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Approaching the Outage Probability of the
Amplify-and-Forward Relay Fading Channel

Ghassan M. Kraidy, Joseph J. Boutros and Albert Guillén i Fàbregas

Abstract— We study coding techniques for the single-relay
non-orthogonal amplify-and-forward half-duplex relay fading
channel. Unlike the multiple-antenna case, we show that 2 × 2
rotations induce large gains in outage probability with no increase
in decoding complexity under iterative probabilistic decoding. We
compare rotated and unrotated turbo-coded schemes and show
that they both perform close to their corresponding outage limits.

I. INTRODUCTION

Due to the nature of wireless channels, effects such as
fading, shadowing, and interference from other transmitters
can cause the channel quality to fluctuate during transmission.
One major way to combat static fading is to provide diver-
sity in either time, frequency, or space [1]. In [2], [3], the
authors set up a framework for cooperative communications,
where multiple terminals use the resources of each other to
form a virtual antenna array that provides spatial diversity.
These works triggered a flurry of research on cooperative
communications, and since, multiple works have proposed
communication schemes and analyzed outage probability in
slowly varying fading environments [4], [5], [6], [7], [8]. The
main protocols that have been proposed are the amplify-and-
forward, where the relay only amplifies the signal received
from the source, before transmitting it to the destination, and
the decode-and-forward, where the relay decodes the received
signal before transmitting it to the destination. A number of
recent works consider turbo coding for multiple scenarios, in-
cluding full-duplex, decode-and-forward, orthogonal amplify-
and-forward and distributed coding [9], [10], [11], [12], [13].

In this work, we study the performance of distributed
coded modulation schemes in the single-relay non-orthogonal
amplify-and-forward channel. We focus on the outage prob-
ability [14] of the channel with discrete input constellations.
As opposed to the multiple-antenna case, we show that full-
diversity rotations (see e.g. [15] and references therein) pro-
vide large performance gains without any increase in the
overall decoding complexity of the system. We illustrate these
effects by means of a turbo-coded [16] bit-interleaved coded
modulation (BICM) [17] scheme that closely approaches the
outage probability of the channel.
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II. SYSTEM MODEL

We consider the amplify-and-forward fading relay channel.
We impose the half-duplex constraint, for which terminals
cannot transmit and receive signals in the same time slot.
We consider the TDMA-based Protocol I from [7]: during
the first time slot, the source terminal broadcasts a signal
to the relay and destination terminals, the relay is silent. In
the second time slot, both the relay and source terminals
communicate with the destination (see [7] for details). This
protocol is also known as non-orthogonal amplify-and-forward
(NAF) protocol. According to the NAF protocol, the received
signals at relay and destination are given by

yr[2k] =
√
E(e)

s hsr x[2k] + ηr[2k] (1)

yd[2k] =
√
E(e)

s hsd x[2k] + ηd[2k] (2)

yd[2k + 1] =
√
Er βhrd yr[2k]

+
√
E(o)

s hsd x[2k + 1] + ηd[2k + 1] (3)

for k = 0, . . . , L − 1, where yr[2k], yd[2k] ∈ C are the
received signals at the relay and destination respectively at
even time slots, yd[2k + 1] ∈ C is the received signal at the
destination at odd time slots, x[2k], x[2k + 1] ∈ C are the
transmitted symbols at even and odd time slots respectively,
ηr[2k], ηd[2k], ηd[2k + 1] ∼ NC(0, N0) are the corresponding
circularly symmetric complex Gaussian noise samples at the
relay and destination, hsr, hsd, hrd ∼ NC(0, 1) are the com-
plex fading coefficients corresponding to source-relay, source-
destination, and relay-destination links respectively, and

