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Abstract—We consider coded modulation schemes for the
block-fading channel. In the setting where a codeword spans
a finite number of fading degrees of freedom, we show
that coded modulations of rate bit per complex dimension,
over a finite signal set of size 2 , achieve the op-
timal rate–diversity tradeoff given by the Singleton bound
( ) = 1 + (1 ) , for (0 ].

Furthermore, we show also that the popular bit-interleaved coded
modulation achieves the same optimal rate–diversity tradeoff. We
present a novel coded modulation construction based on block-
wise concatenation that systematically yields Singleton-bound
achieving turbo-like codes defined over an arbitrary signal set

. The proposed blockwise concatenation significantly
outperforms conventional serial and parallel turbo codes in the
block-fading channel. We analyze the ensemble average perfor-
mance under maximum-likelihood (ML) decoding of the proposed
codes by means of upper bounds and tight approximations. We
show that, differently from the additive white Gaussian noise
(AWGN) and fully interleaved fading cases, belief-propagation
iterative decoding performs very close to ML on the block-fading
channel for any signal-to-noise ratio (SNR) and even for relatively
short block lengths. We also show that, at constant decoding
complexity per information bit, the proposed codes perform close
to the information outage probability for any block length, while
standard block codes (e.g., obtained by trellis termination of
convolutional codes) have a gap from outage that increases with
the block length: this is a different and more subtle manifestation
of the so-called “interleaving gain” of turbo codes.

Index Terms—Block-fading channels, outage probability, di-
versity, maximum distance-separable (MDS) codes, concatenated
codes, maximum-likelihood (ML) decoding, distance spectrum,
iterative decoding, bit-interleaved coded modulation.

I. INTRODUCTION

THE block-fading channel was introduced in [1] (see
also [2]) in order to model slowly varying fading, where

codewords span only a fixed number of fading degrees of
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freedom, irrespectively of the code block length. This model
is particularly relevant in wireless communications situations
involving slow time–frequency hopping (e.g., Global System
for Mobile Communications (GSM), Enhanced Data GSM
Environment (EDGE)) or multicarrier modulation using or-
thogonal frequency division multiplexing (OFDM). In general,
despite its extreme simplification, it serves as a useful model
to develop coding design criteria which turn out to be useful in
more general settings of correlated slowly varying fading.

Coding for the block-fading channel has been considered in
a number of recent works (e.g., [3]–[6] and references therein).
The design criteria for codes over the block-fading channel
differ significantly with respect to the standard design criteria
for codes over the additive white Gaussian noise (AWGN)
channel or over the fully interleaved fading channel. The key
difference is that the block-fading channel is not information
stable [7], [8]. Under mild conditions on the fading distribution,
the reliability function of the block-fading channel is zero for
any finite signal-to-noise ratio (SNR).

Using union bound arguments [3]–[6] and error exponent cal-
culations [9], it was shown that in Rayleigh fading, the error
probability behaves like SNR for large SNR. The expo-
nent , an integer in , is referred to as the code block
diversity and is given by the minimum number of blocks on
which any two distinct codewords differ (block-wise Hamming
distance). If the code is constructed over a finite alphabet (signal
set), there exists a tradeoff between the achievable block diver-
sity and the coding rate. More precisely, a code over an alphabet

of cardinality , partitioned into blocks of length ,
can be seen as a code over the alphabet of cardinality
with block length . Hence, we have trivially that any upper
bound on the minimum Hamming distance of -ary codes
of length and size yields a corresponding upper bound on
the achievable block diversity for codes over and rate

. In [9, Theorem 1], it is shown that for bi-
nary codes the Singleton bound is tight for any . The
achievability proof in [9, Theorem 1] is based on the existence
of maximum distance separable (MDS) codes over (e.g.,
Reed–Solomon codes).

In general, we define the SNR exponent of error probability
for a given family of codes as

(1)

where denotes the channel SNR, is the error proba-
bility of code , and the supremum is taken over all codes in the
family .
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In [10], a block-fading multiple-input multiple-output
(MIMO) channel with fading blocks is considered
and no restriction is imposed on the code family other than
the standard average input power constraint. For every ,
codes of rate are considered and the optimal
SNR exponent is found as a function of . It is also shown that
the optimal exponent coincides with the random coding expo-
nent for an ensemble of Gaussian independent and identically
distributed (i.i.d.) codes of fixed block length, provided that the
block length is larger than a certain integer that depends on the
number of transmit and receive antennas.

In this work, we consider a single-input single-output (SISO)
block-fading channel with an arbitrary (but fixed) number of
fading blocks. We are interested in the ensemble of coded mod-
ulations, i.e., codes over a given finite signal set with
fixed rate that, obviously, cannot be larger than
bits per complex dimension. We study the SNR exponent (1) as
a function of the coding rate, denoted by . This “SNR re-
liability function” represents the optimal rate–diversity tradeoff
for the given family of codes. We prove that is indeed
given by the Singleton bound, and we find an explicit expres-
sion for the random-coding SNR error exponent, denoted by

, which lower-bounds and is tight for all pro-
vided that the code block length grows rapidly enough with re-
spect to : namely, the code block length must be super-
linear in the channel SNR expressed in decibels. Furthermore,
we show that the popular pragmatic bit-interleaved coded mod-
ulation (BICM) scheme [11] achieves the same (and,
hence, , subject to the same condition on the block length
growth with respect to SNR).

Then, we focus on the systematic construction of codes
achieving the optimal SNR exponent and we introduce a
turbo-like code construction suited to the block-fading channel.
Notice that standard code ensemble analysis and optimization
techniques based on Density Evolution [12] and on various
approximations thereof, such as the ubiquitous EXtrinsic In-
formation Transfer (EXIT) functions [13], are useless over the
block-fading channel. In fact, these techniques aim at finding
the iterative decoding threshold, defined as the minimum SNR
at which the bit-error rate (BER) vanishes after infinitely many
iterations of the belief-propagation (BP) iterative decoder, for
a given code ensemble in the limit of infinite block length. In
our case, since the block-fading channel is affected by a finite
number of fading coefficients that do not average out as the
block length grows to infinity, the iterative decoding threshold
is a random variable that depends on the channel realization.
Hence, one should optimize the distribution of the fixed points
of the Density Evolution with respect to the code ensemble:
clearly, a very difficult and mostly impractical task.

For our codes we provide upper bounds and tight approx-
imations to the error probability under maximum-likelihood
(ML) decoding. While ML decoding is generally infeasible
because of complexity, we show by simulation that the itera-
tive BP “turbo” decoder performs very close to the ML error
probability. This fact stands in stark contrast with the typical
behavior of turbo and low-density parity-check (LDPC) codes
on the AWGN and fully interleaved fading channels [14]–[18],
where ML bounds are able to predict accurately the “error

floor region” but are quite inaccurate in the “waterfall region”
of the BER curve. Hence, our bounds and approximations are
relevant, in the sense that they indeed provide very accurate
performance evaluation of turbo-like coded modulation in the
block-fading channel under BP iterative decoding.

