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In a related model, where the mobile network also has n static nodes
along withnmobile nodes, the optimal tradeoff can be obtained for suf-
ficiently low throughputs. We can show that for any throughputT (n) =
�(1=n1=2+�); � > 0, the tradeoff given by T (n) = �(D(n)=n) can
be achieved. This is the same as the tradeoff for the fluid model in [2].
This establishes the optimal tradeoff for this range of low throughputs.
The scheme achieving this tradeoff uses the scheduling scheme given in
this correspondence along with a randomization technique and chasing
in a manner similar to Scheme 3(a) in [2]. However, the optimal tradeoff
for the mobile network with no static nodes is unknown.
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Coding in the Block-Erasure Channel
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Abstract—In this correspondence, we study an M -ary block-erasure
channel with B blocks, where with probability � a block of L coded
symbols is erased. The behavior of the error probability of coded systems
over such channels is studied, and we show that, if the code is diver-
sity-wise maximum-distance separable, its word error probability is equal
to the outage probability, which admits a very simple expression. This
correspondence is intended to complement the error probability analysis
in previous work by Lapidoth and shed some light on the design of coding
schemes for nonergodic channels.

Index Terms—Diversity, erasure channels, error probability, maximum-
distance separable (MDS) codes, maximum-likelihood (ML) decoding, non-
ergodic channels, outage probability.

I. INTRODUCTION

The block-erasure channel is a very simplified model of a fading
channel where parts of the codeword are completely erased by a deep
fade of the channel [1]. This channel corresponds to the large signal-to-
noise ratio (SNR) regime of the block-fading channel [2]–[7], and its
interest lies on its simplicity and nonergodicity, typical of many real
wireless communication systems, such as orthogonal frequency divi-
sion multiplexing (OFDM) or frequency-hopped systems. Coding for
the block-erasure channel with convolutional codes has been studied in
some detail in [1]. In this context, non-ergodicity means that the trans-
mitted codeword spans only a finite number B of independent realiza-
tions (degrees of freedom) of the channel irrespectively of its length.

In this correspondence we study the problem of fixed-rate trans-
mission over the block-erasure channel. This correspondence comple-
ments previous error probability analysis for convolutional codes in the
block-erasure channel done by Lapidoth in [1]. In particular, we derive
simple expressions for the word and bit error probabilities of general
codes of a fixed rate, as well as tight bounds. We find that diversity-
wise maximum-distance separable (MDS) codes have the lowest pos-
sible error probability and are therefore optimal for this channel.

II. CHANNEL MODEL

We study a block-erasure channel with B blocks. With probability
� a block of L symbols is completely erased and with probability
1 � � a block of L coded symbols is received correctly (noiseless
sub-channel), independently from block to block. Consider the
transmission of an M -ary code C of length N = BL and rate
R = K

N
bits per channel use, where K = log2 jCj. Also, let

x = (x1; . . . ;xB) 2 f0; 1; . . . ;M � 1gN be a codeword of C. We
denote erasures by “?.” The block-erasure channel is illustrated in
Fig. 1.
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Fig. 1. The block-erasure channel with B blocks. The symbols of block b, b = 1; . . . ; B are erased with probability �. The symbols of block b, b = 1; . . . ; B

are received correctly (noiseless channel) with probability 1 � �.

Define the erasure pattern vector e = (e1; e2; . . . ; eB) 2 f0; 1gB ,
whose b-th component is eb = 1 if the block is erased and eb = 0
otherwise. Thus, P (eb = 1) = � and P (eb = 0) = 1 � �, namely,
the components of the erasure pattern e are i.i.d. Bernoulli random
variables (with success probability �). We assume that the receiver has
channel-state information (CSI), i.e., the receiver knows the erasure
pattern e.1

III. ERROR PROBABILITY ANALYSIS

In this section we define the word and bit error probabilities of coded
schemes over the block-erasure channel described in the previous sec-
tion. We also discuss the information theoretic limits of the channel.

