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Abstract

This paper investigates the design of power and spectrally efficient coded modulations

based on Amplitude Phase Shift Keying (APSK) modulation with application to satellite broad-

band communications. APSK represents an attractive modulation format for digital transmis-

sion over nonlinear satellite channels due to its power and spectral efficiency combined with

its inherent robustness against nonlinear distortion. For these reasons APSK has been very

recently introduced in the new standard for satellite Digital Video Broadcasting named DVB-

S2 [1]. Assuming an ideal rectangular transmission pulse, for which no nonlinear inter-symbol

interference is present and perfect pre-compensation of the nonlinearity, we optimize the APSK

constellation. In addition to the minimum distance criterion, we introduce a new optimization

based on channel capacity; this new method generates an optimum constellation for each spec-

tral efficiency. To achieve power efficiency jointly with low bit error rate (BER) floor we adopt

a powerful binary serially concatenated turbo-code coupled with optimal APSK modulations

through bit-interleaved coded modulation. We derive tight approximations on the maximum-

likelihood decoding error probability, and results are compared with computer simulations. In

Ref. [2], the current analysis is complemented with the effects related to satellite nonlinear

distortion effects with a band-limited transmission pulse and including demodulator timing,
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amplitude and phase estimation errors. The proposed coded modulation scheme is shown to

provide a considerable performance advantage compared to current standards for satellite mul-

timedia and broadcasting systems.

1 Introduction

Satellite communication systems strength lies in their ability to efficiently broadcast digital multi-

media information over very large areas [3]. A notable example is the so-called direct-to-home

(DTH) digital television broadcasting. Satellite systems also provide a unique way to complement

the terrestrial telecommunication infrastructure in scarcely populated regions. The introduction of

multi-beam satellite antennas with adaptive coding and modulation (ACM) schemes will allow an

important efficiency increase for satellite systems operating at Ku or Ka-band [4]. Those technical

enhancements require the exploitation of power- and spectrally-efficient modulation schemes con-

ceived to operate over the satellite nonlinear channel. In this paper we will design high-efficiency

16-ary and 32-ary coded modulation schemes suited for nonlinear satellite channels.

To the authors’ knowledge there are few references in the literature dealing with 16-ary con-

stellation optimization overnonlinear channels, the typical environment for satellite channels.

Previous work showed that 16-QAM does not compare favorably with either Trellis Coded (TC)

16-PSK or uncoded 8-PSK in satellite nonlinear channels [5]. The concept of circular APSK mod-

ulation was already proposed thirty years ago by [6], where several non band-limited APSK sets

were analyzed by means of uncoded bit error rate bounds; the suitability of APSK for nonlinear

channels was also made explicit, but concluded that for single carrier operation over nonlinear

channel APSK performs worse than PSK schemes. In the current paper we will revert the con-

clusion. It should be remarked that [6] mentioned the possibility of modulator pre-compensation

but did not provide performance results related to this technique. Foschini [7] optimized QAM

constellations using asymptotic uncoded probability of error under average power constraints, de-

riving optimal 16-ary constellation made of an almost equilateral lattice of triangles. This result is
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not applicable to satellite channels. In [8] some comparison between squared QAM and circular

APSK over linear channels was performed based on the computation of the error bound parameter,

showing some minor potential advantage of APSK. Further work on mutual information for mod-

ulations with average and peak power constraints is reported in [9], which proves the advantages

of circular APSK constellations under those power constraints. Mutual information performance

loss for APSK in peak power limited Gaussian complex channels is reported in [10] and compared

to classical QAM modulations; it is shown that under this assumption APSK considerably outper-

forms QAM in terms of mutual information, the gain particularly remarkable for 16-ary and 64-ary

constellations.