The proposed coded modulation schemes outperform stan-
dard turbo-coded or LDPC-coded modulation and outperform
also previously proposed trellis codes for the block-fading
channel [3], [5], [6]. In particular, by using asymptotic weight
enumerator techniques, we show that the word-error rate
(WER) of our codes is almost independent of the block length,
while the component encoders are fixed, i.e., the decoding
complexity of the BP decoder is linear with the block length.
On the contrary, in the case of block codes obtained by trellis
termination of trellis codes, the WER increases with the block
length for linear decoding complexity. We interpret this fact as
another manifestation of the so-called “interleaving gain” typ-
ical of turbo codes, even though, in block fading, no “waterfall”
behavior of the error curve is visible, even for very large block
length.

The paper is organized as follows. Section II defines the
system model. Section III presents the coding theorems for
the rate–diversity tradeoff of coded modulation and BICM. In
Section IV, we present our novel turbo-like coded modulation
scheme, we provide useful upper bounds and approximations
of its error probability under ML decoding, and we show that
the error probability is (asymptotically) independent of the
block length. Also, several examples of code construction and
performance comparisons are provided. Section V summarizes
the conclusions of this work. Proofs and computation details
of the error bounds and approximations are reported in the
appendices.

II. SYSTEM MODEL

We consider the block-fading channel model [1] with
fading blocks, where each block has length complex di-
mensions. Fading is flat, constant on each block, and i.i.d. on
different blocks. The discrete-time complex baseband equiva-
lent channel model is given by

(2)

where denotes the th block fading coef-
ficient and the noise is i.i.d. complex circularly symmetric
Gaussian, with components .

We consider codes constructed over a complex signal set
(e.g., quadrature amplitude modulation/phase-shift keying

(QAM/PSK)) of cardinality , i.e., the components of the
vectors are points in the constellation . The overall code-
word block length is (complex dimensions). Therefore,
each codeword spans at most independent fading coef-
ficients. Without loss of generality, we assume normalized
fading, such that and unit-energy signal set
(i.e., ). Therefore, denotes the average
received SNR and the instantaneous SNR on block is given
by , where denotes the fading power gain.

The channel (2) can be expressed in the concise matrix form

(3)
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where

and

The collection of all possible transmitted codewords
forms a coded modulation scheme over . We are interested
in schemes obtained by concatenating a binary
linear code of length and rate bits per symbol with
a memoryless one-to-one symbol mapper . The
resulting coding rate (in bits per complex dimension) is given
by .

In this work, we assume that the vector of fading coefficients
is perfectly known at the receiver and not

known at the transmitter. It is worthwhile to notice that in the
limit of and fixed , the capacity and, more generally,
the outage capacity, of the block-fading channel does not depend
on the assumption of perfect channel knowledge at the receiver
[2]. Therefore, in this limit such assumption is not optimistic.

Let denote the information message and
denote the codeword corresponding to . We shall con-

sider the following decoders.

1. The ML decoder, defined by

(4)

( denotes the Frobenius norm).

2. A suboptimal decoder that consists of producing, for each
received symbol, the posterior probabilities of the binary
coded symbols in its label (defined by the symbol mapper

), and then feeding these probabilities to an ML de-
coder for the binary code over the resulting binary-input
continuous-output channel. Since this scheme is particu-
larly effective if used in conjunction with bit-interleaved
coded modulation (BICM) [11], we shall refer to it as
the BICM-ML decoder (even though it can also be used
without an explicit bit interleaver between and ). It fol-
lows from the definition of the ensemble
that the coded bits output by the binary linear encoder for

are partitioned into blocks of length , each of
which is further partitioned into binary labels of length

bits, which are eventually mapped into modulation
symbols by the mapping . Let again denote the infor-
mation message and let denote the codeword of

corresponding to . The components of are indi-
cated by where the triple of indices
indicates the fading block, the modulation symbol, and
the label position. The corresponding “bit-wise” posterior
log-probability ratio is given by

(5)

where denotes the signal subset of all points in
whose label has value in position . Then, the
BICM-ML decoding rule is given by

(6)

In all cases, the average WER as a function of SNR, averaged
over the fading, is defined as where a
uniform distribution of the messages is assumed.

As it will be clear in the following, both the ML and the
BICM-ML decoders are practically infeasible for the class of
coded modulation schemes proposed in this paper. Hence, the
suboptimal turbo decoder based on BP will be used instead.
Nevertheless, the two decoders defined above are easier to an-
alyze and provide a benchmark to compare the performance of
the BP decoder. Since BP iterative decoding is standard and well
known, for the sake of space limitation we shall omit the detailed
BP decoder description. The reader is referred to, e.g., [19] for
details.

III. OPTIMAL RATE–DIVERSITY TRADEOFF

Let denote the mutual informa-
tion (per complex dimension) between input and output, for
given fading coefficients and -dimensional input prob-
ability assignment , satisfying the input power constraint

. Since is random, is generally
a random variable with given cumulative distribution function

. The channel -capacity (as a func-
tion of the SNR ) is given by [7]

(7)

The channel capacity is given by . For
fading distributions such that for any

(e.g., Rayleigh or Rice fading), we have for all
, meaning that no positive rate is achievable. Hence, the

relevant measure of performance on this channel is the optimal
WER1 given by

(8)

In many cases, the input distribution is fixed by some system
constraint. Hence, it is customary to define the information
outage probability [2], [1] as for given

and . The goodness of a coding scheme for the
block-fading channel is measured by the SNR gap from the
outage probability for large block length .

1Notice that for short block length L it is possible to find codes with WER
smaller than �(�) given in (8). However, in the limit of large L and fixed coding
rate R, no code has error probability smaller than �(�). A lower bound to the
WER of any code for any finite length L is provided by Fano inequality and
reads [10]

P (�) � inf max 1�
1

R
I(P ;hhh)�

1

RNL
; 0

that converges to �(�) as L ! 1.
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For the ensemble where is a random binary
linear code, is the uniform i.i.d. distribution over . Under
this probability assignment, we have that

(9)

where

(10)

is the mutual information of an AWGN channel with input
Uniform and SNR (the expectation in (10) is with

respect to ).
We define the BICM channel associated to the original block-

fading channel by including the mapper , the modulator and
the BICM-ML posterior log-probability ratio computer (5) as
part of the channel and not as a part of a (suboptimal) encoder
and decoder. Following [11], the associated BICM channel can
be modeled as a set of binary-input symmetric-output chan-
nels, where the input and output of the th channel over the

th fading block are given by and
, respectively. The resulting mutual

information is given by

(11)

Notice that the expectation over in (10) and (11)
can be easily evaluated by using the Gauss–Hermite quadrature
rules which are tabulated in [20] and can be computed using, for
example, the algorithms described in [21].

The information outage probabilities of the block-fading
channel with i.i.d. input Uniform
and that of the associated BICM channel are denoted by2

and by , respectively.
From the data processing inequality and the fact that the proper
complex Gaussian distribution maximizes differential entropy
[22], we obtain that

(12)

for all and .
By evaluating the outage probability for a given signal set

we can assess the performance loss incurred by the suboptimal
coded modulation ensemble . Furthermore, by eval-

2It is straightforward to show that with i.i.d. input X � N (0; 1)

I(P ;hhh) =
1

N
log (1 + 
 �):

uating the outage probability of the BICM channel, we can as-
sess the performance loss incurred by the suboptimal BICM-ML
decoder with respect to the ML decoder.