β =
(
E(e)

s |hsr|2 + N0

)− 1
2

(4)

is the energy normalization coefficient at the relay [7]. Let
E(e)

s and E(o)
s denote the energies transmitted by the source

at even and odd time instances respectively, while Er is the
energy transmitted by the relay. We assume that the signal
constellation is normalized in energy, namely E[|x|2] = 1.
We also assume that the channel coefficients are perfectly
known at the receiver and that they remain constant for
the transmission of one frame (i.e., for k = 0, . . . , L − 1)
but change independently from frame to frame (quasi-static
assumption). From the NAF model described above, we obtain
that the time duration corresponding to the transmission of a
frame is 2L. By inserting (1) into (3) we obtain that

yd[2k + 1] =
√
E(e)

s Er βhrdhsr x[2k] +
√
E(o)

s hsd x[2k + 1]

+
√
Er βhrd ηr[2k] + ηd[2k + 1]. (5)

Conditioned on a perfect knowledge of the fading coefficients
at the receiver, the noise term in (5) has a Gaussian distribution
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with zero mean and variance σ2 = N0(1 + Erβ
2|hrd|2).

Therefore, by multiplying yd[2k + 1] by

α =
(
1 + Erβ

2|hrd|2
)− 1

2 (6)

we obtain the equivalent row vector model

ỹd[k] = x[k] H + η̃[k] (7)

where

H =


√
E(e)

s hsd

√
E(e)

s Er αβhrdhsr

0
√
E(o)

s αhsd

 (8)

and ỹd[k] =
(
yd[2k] , αyd[2k + 1]

)
∈ C2, x[k] =(

x[2k] , x[2k+1]
)
∈ X ⊂ C2, with X being the bidimensional

signal constellation, and η̃[k] ∈ C2 is a circularly symmetric
complex Gaussian noise vector with entries ∼ NC(0, N0),
for k = 0, . . . , L − 1. Based on (7), the channel transition
probabilities conditioned on the channel realization are

p
(
ỹd[k]|x[k],H

)
=

1
(πN0)2

exp

(
−
∥∥ỹd[k]− x[k]H

∥∥2

N0

)
(9)

III. OUTAGE PROBABILITY AND ROTATIONS

The Shannon capacity of the channel described by (7) is
zero, since for sufficiently large frame length, the word error
probability of any coding scheme is lowerbounded by the
information outage probability [14]

Pout(R) = Pr
(

1
2
I(x; ỹd|H) < R

)
(10)

where R is the target information rate, and I(x; ỹd|H) is the
input-output instantaneous mutual information of the channel
(7) for a fixed channel realization H. The factor 1

2 comes
from the fact that one channel use of the equivalent channel
(7) corresponds to 2 temporal channel uses, one per slot.
Minimum outage is achieved with Gaussian inputs, for which

I(x; ỹd|H) = log2 det
(
I2 +

1
N0

HH†
)

. (11)

In practice, Gaussian codebooks are not feasible, and we
usually resort to discrete signal constellations. In this case,
assuming uniformly distributed inputs over X we have that

I(x; ỹd|H) = log2 |X |−E

[
log2

∑
x′∈X p

(
ỹd|x′,H

)
p
(
ỹd|x,H

) ]
(12)

where the expectation is over the joint distribution p(x, ỹd|H).
When quadrature-amplitude modulation (QAM) is used, the

signal constellation is X = XQAM×XQAM where XQAM ∈ C
is a standard QAM constellation of size |XQAM| = M . In
some cases, it can be beneficial to precode the M -QAM sym-
bols with a unit rate rotation Φ ∈ C2×2 [15], [18]. In this case,
the constellation X is a higher-order bidimensional complex
constellation, and detection has to be performed in C2. In order
to compute the outage probability (10) with rotated QAM
constellations, we compute (12) bearing in mind that now input
vectors x ∈ X belong now to the rotated constellation. This
is equivalent to letting x ∈ XQAM × XQAM and replacing H
by ΦH. Remark that using a 2×2 rotation entails no increase
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Fig. 1. Outage probability for QPSK and R = 1 bit per channel use.

in decoding complexity using probabilistic iterative decoding,
since in order to compute the channel transition probabilities
in (9), the decoder uses a list of candidates of size |X | = M2,
with and without rotation. This stands in stark contrast to the
case of nT × nR multiple-antenna channels with i.i.d. fading,
where rotations are of dimension n2

T×n2
T (see e.g., [18], [19])

and hence increase the decoding complexity with respect to the
unrotated system. In our case, the zero entry in the equivalent
channel matrix (8) enables decoding with the same complexity
of the unrotated system. In this work, we design the rotation
matrix Φ that minimizes the outage probability, namely

ΦIOM = arg min
Φ∈G

Pout(R) (13)

following the method outlined in [20], where G ⊆ C2×2

is the set of complex unitary matrices and IOM stands for
information outage minimization.