We define the word error probability as the probability of decoding
in favor of a codeword x̂ when codeword x was transmitted, averaged
over all possible transmitted codewords x 2 C

P
w
e (�) =

1

jCj
x̂ 6=x

Prfx̂ 6= xg: (1)

We further consider linear codes only, and thus, the error probability
does not depend on the transmitted codeword. We then assume the
transmission of the all-zero codeword, i.e., x = (0; . . . ; 0). Consider
the maximum-likelihood (ML) decoder

x̂ = argmax
x2C

p(yjx) (2)

and define the subsets

C(e)=fx2C j if eb=0; xb=(0; . . . ; 0) 8b 2 (1; . . . ; B)g (3)

as the set of codewords that have nonzero components in the erased
positions only. Obviously, the transmitted codeword belongs to C(e)
and by definition jC(e)j � 1;8e 2 B

2 . In words, C(e) is the set of
codewords that, once erased by a given erasure pattern, look identical

1Strictly speaking, this assumption is implicit in the channel model, since the
output alphabet includes the erasure symbol.

to the receiver. In such a case, the ML decoder will resolve the ties
evenly, and will make an error with probability [1]

P
w
e (e) = 1�

1

jC(e)j
(4)

which implies that

P
w
e (�) = [Pw

e (e)] = 1�
1

jC(e)j
: (5)

We remark that the only source of error (randomness) in the decoding
process is essentially how the ML decoder resolves the ties between
the equaly likely candidates in C(e).

We further define the average bit error probability as

P
b
e (�) =

1

K

K

k=1

Pe;k(�) (6)

where Pe;k(�) is the probability of error of the k-th information bit.
Definition 1: The block-diversity of a code is defined as

� = min
x2C
x6=0

jfb 2 (1; . . . ; B) j xb 6= 0gj: (7)

In words, � represents the limit number of erased blocks that C can
tolerate. Specifically, for a fixed erasure pattern e, if � � B

b=1 eb, then
jC(e)j > 1 and the ML decoder will make an error with probability 1�

1
jC(e)j

. Obviously, � � B. If � = B we say that C has full diversity. The
definition of � shows that it corresponds to the minimum distance of a
code of length B constructed over an alphabet of size ML. Therefore,
by using the Singleton bound [14], we get [4]

� � �B (8)

where

�B 1 + B 1�
R

log2M
: (9)
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The Singleton bound states that given B, R and M , the block diversity
cannot be larger than (9), and thus full diversity is only guaranteed if

R

log M
� 1

B
.

Definition 2: A code C is blockwise MDS if it meets the Singleton
bound with equality, i.e., � = �B .

In the following, we elaborate on the optimality of blockwise MDS
codes over the block-erasure channel.

A. Outage Probability

Similarly to other nonergodic channels, the block-erasure channel
has zero capacity in the strict Shannon sense, since with probability
�B all channels are erased and reliable communication is not possible.
We write the mutual information between the input and output of the
channel for a given erasure pattern e as

I(e) =
1

B

B

b=1

�eb log2M (bits per channel use) (10)

where �eb denotes the binary complement of eb. This comes from the
fact that the block-erasure channel is nothing but a set of B parallel
channels (used an equal fraction of the time), each conveying either
log2M bits per channel use if eb = 0 or none if eb = 1. Note that,
since B is finite, I(e) is a random variable. If B ! 1 the channel
the distribution of I(e) becomes a function with a step at the channel
capacity log2M(1 � �), and the channel becomes an ergodic M -ary
erasure channel.