For the sake of simplicity, we consider independent Rayleigh
fading, i.e., the fading coefficients are i.i.d., ,
and the fading power gains are chi-squared with two degrees
of freedom, i.e., , where
denotes the indicator function of the event . This assumption
will be discussed and relaxed at the end of this section.

We are interested in the SNR reliability function (1) of the
block-fading channel. Lemma 1 below, that follows as a corol-
lary of the analysis in [10], yields the SNR reliability function
subject to the average input power constraint.

Lemma 1: Consider the block-fading channel (2) with i.i.d.
Rayleigh fading, under the average input power constraint

. The SNR reliability function for any block
length and fixed rate is given by and it
is achieved by Gaussian random codes, i.e., the random coding
SNR exponent of the Gaussian i.i.d. ensemble for any

is also equal to .
Proof: Although Lemma 1 follows as a corollary of [10,

Theorem 2], we provide its proof explicitly for the sake of com-
pleteness and because it is instructive to illustrate the proof tech-
nique used for the following Theorem 1.

In passing, we notice that the proof of Lemma 1 deals with
the more general case of coding schemes with rate increasing
with SNR as , where , and shows
that3 and this optimal SNR exponent can
be achieved by coding schemes of any block length . The
details are given in Appendix I.

For the considered coded modulation ensemble, we have the
following result.

Theorem 1: Consider the block-fading channel (2) with i.i.d.
Rayleigh fading and input signal set of cardinality . The
SNR reliability function of the channel is upper-bounded by the
Singleton bound

(13)

The random coding SNR exponent of the random coded mod-
ulation ensemble defined previously, with block
length satisfying and rate , is lower-
bounded by (14) at the bottom of the page. Furthermore, the
SNR random coding exponent of the associated BICM channel
satisfies the same lower bounds (14).

Proof: See Appendix II.

An immediate consequence of Theorem 1 is the following.

3The exponential equality and inequalities notation
:
=; _� and _� were intro-

duced in [10]. We write f(z)
:
= z to indicate that lim = d.

_� and _� are used similarly.

(14)
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Corollary 1: The SNR reliability function of the
block-fading channel with input and of the associated BICM
channel is given by for all ,
except for the discontinuity points of , i.e., for
the values of for which is an integer.

Proof: We let in the random coding lower-bound
(14) and we obtain

where the rightmost term coincides with for all
points where is continuous.

The following remarks are in order.

1. The codes achieving the optimal diversity order
in Theorem 1 are found in the ensemble
with block length that increases with SNR faster than

. This is due to the fact that, differently from the
Gaussian ensemble (Lemma 1), for a given discrete signal
set there is a nonzero probability that two codewords
are identical, for any finite length . Hence, we have to
make increase with rapidly enough such that this
probability does not dominate the overall probability of
error. Nevertheless, it is easy to find explicit constructions
achieving the optimal Singleton bound block-diversity

for several cases of and finite [3],
[5]. Typically, the WER of diversity-wise optimal codes
behaves like for large . The coefficient
yields a horizontal shift of the WER versus SNR curve
(in a log-log chart) with respect to the outage probability
curve that we refer to as “gap from outage.”

Codes found in previous works [3]–[6] have a gap from
outage that increases with the block length . On the con-
trary, the gap from outage of the class of codes proposed
in this paper is asymptotically independent of the block
length. We say that a code ensemble is good if it achieves
vanishing gap from outage as . We say that a code
ensemble is weakly good if it achieves constant gap from
outage as . In Section IV-C, we give a sufficient
condition for weak goodness and argue that the proposed
codes are weakly good.

2. For any given coding rate , we can achieve “full di-
versity” by considering a signal set
large enough. In fact, by letting we have

for any desired rate . This cor-
responds to the intuitive argument that larger and larger
signal sets approach better and better Gaussian codes.4

3. We can relax the assumption of Rayleigh fading by
noticing that in the proofs of Lemma 1 and Theorem
1 only the near-zero behavior of the fading power gain
distribution has a role. For Rayleigh fading, we have

, for small . Hence, the above re-
sults hold for all block-fading channels with i.i.d. fading

4For finite SNR, expanding the signal set without proper shaping incurs
shaping loss. However, in terms of SNR exponent, this effect is not seen as
shaping involves only a fixed gap from outage. Using the definition introduced
above, we might say that codes found in our ensemble of coded modulation
schemes over larger and larger QAM complex constellations can be weakly
good, but cannot be good due to the inherent shaping loss.

with power gain distribution with this behavior. More in
general, as argued in [10], for a fading distribution with
near-zero behavior , the SNR reliability
function is given by . For example, this is
the case of independent Rayleigh fading with a antenna
receiver using -fold maximal-ratio combining [23].

Fig. 1 shows (Singleton bound) and the random
coding lower bounds for the two cases and

, in the case and ( is a -ary
signal set). It can be observed that as increases (for fixed

), the random coding lower bound coincides over a larger and
larger support with the Singleton upper bound. However, in the
discontinuity points it will never coincide.

In order to illustrate the operational meaning of the above re-
sults and motivate the code construction in the following sec-
tion, we show in Fig. 2 the outage probability versus SNR of
the block-fading channel with i.i.d. Rayleigh fading with
blocks, for Gaussian inputs, 8-PSK and 16-QAM constellations,
and for the associated BICM channels with Gray mapping5 [11],
with spectral efficiencies 1, 1.5, and 2 bits/complex dimen-
sion. In these log-log charts, the SNR exponent determines the
slope of the outage probability curve at high SNR (small outage
probability). We notice that Gaussian inputs always show the
steepest slope and that this is independent of for high SNR (in
agreement with Lemma 1). For , we observe a slight slope
variation since have that (for 8-PSK) and that

(for 16-QAM). The slope difference will be more
apparent for larger SNR values. For , the curves also
show different slopes since (for 8-PSK) while

(for 16-QAM). This effect is even more evident
for , where (for 8-PSK) and
(for 16-QAM). Notice also that, in all cases, the SNR loss in-
curred by BICM-ML decoding is very small.

IV. BLOCKWISE CONCATENATED CODED MODULATION

In this section, we introduce a general construction for MDS
coded modulation schemes for the block-fading channel and we
provide bounds and approximations to their error probability
under ML and BICM-ML decoding.

So far, we have considered the ensemble where
is a random binary linear code. In this section, we consider

specific ensembles where has some structure. In particular,
belongs to the well-known and vast family of turbo-like codes
(parallel and serially concatenated codes, repeat–accumulate
codes, etc.) and it is obtained by concatenating linear binary
encoders through interleavers. Hence, we shall consider the
structured random coding ensemble where the component
encoders for are fixed and the interleavers are randomly
selected with uniform probability over all possible permuta-
tions of a given length. For the sake of notation simplicity, we
keep using the notation for any of such ensembles
with given component encoders, where now the symbol is a
placeholder indicating the set of component encoders defining
the concatenated code.

5All BICM schemes considered in this work make use of Gray mapping.
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Fig. 1. SNR reliability function and random coding exponents d (R) for N = 8 and M = 4.

Fig. 2. Outage probability for N = 8; R = 1, 1.5, and 2 bits per complex dimension, Gaussian inputs, 8-PSK and 16-QAM modulations. Thick solid lines
correspond to Gaussian inputs, thin solid lines to 8-PSK, dashed lines to 8-PSK with BICM, dashed-dotted lines to 16-QAM and dotted lines to 16-QAM with
BICM.