Forward Error Correcting codes for our application must combine power efficiency and low

BER floor with flexibility and simplicity to allow for high-speed implementation. The existence

of practical, simple, and powerful such coding designs for binary modulations has been settled

with the advent of turbo codes [11] and the recent re-discovery of Low-Density Parity-Check

(LDPC) codes [12]. In parallel, the field of channel coding for non-binary modulations has evolved

significantly in the latest years. Starting with Ungerboeck’s work on Trellis-Coded Modulation

(TCM) [13], the approach had been to consider channel code and modulation as a single entity,

to be jointly designed and demodulated/decoded. Schemes have been published in the literature,

where turbo codes are successfully merged with TCM [14]. Nevertheless, the elegance and sim-

plicity of Ungerboeck’s original approach gets somewhat lost in a series of ad-hoc adaptations; in

addition the turbo-code should be jointly designed with a given modulation, a solution impractical

for system supporting several constellations. A new pragmatic paradigm has crystallized under

the name of Bit-Interleaved Coded Modulation (BICM) [15], where extremely good results are

obtained with a standard non-optimized, code. An additional advantage of BICM is its inherent

flexibility, as a single mother code can be used for several modulations, an appealing feature for

broadband satellite communication systems where a large set of spectral efficiencies is needed.

This paper is organized as follows. Sect. 2 gives the system model under the ideal case of
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a rectangular transmission pulse1. Sect. 3 gives a formal description of APSK signal sets, de-

scribes the maximum mutual information and maximum minimum distance optimization criteria

and discusses some of the properties of the optimized constellations. Sect. 4 deals with code design

issues, describes the BICM approach, provides some analytical considerations based on approxi-

mate maximum-likelihood (ML) decoding error probability bounds, and provides some numerical

results. The conclusions are finally drawn in Sect. 5.

2 System Model

The baseband equivalent of the transmitted signal at timet, sT (t) is given by:

sT (t) =
√

P

L−1∑

k=0

x(k)pT (t− kTs), (1)

whereP is the signal power,x(k) is thek-th transmitted symbol, drawn from a complex-valued

APSK signal constellationX , with |X | = M , pT is the transmission filter impulse response, andTs

is the symbol duration (in seconds), corresponding to one channel use. Without loss of generality,

we consider transmission of frames withL symbols. The spectral efficiencyR is defined as the

number of information bits conveyed at every channel use, and in measured in bits per second per

Hertz (bps/Hz).

The signalsT (t) passes through a high-power amplifier (HPA) operated close to the saturation

point. In this region, the HPA shows non-linear characteristics that induce phase and amplitude

distortions to the transmitted signal. The amplifier is modeled by a memoryless non-linearity, with

an output signalsA(t) at timet given by:

sA(t) = F
(|sT (t)|)ej(φ(sT (t))+Φ(|sT (t)|)), (2)

where we have implicitly definedF (A) andΦ(A) as the AM/AM and AM/PM characteristics of

the amplifier for a signal with instantaneous signal amplitudeA. The signal amplitude is the instan-

taneous complex envelope, so that the baseband signal is decomposed assT (t) = |sT (t)|ejφ(sT (t)).
1This assumption has been dropped in the paper [2].
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In this paper, we assume an (ideal) signal modulating a train of rectangular pulses. These

pulses do not create inter-symbol interference when passed through an amplifier operated in the

nonlinear region. Under these conditions, the channel reduces to an AWGN, where the modulation

symbols are distorted following (2). LetxA denote the distorted symbol corresponding tox =

|x|ejφ(x) ∈ X , that is,xA = F
(|x|)ej(φ(x)+Φ(|x|)). After matched filtering and sampling at time

kTs, the discrete-time received signal at timek, y(k) is then given by,

y(k) =
√

EsxA(k) + n(k) k = 0, . . . , L− 1, (3)

with Es the symbol energy, given byEs = PTs, xA(k) is the symbol at thek-th time instant, as

defined above, andn(k) ∼ NC(0, N0) is the corresponding noise sample.

This simplified model suffices to describe the non-linearity up to the nonlinear ISI effect, and

allows us to easily design constellation and codes. In the paper [2], the impact of nonlinear ISI has

been considered, as well as other realistic demodulation effects such as timing and phase recovery.

3 APSK Constellation Design

In this section we define the generic multiple-ring APSK constellation family. We are interested

in proposing new criteria on how to design digital QAM constellations of 16 and 32 points with

special emphasis on the behavior for nonlinear channels.