We define the information outage probability as the probability that
the transmission rate R is not supported by a given channel realization

Pout(�) PrfI(e) < Rg: (11)

In such nonergodic channels, Pout(�) is then the best possible word
error probability.2

We have the following result.
Proposition 1: Consider the transmission M -ary codes over the

block-erasure channel. Then

lim
�!0

Pout(�) =
B

BR

log M
� 1

�
�
: (12)

Proof: We can write the outage probability as

Pout(�) = PrfI(e) < Rg

= Pr
1

B

B

b=1

�eb log2M < R

= Pr

B

b=1

�eb <
BR

log2M

= Pr A �
BR

log2M
� 1

=

�1

k=0

B

k
(1� �)k�B�k (13)

2Remark that this is only true for sufficiently large block length. In general,
Fano’s inequality gives [8]–[10]

P (�) � 1�
I(e)

R
�

1

BLR

where jxj = maxf0; xg.

where A B

b=1 �eb is a binomial random variable with success prob-
ability 1��. We have quite trivially expressed the outage probability as
the cumulative distribution function (cdf) of a binomial random vari-
able. Therefore, we clearly get that

lim
�!0

Pout(�) =
B

BR

log M
� 1

�
B� +1

=
B

BR

log M
� 1

�
B+ � +1

=
B

BR

log M
� 1

�
1+ B 1�

(14)

which shows the result.
Remark 1: The outage probability has slope �B for low � in a log-log

scale, and asymptotic coding gain B

d e�1
. Thus it clearly cor-

responds to the high SNR regime of a block-fading channel [7].
Remark 2: If R

log M
= 1

B
(full diversity), Pout(�) = �B , i.e., the

probability that the rate R is not supported by the channel is equal to
the probability of having all the blocks erased.

Fig. 2 shows the outage probability and the asymptotic limit (12)
for R = 1

2
binary codes (M = 2) over a block erasure channel with

B = 2; 4 and 8 blocks.

B. Word Errors

The previous result proves the optimality (in diversity only) of de-
signing MDS codes for such channels. In order to achieve the optimal
performance, we start from

P
w

e (e) = 1�
1

jC(e)j
: (15)

For any code (with a given block diversity � � �B ), since jC(e)j � jCj
we can trivially upper-bound (15) (for large block length) as

P
w

e (e) �

1; if
B

b=1

eb � �

0; if
B

b=1

eb < �

(16)

which leads to

P
w

e (�) � Pr

B

b=1

eb � �

= Pr

B

b=1

�eb � B � �

=

B��

k=0

B

k
(1� �)k�B�k: (17)

In general (17) is not necessairly tight. However (and possibly surpris-
ingly), if C is MDS, i.e., � = �B , the bound is tight since (17) coincides
with Pout(�). In other words, if C is MDS, its word error probability is
given by the outage probability, since the decoder will decode correctly
under all erasure patterns such that B

b=1
eb < �B .

Fig. 3 confirms the above discussion. We have plotted the outage
probability and the limiting behavior (12), as well as the word error
rate (WER) simulations for the (23; 33)8 and (133;171)8 convolu-
tional codes with L = 25 (circles/crosses) and L = 2500 (diamonds/
squares) respectively. As we observe, the simulated WER of the dif-
ferent codes for the different block lengths is the same and matches
perfectly with the outage probability.

Remark 3: This result can be a priori surprising, since it charac-
terizes the performance of any MDS code of any (sufficiently large)
block length over the block erasure channel. A posteriori, the result
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Fig. 2. Outage probability (solid lines) and (12) (dashed lines) in a log-log scale in a block-erasure channel with B = 2, B = 4 and B = 8 blocks for R =
and M = 2. The Singleton bound gives � = 2; 3 and 5 respectively.