A. Code Construction

Fig. 3 shows the proposed encoder structure that we refer to as
blockwise concatenated coding (BCC). The binary linear code

is formed by the concatenation of a binary linear encoder of
rate , whose output is partitioned into blocks. The blocks
are separately interleaved by the permutations and
the result is fed into inner encoders of rate . Finally,
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Fig. 3. The general encoder for BCC.

Fig. 4. WER obtained by BP decoding (simulation with 10 iterations) of binary RBA, RA, BCCC, and SCCC of rate R = 1=2 forN = 2 andK = 1024.

the output of each inner encoder is mapped onto a sequence of
signals in by the one-to-one symbol mapping so that the rate
of the resulting blockwise concatenated code is .

We denote by the information block length, i.e., in-
formation bits enter the outer encoder. Correspondingly, the
length of each outer output block is and
the length of the inner-encoded blocks is binary
symbols. Eventually, the length of the blocks sent to the channel
is modulation symbols (complex dimensions).
Without loss of essential generality, we assume that and
defined above are integers.

The codes considered in this work make use of bit inter-
leaving between the inner encoder and the mapper [11], denoted
in Fig. 3 by the permutations . However, we hasten
to say that mapping through interleavers is not necessary for the
construction and more general mappings could be envisaged. In
any case, since interleavers and inner encoding are performed on
a blockwise basis, the block diversity of the concatenated code
coincides with the block diversity of the outer code.

It is worthwhile to point out some special cases of the BCC
construction. When is a convolutional encoder and is the

trivial rate- identity encoder, we refer to the resulting scheme
as a blockwise partitioned convolutional code (briefly, CC). In-
terestingly, most previously proposed codes for the block-fading
channel (see [3]–[6]) belong to this class. When the outer code
is a simple repetition code of rate and the inner codes
are rate- accumulators (generator ) [24], the resulting
scheme is referred to as repeat and blockwise accumulate (RBA)
code. When both outer and inner codes are convolutional codes,
we will refer to the resulting scheme as blockwise concatenated
convolutional codes (BCCC).

As anticipated in the Introduction, practical decoding of
BCCs resorts to BP iterative decoding algorithm over the code
graph [19]. In particular, when either or are convolutional
codes, the well-known forward–backward decoding algorithm
is used over the subgraph representing the corresponding trellis
[25].

Fig. 4 illustrates the effectiveness of blockwise concate-
nation with respect to standard turbo-like codes designed for
the AWGN. In particular, we compare the WER of a binary

RBA and BCCC (with convolutional outer
code and inner accumulators) with that of their standard coun-
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Fig. 5. WER r = 1=2 BCCCs, SCCCs, and CCs mapped over N = 8 fading blocks.

terparts (namely, a repeat and accumulate (RA) code and a
serially concatenated convolutional code (SCCC)), mapped
over fading blocks with 10 BP decoder decoding itera-
tions. In all cases, the information block length is .
We observe a significant difference in the slope of the WER
curve, due to the fact that blockwise concatenation preserves
the block diversity of the outer code while standard con-
catenation does not.

In order to show the generality of the proposed approach to
construct MDS BCCs, Fig. 5 illustrates the WER performance
obtained by simulation with BP decoding of binary
BCCCs and , both with with inner accumula-
tors, the SCCCs with outer and and inner ac-
cumulators, and best known 4- and 64-states CCs [6] mapped
over fading blocks with block length of 1024 informa-
tion bits. In this case, the Singleton bound is .
Notice that since the code is not MDS [3], [6], the corre-
sponding BCCC (and, of course, the CC itself) will show a dif-
ferent slope and performance degradation at high SNR. Indeed,
we can appreciate a steeper slope of the BCCC with
and the 64-states CC since both are MDS codes. We also ob-
serve clear advantage of BCCCs over standard CCs at this block
length (this point will be further discussed in depth in Section
IV-C). Finally, as illustrated also in the previous figure, the MDS
BCCCs remarkably outperform their SCCC counterparts, which
are designed for the ergodic channel.

B. Upper Bounds and Approximations on ML Decoding Error
Probability

For the sake of simplicity, we consider first codes over the
quaternary phase-shift keying (QPSK) with Gray mapping, or,

equivalently, over binary phase-shift keying (BPSK). This case
is particularly simple since the squared Euclidean distance be-
tween the constellation points is proportional to the Hamming
distance between their binary labels. A tight upper bound on the
WER of binary codes mapped over QPSK with Gray mapping
and transmitted over fading blocks, is given by Malkamaki
and Leib (M&L) in [5], and reads

(15)

where is the multivariate weight enumeration func-
tion (MWEF) of [26] which accounts for the number of
pairwise error events with output Hamming weights per block

for BPSK and for QPSK, and

(16)

is the Gaussian tail function. The expectation in (15) is with re-
spect to the fading power gains . In order to com-
pute (15), we need to compute a multivariate expectation that
does not break into the individual expectation of each term in
the union bound because of the . Hence, in practice,
we have to resort to Monte Carlo methods.

In [27], Byun, Park, and Lee presented a simpler upper bound
to (15) in the context of ML decoding of trellis space–time
codes. Unfortunately, the bound in [27] upper-bounds (15) only
if the sum over contains a single term. Neverthe-
less, we shall demonstrate through several examples that this
technique, referred to as the BPL approximation, if applied to
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Fig. 6. WER obtained by BP decoding simulation with 10 iterations and ML bounds and approximations for binary RBA ofR = 1=2 andK = 256 overN = 2

blocks.

full diversity codes (i.e., codes with blockwise Hamming dis-
tance ) yields a very good approximation of the WER,
with the advantage that it is much easier to compute than the
M&L bound.

Assuming , which implies that for all
, the BPL approximation takes on the form

(17)

where is the product weight and is the
product weight enumeration function (PWEF) of , i.e., the
number of codewords of with product weight . By noticing
that is central chi-squared with degrees of
freedom and mean , (17) becomes

(18)

where

(19)

is the probability density function (pdf) of . In this way, only
product weights have to be enumerated and the computation of
(18) requires just a one-dimensional integration, that is easily
computed numerically.

Union bound-based techniques are known to be loose for
turbo codes and other capacity-approaching code ensembles

such as LDPC and RA codes over the AWGN channel. As a
matter of fact, improved bounding techniques are needed in
order to obtain meaningful upper bounds in the SNR range
between the capacity threshold and the cutoff rate threshold
[14]–[18]. Among those, the tangential-sphere bound (TSB)
is known to be the tightest. The TSB can be simply extended
to the block-fading channel for each fixed realization of the
fading vector (for more details see [28], [29], [39]). Then, an
outer Monte Carlo average over the fading is required. Since
the TSB requires optimization of certain parameters for each
new fading realization, the computation of the TSB is very
intensive. A slight simplification is obtained by applying the
TSB technique to the PWEF as in the BPL approximation.
The resulting approximation (referred to as BPL-TSB) requires
only a single variate expectation.