3.1 Constellation Description

M -APSK constellations are composed ofnR concentric rings, each with uniformly spaced PSK

points. The signal constellation pointsx are complex numbers, drawn from a setX given by:

X =





r1e
j
(

2π
n1

i+θ1

)
i = 0, . . . , n1 − 1, (ring 1)

r2e
j
(

2π
n2

i+θ2

)
i = 0, . . . , n2 − 1, (ring 2)

...

rnR
e

j
(

2π
nR

i+θnR

)
i = 0, . . . , nnR

− 1, (ring nR)

(4)
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where we have definedn`, r` andθ` as the number of points, the radius and the relative phase shift

corresponding to thè-th ring respectively. We will nickname such modulations asn1 + . . . +

nnR
−APSK. Fig. 1 depicts the 4+12- and 4+12+16-APSK modulations with quasi-Gray mapping.

In particular, for next generation broadband systems [1], [4], the constellation sizes of interest are

|X | = 16 and|X | = 32, with nR = 2 andnR = 3 rings respectively. In general, we consider that

X is normalized in energy, i.e.,E[|x|2] = 1, which implies that the radiir` are normalized such

that
∑nR

`=1 n`r
2
` = 1. Notice also that the radiir` are ordered, so thatr1 < . . . < rnR

.

Clearly, we can also define the phase shifts and the ring radii in relative terms rather than

in absolute terms, as in (4); this removes one dimension in the optimization process, yielding a

practical advantage. We letφ` = θ` − θ1 for ` = 1, . . . , nR be the phase shift of thè-th ring with

respect to the inner ring. We also defineρ` = r`/r1 for ` = 1, . . . , nR as the relative radii of the

`-th ring with respect tor1. In particular,φ1 = 0 andρ1 = 1.

3.2 Constellation Optimization in AWGN

We are interested in finding an APSK constellation, defined by the parametersρ = (ρ1, . . . , ρnR
)

andφ = (φ1, . . . , φnR
), such that a given cost functionf(X ) reaches a minimum. The simplest,

and probably most natural, cost function is the minimum Euclidean distance between any two

points in the constellation. Sect. 3.2.1 shows the results under this criterion. These results are

extended in Sect. 3.2.2, where the cost function is replaced by the average mutual information (or

channel capacity) of the AWGN channel; it also shown that significant gains may be achieved for

low and moderate values of SNR by fine-tuning the constellation.

3.2.1 Minimum Euclidean Distance Maximization

The union bound on the uncoded symbol error probability [16] yields,

Pe ≤ 1

M

∑
x∈X

∑

x′∈X
x′ 6=x

Q




√
Es|x− x′|2

2N0


 , (5)
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whereQ(x) = 1/
√

2π
∫∞

x
e−(t2/2)dt is the Gaussian tail function. At high signal-to-noise ratio

(SNR) Eq. (5) is dominated by the pairwise term at minimum squared Euclidean distanceδ2
min =

minx,x′∈X |x − x′|2. Due to the monotonicity of theQ function, it is clear that maximizing this

distance optimizes the error performance estimated with the union bound at high SNR.

The minimum distance of the constellation depends on the number of ringsnR, the number of

points in each ringn1, . . . , nnR
, the radiir1, . . . , rnR

, and the offset among the ringsφ1, . . . , φnR
.

The constellation geometry clearly indicates that the distances to consider are between points be-

longing to the same ring, or between points in adjacent rings. Simple calculations give the follow-

ing formula:

δ2
ring i = 2r2

i

[
1− cos

(2π

ni

)]
(6)

for the distance between points in ringi-th, with radiusri andni points. For the adjacent rings the

calculation is only slightly more complicated, and gives the following:

δ2
ringsi, i +1 = r2

i + r2
i+1 − 2riri+1 cos θ (7)

whereθ is the minimum relative offset between any pair of points of ringsi andi + 1 respectively.

As the phase of pointli in ring i is given byφi + 2πli/ni, we easily obtain:

θ = min
li,li+1

∣∣∣∣
(
φi − φi+1

)
+ 2π

( li
ni

− li+1

ni+1

)∣∣∣∣. (8)

The minimum distance of the constellation is given by taking the minimum of all these inter-ring

and intra-ring values:

δ2
min = min

i=1,...,nR
j=1,...,nR−1

{
δ2

ring i, δ
2
ringsj, j +1

}
. (9)

For the sake of space limitations, we concentrate on 16-ary constellations. Thanks to symmetry

considerations, is is clear that the best offset between rings happens whenφ2 = π/n2. Fig. 2

shows the minimum distance for several candidates: 4+12-, 6+10-, 5+11- and 1+5+10-APSK.