Figure 1 shows Pout(R) with Gaussian input, QPSK input
with no rotation, IOM rotation of dimensions 2 × 2 and
modified cyclotomic rotation [18] of dimensions 4 × 4. In
numerical examples in this letter, we have chosen E(o)

s = Er =
E(e)

s

2 . Remark that the model (7), the transition probabilities
(9), outage probabilities (10) and coding schemes remain valid
for general power allocation rules [7]. As we observe, the
inclusion of the rotation gives a significant gain. We also see
that 4×4 rotations are not needed, as 2×2 rotations are suffi-
cient. Therefore, coded modulation schemes constructed using
2× 2 rotations can achieve a remarkable gain over unrotated
modulations, with no increase in decoding complexity.

IV. CODE CONSTRUCTION AND EXAMPLES

We consider coded modulation schemes M ⊂ XL ⊂ C2L

of rate R. We denote the codewords of M by X ∈ M,
X =

(
x[0], . . . ,x[L − 1]

)
. We consider that M is a BICM

scheme [17] over X , that uses a binary parallel turbo code of
rate Rc and an interleaver of size N [16]. The component
encoders are assumed to be identical recursive systematic
convolutional (RSC) codes. Under this setting, we have that
L = N

2Rc log2 M . BICM symbols are then rotated by a unit
symbol rate rotation matrix Φ. Since the rotation has unit
rate, the overall transmission rate in bits per channel use is
R = N

2L = Rc log2 M . The presence of a rotation guarantees
full diversity for any 0 < Rc < 1.

We will compare the above system with a dual scheme
that uses no rotations. In this case, the BICM codewords
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Fig. 2. NAF half-duplex fading channel, turbo code RSC (17, 15)8, QPSK.
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Fig. 3. NAF half-duplex fading channel, turbo code RSC (17, 15)8, 16QAM.

of length 2L are then reordered, according to the channel
multiplexer pattern [21]. A channel multiplexer distributes the
turbo-coded bits to the time slots, in such a way that full
diversity and maximum coding gain are always guaranteed.
In our simulations we use the h-π-diagonal multiplexer from
[21], which was proved to be the most powerful multiplexer
for parallel turbo codes of rate Rc = 1

2 . The achievable
diversity with this scheme relies on the properties of the code
and the channel multiplexer, and is bounded by the Singleton
bound [22], [23]. This implies that the largest Rc that can be
transmitted with diversity 2 is Rc = 1

2 .
Figures 2 and 3 show the word (or frame) error rate

simulations for the aforementioned schemes with QPSK and
16-QAM using a parallel turbo code of rate Rc = 1

2 with two
identical RSC component encoders with generators (17, 15)8
and pseudo-random interleaver of size N . As we see, the
benefits of the rotated construction are clear. Furthermore,
we observe that the unrotated system with the h-π-diagonal
multiplexer performs within tenths of a dB of its corresponding
outage limit, and that when it is used with random mul-
tiplexing a diversity loss is incurred. We note that due to
the suboptimality of BICM with 16-QAM, the rotated and
unrotated performances with the h-π-diagonal multiplexer are
very similar. Note also that the multiplexer is designed to lead
the turbo code to optimal performance, while the rotation is
designed to minimize the outage probability, independently
from the code structure. As shown in [21], [23] the error
probability is independent of the interleaver length N .

V. CONCLUSIONS

We have studied coding schemes for the single-relay non-
orthogonal amplify-and-forward half-duplex fading channel.
We have shown that rotations provide a large performance gain
over unrotated constellations with no extra cost in decoding
complexity. We have compared the performance of rotated and
unrotated turbo-coded BICM schemes and have shown that
they both perform very close to their respective outage limits.
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