The following examples illustrate the bounds and the approx-
imations described above for BPSK and QPSK with Gray map-
ping. The MWEF and PWEF are obtained as described in Ap-
pendix III. In particular, Fig. 6 compares the simulation (with
10 BP decoder iterations) with the ML bounds and approxima-
tions for RBA codes of with information block length

, over fading blocks. The expectation in the
M&L bound and in the TSB are computed by Monte Carlo. We
observe an excellent matching between the performance of BP
decoding and the bounds on ML decoding, even for such short
block lengths, in contrast to the AWGN case. We also notice that
the TSB is only marginally tighter than the M&L bound and, due
to its high computational complexity, it is useless in this context.
The BPL approximation predicts almost exactly the WER of the
RBA code for all block lengths. Based on such examples (and
on very extensive numerical experiments not reported here for
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the sake of space limitation) we conclude that the performance
of BCCs on block-fading channels can be predicted very accu-
rately by simple ML analysis techniques.

For general signal sets and modulator mappings , the
above bounds are no longer valid since the squared Euclidean
distance between signals depends, in general, on the individual
labels and not only on the labels’ Hamming distance. Assuming
bit interleaving between the inner binary codes and the mod-
ulator mapping, we can make use of the BICM Bhattacharyya
union bound developed in [11], combined with the “limit before
average” approach of [5]. We obtain

(20)

where

(21)

is the Bhattacharyya factor of the BICM channel associated to
the th fading block, with SNR .

The bound (20) holds under the assumption that the mapping
is symmetrized, as explained in [11], i.e., that a random

i.i.d. scrambling sequence, known both to the transmitter and
to the receiver, chooses at every symbol with probability
either the mapping or its complement , obtained by com-
plementing each bit in the labels of .6 The factor in front
of the Bhattacharyya union bound follows from the fact that,
under the symmetrized mapping assumption, the associated
BICM channel with inputs and outputs defined
in (5) is binary-input output-symmetric (see [30]). The expec-
tation in (21) can be efficiently computed by Gauss–Hermite
quadratures.

As shown in [31], [40], the tail of the pdf of the bit-wise pos-
terior log-probability ratio (5) at the output of the associated
BICM channel is very close to the corresponding output of a bi-
nary-input AWGN channel with fading power gain

(22)

Moreover, for given fading gain we have [31]

(23)

6If the mapping � and the constellation X are such that, for all label posi-
tions m = 1; . . . ;M , the log-probability ratio defined in (5) is symmetrically
distributed, that is,

p (zjc = a) = p (�zjc = �a)

then the scrambling assumption is not needed.

independently of the mapping . Under this Gaussian approxi-
mation, we obtain

(24)

and the corresponding BPL approximation (for full diversity
codes)

(25)

Unfortunately, in this case is no longer a chi-squared
distributed (from (23) it follows that it is chi-squared in the limit
of high SNR). Therefore, (25) has to be computed via a Monte
Carlo average, reducing only slightly the computational burden
with respect to (24). We will refer to (20) as the M&L–Bhat-
tacharyya bound and to (24) as the M&L–GA.

We hasten to say that, although the proposed methods are
just approximations, they represent so far the only alternative
to extensive simulation. Indeed, they might be regarded as
the analogues for the block-fading channel to the EXIT chart
“analysis” commonly used for fully interleaved fading channels
and AWGN channels: they are both based on approximating
a complicated binary-input output-symmetric channel by a
binary-input AWGN channel, “matched” in some sense to the
former.

In Fig. 7, we show the WER (obtained by simulation with
10 BP decoder iterations) and the various upper bounds and
approximations on ML decoding error probability described
above, for an RBA code of rate over fading
blocks and information block length , with 8-PSK
and 16-QAM (the corresponding spectral efficiencies are
1.5 and 2 bits/complex dimension). We show the BICM outage
probability for 8-PSK and 16-QAM for the sake of comparison.
Again, we observe an excellent match between simulation with
BP decoding and ML approximations, for all modulations. We
also observe that the BICM Bhattacharyya bound is looser than
the Gaussian approximation (24).

C. Weak Goodness of BCC Ensembles

As introduced in Section III, we say that a code ensemble over
is good if, for block length , its WER converges to

the outage probability . We say that a code ensemble
over is weakly good if, for block length , its WER
shows a fixed SNR gap to outage probability, asymptotically in-
dependent of . In this section, we give an explicit sufficient
condition for weak goodness in terms of the asymptotic expo-
nential growth rate function [32] of the multivariate weight enu-
merator of specific ensembles.

The issue of weak goodness is nontrivial, as illustrated by
the following argument. A code ensemble such
that, for all sufficiently large , a randomly generated member
inthe ensemble attains the Singleton bound with probability
is a good candidate for weak goodness. However, this condition
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Fig. 7. WER obtained by BP decoding simulation with 10 iterations and ML bounds and approximations for RBA with BICM of r = 1=2 over N = 2 blocks
with 8-PSK and 16-QAM.

is neither necessary nor sufficient. For example, the ensemble
considered in Theorem 1 has a small but nonzero

probability that a randomly selected member is not blockwise
MDS, nevertheless it attains the optimal SNR exponent provided
that grows faster than , and hence it is weakly good. On
the contrary, the ensemble of random BCCs with given outer
and nontrivial inner encoders and the ensemble of blockwise
partitioned CCs (i.e., BCCs with convolutional outer encoder
and rate- identity encoder considered in [3]–[6]) attain the
Singleton bound with probability provided that the outer code
is blockwise MDS. Nevertheless, simulations show that while
the WER of general BCCs with recursive inner encoder is almost
independent of the block length, the WER of CCs grows with
the block length. For example, Fig. 8 shows the WER for fixed
SNR versus the information block length , for the ensemble
of RBA codes and the standard 64-states CCs with
generators mapped over blocks,
and of BCCs (with outer convolutional encoder
and inner accumulators) and the 64-states CCs mapped over

blocks optimized in [6] with generators
for the block-fading channel. The different behavior of the
WER as a function of the block length for the two ensembles
is evident.

We focus first on codes over the BPSK modulation. There-
fore, in this case . Let
be the vector of normalized Hamming weights per block. The
asymptotic exponential growth rate function [32] of the multi-
variate weight enumerator is defined by

(26)

where is the set of codewords in the length- ensemble
with Hamming weights per block satisfying

(27)

We have the following results.

Theorem 2: Consider an ensemble of codes of
rate , where is BPSK, over a block-fading channel with

blocks. Let be the asymptotic exponential growth rate
function of the ensemble multivariate weight enumerator. For

, let denote the set of binary vectors
with Hamming weight not smaller than and define
to be the infimum of all such that

(28)

If , then the code ensemble is weakly good.
Proof: See Appendix IV.

As far as higher order coded modulations are concerned, we
have the following.

Corollary 2: Consider an ensemble of codes of
rate , where is a complex signal set of size , over a block-
fading channel with blocks, where modulation is obtained by
(random) bit-interleaving and decoding by the BICM-ML de-
coder defined by (6). If the underlying ensemble of binary codes
(i.e., mapping the binary symbols of directly onto BPSK) is
weakly good, then the ensemble is weakly good.

Proof: See Appendix IV.
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Fig. 8. WER versus information block length at E =N = 8 dB for binary BCC, RBA, and trellis terminated CCs obtained by simulation (10 BP decoding
iterations for the BCCs and ML Viterbi decoding for the CCs).