It may be observed that the highest minimum distance is achieved for approximatelyρ2 = 2.0,

except for 4+12-APSK, whereρ2 = 2.7. The results forφ = 0 are also plotted, and show that
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the corresponding minimum distance is smaller. We will see later in Sect. 3.2.2 how this effect

translates into error rate performance.

3.2.2 Mutual Information Maximization

The average mutual information (assuming equiprobable symbols) for a given signal setX pro-

vides the maximum transmission rate (in bits/channel use) at which error-free transmission is pos-

sible with such signal set, and is given by (e.g. [15]),

f(X ) = C = log2 M − Ex,n

{
log2

[∑

x′∈X
exp

(
− 1

N0

∣∣√Es(x− x′) + n
∣∣2 − |n|2

)]}
. (10)

Interestingly, for a given signal-to-noise ratio, or equivalently, for a given spectral efficiencyR, an

optimum constellation can be obtained, a procedure we apply in the following to 16- and 32-ary

constellations.

In general, closed-form optimization of this expression is a daunting task, so we resort to nu-

merical techniques. Expression (10) can be easily evaluated by using the Gauss-Hermite quadra-

ture rules, making numerical evaluation very simple. Note, however, that it is possible to calculate

a closed-form expression for the asymptotic caseEs/N0 → +∞. First, note that the expectation

in Eq. (10) can be rewritten as:

λ(X ) , Ex,n

{
log2

[∑

x′∈X
exp

(
− 1

N0

(
Es

∣∣x− x′
∣∣2 + 2Re

(√
Es(x− x′)n

)))]}
. (11)

Using the dominated convergence theorem [17], the influence of the noise term vanishes asymp-

totically, since the limit can be pushed inside the expectation. Furthermore, the only remain-

ing terms in the summation overx′ ∈ X are x′ = x and those closest in Euclidean distance

δ2
min = minx′∈X

∣∣x− x′
∣∣2, of which there arenmin(x). Therefore the expectation becomes:

λ(X ) ' Ex

{
log2

[
1 + nmin(x) exp

(
− 1

N0

Esδ
2
min

)]}
(12)
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Noting that the exponential takes very small values, the approximationlog2(1 + x) ' x log2 e for

|x| ¿ 1 holds, thus by simplifying further the expectation we obtain:

λ(X ) ' Ex

{
nmin(x) exp

(
−Es

N0

δ2
min

)
log2 e

}
' α exp

(
−Es

N0

δ2
min

)
. (13)

whereα is a constant that does not depend on the constellation minimum distanceδmin nor on SNR.

Then the capacity at large SNR becomes:

f(X ) = log2 M − α exp

(
−Es

N0

δ2
min

)
. (14)

It appears then clear that the procedure corresponds to the maximization of the minimum Euclidean

distance, as in Sect. 3.2.1.

Fig. 3 shows the numerical evaluation of Eq. (10) for a given range of values ofρ2 andφ =

φ2 − φ1 for the 4+12-APSK constellation atEs/N0 = 12 dB. Surprisingly, there is no sensible

dependence onφ. Therefore, the two-dimensional optimization can be done by simply finding

the ρ2 that maximizes channel capacity. This result was found to hold true also for the other

constellations and hence, in the following, capacity optimization results do not account forφ. Fig.

4 shows the union bound on the symbol error probability (5) for several 16-APSK modulations,

and for the optimum value ofρ2 at R = 3 bps/Hz (found with the mutual information analysis).

Continuous lines indicateφ = 0 while dotted lines refer to the maximum value of the relative phase

shift, i. e. φ = π/n2, showing no dependence onφ at high SNR. This absence of dependency is

justified by the fact that the optimum constellation separates the rings by a distance larger than

the number of points in the ring itself, so that the relative phaseφ has no significant impact in the

distance spectrum of the constellation.