Fig. 3. Outage probability (solid lines), (12) (dashed lines) and simulations with the (23;33) and (133;171) convolutional codes with L = 25 (corresponds
to 100 information bits per codeword) and L = 2500 (corresponds to 10000 information bits per codeword) in log-log scale in a block-erasure channel with
B = 8 blocks.
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Fig. 4. Bit-error probability in log-log scale in a block-erasure channel with B = 8 blocks for R = 1=2. We show the Fano lower bound (21) (dotted line), the
upper bound (19) (dash-dotted line), the lower bound (24) (dotted line), the analytical BER expression for the (23; 33) code from [1] (solid line) and the BER
simulation (diamonds).

seems rather obvious, since it clearly follows as an artifact from the
channel model and the definition of MDS codes. We should not then be
misled by this, since in realistic non-ergodic block-fading noisy chan-
nels MDS codes are necessary, but not sufficient to approach the outage
probability [7]. For example, the WER of convolutional codes in the
block-fading channel increases with the block length, while the WER
of concatenated MDS codes (as the blockwise concatenated codes of
[7] or the parallel turbo-codes of [11]) is given by the distribution of
the decoding threshold [7], [12].

C. Bit Errors

In this section we show that blockwise MDS codes are also optimal
for the bit error probability. We start with a very simple upper bound

P
b
e (e) �

1

2
; if

B

b=1

eb � �

0; if
B

b=1

eb < �

(18)

which yields that

P
b
e (�) = [P b

e (e)]

�
1

2
Pr

B

b=1

eb � �

=
1

2
P
w
e (�): (19)

By using the bit-error version of Fano’s inequality [9, Theorem 4.3.2]
(using the fact that the encoder’s inputs are bits) we can lower-bound
the bit-error probability and get that3

P
b
e (e) � h

�1 1�
I(e)

R
+

(20)

where h(p) = p log2
1

p
+(1� p) log2

1

1�p
is the binary entropy func-

tion and p = h�1(x) denotes the probability p for which h(p) = x.
Therefore, we get that

P
b
e (�)= [P b

e (e)]

� h
�1 1�

I(e)

R
+

= h
�1 1�

log2M
B

b=1
�eb

BR
+

=

�1

k=0

h
�1 1�

log2M

BR
k
+

B

k
(1��)k�B�k

(21)

since

h
�1 1�

log2M
B

b=1
�eb

BR
+

= 0 when
B

b=1

�eb �
BR

log2M
:

(22)

3This lower bound was also obtained in [13] for the multiple-antenna case.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 11, NOVEMBER 2006 5121

Therefore, the bit-error probability has the same slope, namely, the Sin-
gleton bound �B and this slope is again achievable with MDS codes.
We can also lower-bound P be (�je) as

P
b

e (e) �
1
2

B� �e

B
; if

B

b=1

�eb <
BR

log M

0; otherwise
(23)

which yields to

P
b

e (�) = [P b

e (e)]

�

�1

k=0

1

2

B� B

b=1
�eb

B

B

k
(1��)k�B�k (24)

since the best the decoder can do in case of an outage event to guess a

fraction
B� e

B
of the bits and correct all the others. Depending

on the structure of the code, the decoder will do worse than that. For ex-
ample, in the ML decoder of a convolutional code will choose a wrong
path through the trellis, which will yield more errors in the bits corre-
sponding to the nonerased blocks.

Remark 4: The maximum exponent of � in the BER expression for
the (23; 33)8 code with periodic interleaving in [1, p. 1470]

P
b

e (�) = 23:5�5(1� �)3+13:5�6(1� �)2+4�7(1� �)+0:5�8 (25)

should not come as a surprise, since the code with periodic interleaving
is MDS, and thus, �B = 5 (the results in [1] are plotted in a linear scale
for � and the effect of the slope is not evident). It should also be clear
that a random interleaver yields a non-MDS convolutional code, and
hence its error probability has a worse slope.

Remark 5: The upper bound (19) and the lower bounds (21) and
(24) coincide for full diversity codes.

Fig. 4 shows several bounds and simulations of the bit-error proba-
bility. As we see, the difference between the two lower bounds is quite
remarkable, which indicates that (21) might not be achievable in gen-
eral.

IV. CONCLUSION

A rather simple analysis reveals the usefulness of blockwise MDS
codes for the nonergodic block-erasure channel. In this correspon-
dence, it is shown that these codes are optimal in this channel.
Expressions of the corresponding word error rates as well as tight
bounds on the bit error rate are derived.
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