The preceding results (and the proofs of Appendix IV) reveal
that the error probability of weakly good codes in the regime
where both the block length and the SNR are large is dominated
by the event that more than fading components are
small (in the sense of the proof of Theorem 2). On the contrary,
when fewer than fading components are small, the
code projected over the significant fading components has a
finite ML decoding threshold (with probability ). Therefore,
for large SNR, its error probability vanishes for all such fading
realizations. Apart from a gap in SNR, this is the same behavior
of the information outage probability for rate and discrete
signal set . This observation provides a partial explanation
of the striking fact that, differently from the case of AWGN or
fully interleaved fading, in block fading, the error probability
under BP decoding is closely approximated by the analysis of
the ML decoder. In fact, we argue that the two regimes of more
or less than small fading components dominate
the average error probability, while the detailed behavior of the
decoder in the transition region between these two extremes
is not very important, provided that the probability that a
channel realization hits the transition region is small, i.e., that
the transition is sufficiently sharp. The sharper and sharper
transition between the below-threshold and above-threshold
regimes of random-like concatenated codes of increasing block
length is referred to as interleaving gain in [33], [34]. We
argue that weak goodness of BCCs in block-fading channels
is another manifestation of the interleaving gain, even if for
such channel no waterfall behavior is observed.

In Appendix IV, we show also that the ensemble of trellis ter-
minated CCs of increasing block length considered in [3]–[6]
does not satisfy the condition of Theorem 2. Numerical verifi-

cation of Theorem 2 is needed for a specific code ensemble. In
particular, one has to show that

(29)

Supported by the simulations in Figs. 8, 9, and 10, and by the
case of RBAs, where explicit calculation of the multivariate
weight enumerator is possible (see Appendix III), we conjec-
ture that (29) holds for the family of random BCCs with MDS
outer code and inner recursive encoders.

As an example, in Fig. 9 we show the asymptotic WER for the
RBAensembleof rate withBPSKmodulation,overachannel
with fading blocks. The asymptotic WER is computed
via the asymptotic Bhattacharyya M&L bound given by

(30)

as motivated in Appendix IV. Simulations (BP iterative decoder)
for information block lengths and are
shown for comparison. This figure clearly shows that the WER
of these codes becomes quickly independent of the block length
and shows fixed gap from the outage probability.

In order to illustrate the weak goodness of BCCs with BICM
and high-order modulations, Fig. 10 shows the asymptotic WER
of an RBA code of rate 2 bits/complex dimension with
16-QAM modulation over fading blocks. The asymp-
totic WER is computed via the asymptotic Bhattacharyya M&L
bound given by

(31)
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Fig. 9. Asymptotic error probability (30) for a binary rate r = 1=2 RBA code mapped over N = 2 fading blocks and corresponding BP decoding simulation
with 30 iterations and K = 100; 1000; and 10000.

Fig. 10. Asymptotic error probability (31) for a rateR = 2 RBA code mapped overN = 2 fading blocks with 16-QAM (BICM) and corresponding BP decoding
simulation with 30 iterations for K = 100;1000; and 10000.

as motivated in Appendix IV, where is defined in (22). Sim-
ulations (BP iterative decoder) for information block lengths

and are shown for comparison.
We conclude this section by pointing out an interesting fact that

follows as a consequence of weak goodness and allows the accu-

rate WER evaluation of codes with given block length by using
weight enumerators of codes in the same ensemble but with much
smaller block length. This observation is illustrated by Fig. 11,
showingtheWERandtheBPLapproximationforanRBAcodeof
rate mapped over fading blocks with .
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Fig. 11. WER obtained by BP decoding simulation with 10 iterations and BPL approximations for RBA with rateR = 1=4 and 100 information bits/frame, over
N = 4 fading blocks.

WealsoshowthesimulationofBPdecodingwith10iterations, the
BPL approximation computed by truncating the PWEF to max-
imum product weight , and the PBL approxima-
tion computed for the PWEF of the same code with information
block length . Interestingly, the truncation of the PWEF
yields too optimistic results, while the approximation based on
thecompletePWEFoftheshortercodestillapproximatesveryac-
curately the WER of the longer code. This has the advantage that,
in practice, computing the weight enumerator of shorter codes is
in general less computationally intensive.

As a matter of fact, the PWEF of the short code contains much
more information on the code behavior than the truncated PWEF
of the long code. This is clearly illustrated by the PWEF’s in
Fig. 12(a) and (b), showing the (nonasymptotic) exponential
growth rate of the PWEF defined as

(32)

as a function of the normalized product weight
for the RBAs of rate , with 20 and 100 information bits
(every mark corresponds to one pairwise error event with nor-
malized product weight ). Truncation at cor-
responds to maximum normalized product , which means
that only the portion for of the distribution
of Fig. 12(b) is taken into account in the BPL approximation
using the truncated enumerator. This is clearly not sufficient to
describe the RBA product weight enumerator, as opposed to the
PWEF of the shorter code.

D. On Code Optimization

So far we have seen that the BCC coding structure yields
weakly good codes for the block-fading channel. However, most

of the shown examples were based on the simple RBA structure.
It is then natural to ask whether more general BCCs can reduce
significantly the gap from outage. In this subsection, we show
some examples of other BCC constructions that in some case
improve upon the basic RBA of same rate. Figs. 13 and 14 show
the performance of BCCCs with binary rate , attaining
full diversity, with BPSK and 16-QAM BICM, respectively, for

fading blocks, for , and 40 BP decoder it-
erations. The octal generators are given in the legend. We have
also considered the four states accumulator given in [35, Ch. 4]
with generator . We observe that in both cases the gap
from outage is approximately of 1 dB. We notice from Fig. 13
that using more complicated outer or inner codes does not yield
a significant gain. Using the four states inner accumulator in an
RBA scheme yields almost the same performance that the best
BCCC.

From these examples, and several other numerical experi-
ments not reported here for the sake of space limitation, it seems
that, while some room is left for code optimization by searching
over the component code generators, the improvements that may
be expected are not dramatic (similar conclusions can be drawn
from the results of [3]–[6]).

V. CONCLUSION

In this paper, we determined the SNR reliability function
of codes over given finite signal sets over the block-fading
channel. Random coding obtained by concatenating a linear
binary random code to the modulator via a fixed one-to-one
mapping achieve the same optimal SNR reliability function
provided that the block length grows rapidly enough with
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Fig. 12. PWEF growth rate for RBA of rate R = 1=4 with 20 (a) and 100 (b) information bits per frame, over N = 4 blocks. (a) RBA of rate R = 1=4 and
K = 20 information bits. (b) RBA of rate R = 1=4 and K = 100 information bits.

SNR. Pragmatic BICM schemes under suboptimal BICM-ML
decoding achieve the same random coding SNR exponent of
their non-BICM counterparts (under optimal ML decoding).

Driven by these findings, we have proposed a general struc-
ture for random-like codes adapted to the block-fading channel,
based on blockwise concatenation and on BICM (to attain
large spectral efficiency). We provided some easily computable
bounds and approximations to the WER of these codes under
ML decoding and BICM-ML decoding. Remarkably, our ap-
proximations agree very well with the simulated performance
of the iterative BP decoder at any SNR and even for relatively
short block length.

The proposed codes have WER almost independent of the
block length (for large block length), showing a fixed SNR gap
from outage probability. We introduced the concept of “weak
goodness” for specific ensembles of codes having this behavior

for large block length and large SNR, and we provided a suffi-
cient condition for weak goodness of specific code ensembles
in terms of their asymptotic multivariate weight enumerator ex-
ponential growth rate function.

