) (dotted) for 8-PSK with Gray map-
ping, AWGN and � 5 dB.

An interesting question is whether the error exponent of the
parallel-channel model is always larger than that of the mis-
matched decoding model. The answer is negative, as illustrated
in Fig. 5, which shows the error exponents for coded modula-
tion (solid), BICM with independent parallel channels (dashed),
BICM using mismatched metric (7) (dash-dotted), and BICM
using mismatched metric (12) (dotted) for 8-PSK with Gray
mapping in the unfaded AWGN channel.

V. EXTRINSIC SIDE INFORMATION

Next to the classical decoder described in Section II, iterative
decoders have also received much attention [3]–[7] due to their

improved performance. Iterative decoders can also be modeled
as mismatched decoders, where the bit decoding metric is now
of the form

(71)

where we denote by the extrinsic information, i.e., the
“a priori” probability that the th bit takes the value . Extrinsic
information is commonly generated by the decoder of the binary
code . Clearly, we have that , and

. Without extrinsic information, we take
, and the metric is given by (7).

In the analysis of iterative decoding, extrinsic information is
often modeled as a set of random variables , where we
have defined without loss of generality the variables with respect
to the all-zero symbol. We denote the joint density function by

. We discuss later
how to map the actual extrinsic information generated in the
decoding process onto this density. The mismatched decoding
error exponent for metric (71) is given by (43), where
the expectation is now carried out according to the joint density

. Similarly, the
generalized mutual information is again obtained as

It is often assumed [5] that the decoding metric acquires
knowledge on the symbol effectively transmitted, in the sense
that for any symbol , the th bit decoding metric is given
by

(72)

where denotes the binary addition. Observe that extrinsic in-
formation is defined relative to the transmitted symbol , rather
than relative to the all-zero symbol. If the th bit of the symbols

and coincide, the extrinsic information for bit zero
is selected, otherwise the extrinsic information is used.

For the metric in (72), the proof presented in Section IV-B
of the data processing inequality fails because the integrand in
(46) cannot be decomposed into a product of separate terms,
respectively, depending on and , the reason being that the
metric varies with .

On the other hand, since the symbol metric is the
same for all symbols , the decomposition of the generalized
mutual information as a sum of generalized mutual informations
across the bit labels in Theorem 2 remains valid, and we have
therefore

(73)

This expectation is carried out according to

with . Each of the summands can be interpreted as
the mutual information achieved by nonuniform signaling in the
constellation set , where the probabilities according to which
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the symbols are drawn are a function of the extrinsic informa-
tions . The value of may exceed the channel ca-
pacity [5], so this quantity is a pseudo-generalized mutual infor-
mation, with the same functional form but lacking operational
meaning as an achievable rate by the decoder.

Alternatively, the metric in (71) may depend on the hypothe-
sized symbol , that is,

(74)

Differently from (72), the bit metric varies with the hypothe-
sized symbol and not with the transmitted symbol . There-
fore, Theorem 2 cannot be applied and the generalized mutual
information cannot be expressed as a sum of mutual informa-
tions across the bit labels. On the other hand, the data processing
inequality holds and, in particular, the error exponent and the
generalized mutual information are upper-bounded by that of
coded modulation. Moreover, we have the following result.

Theorem 3: In the presence of perfect extrinsic side informa-
tion, the error exponent with metric (74) coincides with that of
coded modulation.

Proof: With perfect extrinsic side information, all the bits
are known, and then

when
otherwise

(75)

which guarantees that only the symbol is selected.
Then, and the symbol metric
becomes for all . As we
showed in (52), this is precisely the condition under which the
error exponent (and the capacity) with mismatched decoding co-
incides that of coded modulation.

The above result suggests that with perfect extrinsic side in-
formation, the gap between the error exponent (and mutual in-
formation) of BICM and that of coded modulation can be closed
if one could provide perfect side information to the decoder. A
direct consequence of this result is that the generalized mutual
information with BICM metric (71) and perfect extrinsic side
information is equal to the mutual information of coded modu-
lation. An indirect consequence of this result is that the multi-
stage decoding [17], [11] does not attain the exponent of coded
modulation, even though its corresponding achievable rate is the
same. The reason is that the decoding metric is not of the form

, for some constant and , except for the last bit
in the decoding sequence. We hasten to remark that the above
rate in presence of perfect extrinsic side information need not be
achievable, in the sense that there may not exist a mechanism for
accurately feeding the quantities to the demapper. The
actual link to the iterative decoding process is open for future
research.

VI. CONCLUSION

We have presented a mismatched-decoding analysis of
BICM, which is valid for arbitrary finite-length interleavers.

We have proved that the corresponding generalized mutual
information coincides with the BICM capacity originally given
by Caire et al. modeling BICM as a set of independent parallel
channels. More generally, we have seen that the error exponent
cannot be larger than that of coded modulation, contrary to the
analysis of BICM as a set of parallel channels. For Gaussian
channels with binary reflected Gray mapping, the gap between
the BICM and CM error exponents is small, as found by Caire
et al. for the capacity. We have also seen that the mutual infor-
mation appearing in the analysis of iterative decoding of BICM
via EXIT charts admits a representation as a form of gener-
alized mutual information. However, since this quantity may
exceed the capacity, its operational meaning as an achievable
rate is unclear. We have modified the extrinsic side information
available to the decoder, to make it dependent on the hypoth-
esized symbol rather than on the transmitted one, and shown
that the corresponding error exponent is always lower-bounded
by that of coded modulation. In presence of perfect extrisinc
side information, both error exponents coincide. The precise
connection with iterative decoding is open for future research.
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