Finally, we showed via extensive computer simulation that,
while some improvement can be expected by careful optimiza-
tion of the component codes, weakly good BCC ensembles have
very similar behavior and only small improvements can be ex-
pected from careful optimization of the component encoders.

APPENDIX I
PROOF OF LEMMA 1

Consider a family of codes for the block-fading channel (2)
of given block length , indexed by their operating SNR ,
such that the th code has rate (in nats), where
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Fig. 13. WER (simulation with 40 BP decoding iterations) of several BCCs of rate R = 1=4 over BPSK, forN = 4 fading blocks and K = 1024.

Fig. 14. WER (simulation with 40 BP decoding iterations) of several BCCs of rate R = 1=4 over 16-QAM (BICM), forN = 4 fading blocks andK = 1024.

, and WER (averaged over the channel fading) .
Using Fano inequality [10], it is easy to show that
yields an upper bound on the best possible SNR exponent. Re-
call that the fading power gains are defined as ,
for , and are i.i.d. exponentially distributed. Fol-
lowing in the footsteps of [10], we define the normalized log-

fading gains as . Hence, the joint distribu-
tion of the vector is given by

(33)
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The information outage event under Gaussian inputs is given by

By noticing that , we can write the outage
event as

(34)

The probability of outage is easily seen to satisfy the exponential
equality

(35)

Therefore, the SNR exponent of outage probability is given by
the following limit:

(36)

We apply Varadhan’s integral lemma [36] and we obtain

(37)

The constraint set is the intersection of the region defined by
and the region defined by

for all . For all , the infimum in (37) is
given by

(38)

In order to show that this exponent is actually the SNR re-
liability function for any , we have to prove achiev-
ability. We examine the average WER of a Gaussian random
coding ensemble. Fix and for any SNR , consider the
ensemble generated with i.i.d. components with input proba-
bility and rate . The pairwise
error probability under ML decoding, for two codewords
and for given fading coefficients is upper-bounded by the
Chernoff bound

(39)

By averaging over the random coding ensemble and using the
fact that the entries of the matrix difference are
i.i.d. , we obtain

(40)

(in general, the bar denotes quantities averaged over the code
ensemble). By summing over all messages , we
obtain the ensemble average union bound

(41)

Next, we upper-bound the ensemble average WER by separating
the outage event from the nonoutage event (the complement set
denoted by ) as follows:

error (42)

Achievability is proved if we can show that

for all and . We have

(43)

By using again Varadhan intergral lemma we obtain the lower
bound on the Gaussian random coding exponent

(44)

where is defined explicitly by

It is easily seen that for all and , the infimum is
obtained7 by

for

for (45)

where , and yields . Since
this lower bound coincides with the outage probability upper
bound (38), we obtain that and it is achieved
by Gaussian codes for any . Any fixed coding rate
corresponds to the case , from which the statement of
Lemma 1 follows.

APPENDIX II
PROOF OF THEOREM 1

We fix the number of fading blocks , the coding rate , and
the (unit energy) modulation signal set . Using Fano inequality
[10], it is easy to show that yields an upper bound on
the best possible SNR exponent attained by coded modulations

7This solution is not unique. Any configuration of the variables � having
k � 1 variables equal to 1, N � k � 1 variables equal to 0, and one variable
equal to 1 + brNc � rN yields the same value of the infimum. Moreover, for
L = 1 also the solution � = 0 for all n yields the same value.
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with signal set . The outage probability with discrete inputs
is lower bounded by (46) at the bottom of the page, where

, and the last equality follows just from the definition
of the normalized log-fading gains . The
inequality is due to the fact that we have a strict inequality
in the probability on the right. Since the term

(47)

and

(48)

we can apply the dominated convergence theorem [37], for
which

(49)

Since for all with and we have that

for
for

we have that, for large and and for
. Hence, for every , we have the

lower bound

(50)

where we define the event

(51)

Using Varadhan’s lemma, we get the upper bound to the SNR
reliability function as

(52)

It is not difficult to show that the achieving the inner infimum
in (52) is given by

for

for (53)

where is the unique integer satisfying
. Since this holds for each , we can make

the bound as tight as possible by letting , thus obtaining
defined in (13).

In order to show that this exponent is actually the SNR relia-
bility function, we have to prove achievability. We examine the
average WER of the coded modulation ensemble obtained by
concatenating a random binary linear code with the signal set

via an arbitrary fixed one-to-one mapping . The
random binary linear code and the one-to-one mapping induce
a uniform i.i.d. input distribution over . The pairwise error
probability under ML decoding, for two codewords and

for given fading coefficients, is again upper-bounded by
the Chernoff bound (39). By averaging over the random coding
ensemble and using the fact that the entries of each codeword

and are i.i.d. uniformly distributed over , we ob-
tain

(54)

where we define the Bhattacharyya coefficient [38]

(55)

By summing over all messages , we obtain the
union bound

(56)

We notice a fundamental difference between the above union
bound for random coding with discrete inputs and the corre-
sponding union bound for random coding with Gaussian inputs
given in (41). With Gaussian inputs, we have that the union
bound vanishes for any finite block length as . On the
contrary, with discrete inputs, the union bound (56) is bounded
away from zero for any finite as . This is because with

(46)
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discrete inputs, the probability that two codewords coincide (i.e.,
have zero Euclidean distance) is positive for any finite . Hence,
it is clear that in order to obtain a nonzero random coding SNR
exponent we have to consider a code ensemble with block length

, increasing with . To this purpose, we define

(57)

By averaging over the fading and using the fact that error prob-
ability cannot be larger than , we obtain

(58)

We notice that

for
for

Hence, for , a lower bound on the random coding SNR
exponent can be obtained by replacing by

(59)

We define the event

(60)

Hence, from (58) and what said above we obtain

(61)

By applying again Varadhan’s lemma we obtain a lower bound
to the random coding SNR exponent given by

(62)

It is not difficult to show that the achieving the first infimum
in (62) is given by

for

for (63)

where is the unique integer satisfying
.

For the second infimum in (62), we can rewrite the argument
in the form

(64)

We distinguish two cases. If , then

(65)

attains its minimum at . Hence, we obtain that the in-
fimum is given by . If ,
then (65) attains its absolute minimum at , and its
second smallest minimum at . The number of terms

that can be made equal to subject to the constraint
is given by . Hence, the infimum

is given by

(66)

Both the first and the second infima are simultaneously maxi-
mized by letting . By collecting all results together, we
obtain that the random coding SNR exponent is lower-bounded
by (14).

The random coding SNR exponent of the associated BICM
channel is immediately obtained by using again the Bhat-
tacharyya union bound [11]. In particular, for two randomly
generated codewords

(67)

where is defined in (21). The error probability av-
eraged over the random BICM ensemble can be upperbounded
by

(68)

It is not difficult to see that

for
for

Hence, for , a lower bound on the random coding SNR ex-
ponent can be obtained by replacing by defined
in (59). It then follows that the random coding SNR exponent
of the associated BICM channel satisfies the same lower bound
of the original block-fading channel.
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APPENDIX III
WEIGHT ENUMERATORS

Throughout this work, we used extensively the MWEF of bi-
nary codes partitioned into blocks. In this part of the Ap-
pendix we focus on their calculation.

1) MWEF of BCCs: To compute the MWEF, we assume that
blockwise concatenation is performed through a set of uni-
form interleavers [33], [34]. Then, we can compute the average
multivariate weight enumeration function according to the fol-
lowing.

Proposition 1: Let be a blockwise concatenated code
mapped over fading blocks constructed by concatenating an
outer code mapped over blocks with input multivariate-
output weight enumeration function , and inner
codes with input–output weight enumeration functions ,
through uniform interleavers of length . Then, the av-
erage-input multivariate-output weight enumeration function of

is given by

(69)

Proof: Define the Cartesian product code

with multivariate-input multivariate-output weight enumeration
function . Then

(70)

where denotes expectation over all uniform interleavers
and is the probability of having an error event
of input weights of given the input weight of

and it is given by

(71)

By construction

(72)

and thus we obtain (69).

Remarkably, in the case of RBAs, the function
can be written in closed form in a way similar to [24] for RA
codes in the AWGN channel. We obtain

(73)

The MWEF of the BCC is eventually obtained as

In order to evaluate the approximations (18) and (25), we need
the PWEF which can be trivially obtained from the MWEF.

2) Asymptotic MWEF of BCCs: Following in the footsteps
of [32], we can derive the asymptotic exponential growth rate
of the MWEF . Define the asymptotic exponential
growth rate functions of the input–output MWEFs

(74)

(75)

(76)

where is the set of codewords in the
(per block) length- outer code with input Hamming weight
satisfying and output Hamming weights per
block satisfying for all ,
where is the set of codewords in the length- inner
code with input Hamming weight satisfying
and output Hamming weights satisfying , and
where is the set of codewords in the
(per block) length- BCC code with input Hamming weight
satisfying and output Hamming weights per
block satisfying for all .
Assuming that we can compute (e.g., extending the methods
of [32] to the case of multivariate weight enumerators), the
functions and , the desired function

for the BCC scheme is readily obtained
via Proposition 1. By definition, notice that and

. Moreover

(77)

where is the binary
entropy function. Therefore, from (69), we find the asymptotic
input–output growth rate of the BCC as

(78)

Finally, the asymptotic output growth rate defined in (26) is
given by

(79)
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Fig. 15. Exponential growth rate of the MWEF for a rate r = 1=2 RBA code of information block length K = 100 mapped over N = 2 fading blocks.

For the case of RBA codes we can write explicitly the asymp-
totic input–output growth rate as

(80)

and thus, the asymptotic output growth rate is given by

(81)

where

As an example, in Fig. 15 we plot the (nonasymptotic) growth
rate of the MWEF for a rate RBA code of information
block length mapped over fading blocks,
computed using (26) and (73). In Fig. 16, we plot the asymptotic
growth rate of the same RBA ensemble. Notice that, already for
block length 100 information bits, the finite-length growth rate
and its corresponding asymptotic counterpart are indeed very
similar.

APPENDIX IV
PROOFS FOR SECTION IV-C

Proof of Theorem 2: Let and denote the ex-
ponential growth rate and the asymptotic exponential growth

rate of the considered code ensemble over the BPSK modula-
tion. For each length , the conditional error probability given
the fading vector can be upper-bounded by the Bhattacharyya
union bound as

(82)

where we define the fading power gain vector
and let

The limit of the above exponent for is given by

(83)

Let be an arbitrary small quantity. We define the set

(84)

The set contains the “bad fading vectors,” i.e., the
fading vectors having or more small components
(smaller than ).

Using fading statistical independence, the property of the
fading cumulative distortion function (cdf)
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Fig. 16. Asymptotic exponential growth rate a for a rate r = 1=2 RBA code mapped over N = 2 fading blocks.

(e.g., valid for Rayleigh fading) and standard bounds on the tail
of the binomial distribution, we can write

(85)

for a suitable constant .
Using (82) –(85), indicating by the pdf of we can

write, for sufficiently large and

(86)

where as .
Recall that is the set of binary vectors

of length with Hamming weight not smaller than .
For any , there exists
such that (componentwise). In fact, it is sufficient to
replace each in by , and each in by .
Since by definition there are at most components
of smaller than , the resulting vector has Hamming weight
at least and therefore (up to the scaling by

) it belongs to .

For , it follows from the preceding obser-
vation that is lower-bounded by

(87)

Define as in Theorem 2 (28) and suppose that, for the given
ensemble, is finite. Then, we let and, continuing the
chain of inequalities (86)

(88)

where as . This shows the weak goodness of
the ensemble.

Proof of Corollary 2: For ensembles of BICM codes
with random bit interleaving we use the Bhattacharyya union
bound with Bhattacharyya factor defined in (21).
Following the same approach as in the proof of Theorem 2,
we see that the upper bound to the error probability takes on
the same form of (86)–(88) provided that we replace by
defined in (22). For large , we have that where

is the minimum Euclidean distance of the normalized
signal constellation (see (22) and [31], [40]). The scaling
by the constant factor (independent of and of )
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involves at most a scaling of the SNR threshold . Therefore,
weak goodness of the underlying binary code implies weak
goodness of the corresponding BICM ensemble with random
bit interleaving.

Trellis Terminated CCs Do Not Satisfy Theorem 2. For sim-
plicity, we consider trellis terminated CCs of rate , such
that in each trellis transition the coded bits are sent to the
fading blocks (this defines the blockwise partitioning of the CC
codeword). Then, output blocks of length correspond exactly
to trellises of trellis sections. Let

(89)

define the length- MWEF exponential growth rate, such that
defined in (26) is given by .

A simple error path in the trellis is a path that leaves state
and remerges for the first time to state after a certain number
of trellis sections, while it coincides with the all-zero path ev-
erywhere else. Take a fixed Hamming weight such that
there exists a simple error path of length (independent of

) in the code having Hamming weights per block
, for all . Such simple error path exists for

any trellis terminated CC with given encoder. For example, we
can take the minimum-length event corresponding to the free
Hamming distance of the code. It follows that, for all ,
sufficiently large and such that , the lower
bound

(90)

holds. In fact, must contain all the simple error events of
length at most starting at the distinct positions
in the length- trellis.

By continuity, we can write the sufficient condition of The-
orem 2 as

(91)

For any , take in a box of side
around the point . The lower bound (90) implies
that

(92)

which clearly shows that trellis terminated CCs cannot satisfy
Theorem 2.

More in general, any code ensemble such that the MWEF
increases linearly with the block length for some

Hamming weight vector such that cannot
satisfy Theorem 2. These code ensembles have an infinite ML
decoding threshold [16] in the standard AWGN channel.

Asymptotic Union Bounds (30) and (31). The M&L Bhat-
tacharyya union bound for a code over the BPSK signal set can
be written as

(93)

Since is continuous in for continuous and
, we can apply the dominated convergence

theorem [37] and write

(94)

The factor multiplying in the exponent of the right-hand side
of (94) is positive for a given channel realization if

(95)

Conditioning with respect to , we have that, in the limit of large
if while otherwise. It

follows that in the limit for , the M&L Bhattacharyya
bound takes on the form (30).

In the case of BICM codes with random bit interleaving
(under the symmetrized mapping assumption), we can use
the same M&L Bhattacharyya bound by replacing with
defined in (22), and (31) follows.
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