For 16-APSK it is also interesting to investigate the capacity dependency onn1 andn2. Fig. 5(a)

depicts the capacity curves for several configurations of optimized 16-APSK constellations and

compared with classical 16-QAM and 16-PSK signal sets. As we can observe, capacity curves are

very close to each other, showing a slight advantage of 6+10-APSK over the rest. In particular, note

that there is a small gain, of about 0.1 dB, in using the optimized constellation for everyR, rather
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than the calculated with the minimum distance (or high SNR). However, as discussed in [2], 6+10-

APSK and 1+5+10-APSK show other disadvantages compared to 4+12-APSK for phase recovery

and nonlinear channel behavior.

Similarly, Fig. 5(b) reports capacity of optimized 4+12+16-APSK (with the corresponding

optimal values ofρ2 andρ3) compared to 32-QAM and 32-PSK. We observe slight capacity gain

of 32-APSK over PSK and QAM constellations. Other 32-APSK constellations with different

distribution of points in the three rings did not provide significantly better results.

Finally Table 5 provides the optimized 16- and 32-APSK parameters for various coding rates,

giving an optimum constellation for each given spectral efficiency.

3.3 Constellation Optimization for Nonlinear Channels

3.3.1 Peak-to-Envelope Considerations

For nonlinear transmission over an amplifier, 4+12-APSK is preferable to 6+10-APSK because

the presence of more points in the outer ring allows to maximize the HPA DC power conversion

efficiency. It is better to reduce the number of inner points, as they are transmitted at a lower power,

which corresponds a lower DC efficiency. It is known that the HPA power conversion efficiency is

monotonic with the input power drive up to its saturation point. Fig. 5 shows the distribution of the

transmitted signal envelope for 16-QAM, 4+12-APSK, 6+10-APSK, 5+11-APSK, and 16-PSK. In

this case the shaping filter is a square-root raised cosine (SRRC) with a roll-off factorα = 0.35

as for the DVB-S2 standard [1]. As we observe, the 4+12-APSK envelope is more concentrated

around the outer ring amplitude than 16-QAM and 6+10-PSK, being remarkably close to the 16-

PSK case. This shows that the selected constellation represents a good trade-off between 16-QAM

and 16-PSK, with error performance close to 16-QAM, and resilience to nonlinearity close to 16-

PSK. Therefore, 4+12+APSK is preferable to the rest of 16-ary modulations considered. Similar

advantages have been observed for 32-APSK compared to 32-QAM.
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3.3.2 Static Distortion Compensation

The simplest approach for counteracting the HPA nonlinear characteristic for the APSK signal, as

already introduced in Sect. 2, is to modify the complex-valued constellation points at the modulator

side. Thanks to the multiple-ring nature of the APSK constellation, pre-compensation is easily

done by a simple modification of the parametersρ`, andφ`. The objective is to exploit the known

AM/AM and AM/PM HPA characteristics in order to obtain a good replica of the desired signal

constellation geometry after the HPA, as if it had not suffered any distortion. This can be simply

obtained by artificially increasing the relative radiiρ` and modifying the relative phasesφ` at the

modulator side. This approach neglects nonlinear ISI effects at the matched filter output which

are not present under the current assumption of rectangular symbols; ISI issues has been discussed

in [2].

In the 16-ary APSK case the new constellation pointsx′ follow (4), with new radiir′1, r′2, such

that F (r′1) = r1, andF (r′2) = r2. Concerning the phase, it is possible to pre-correct for the

relative phase offset introduced by the HPA between inner and outer ring by simply changing the

relative phase shift byφ′2 = φ2 + ∆φ, with ∆φ = φ(r′2)− φ(r′1). These operations can be readily

implemented in the digital modulator by simply modifying the reference constellation parameters

ρ′, φ′, with no hardware complexity impactor out-of-band emission increase at the linear modulator

output. On the other side, this allows to shift all the compensation effort into the modulator side

allowing the use of an optimal demodulator/decoder for AWGN channels even when the amplifier

is close to saturation. The pre-compensated signal expression at the modulator output is then,

spre
T =

√
P

L−1∑

k=0

x′(k)pT (t− kTs) (15)

where nowx′(k) ∈ X ′ being the pre-distorted symbols withr′` andφ′` for ` = 1, . . . , nR.
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4 Forward Error Correction Code Design and Performance

In this section we describe the coupling of turbo-codes and the APSK signal constellations through

BICM and we discuss some of the properties of this approach2. As already mentioned in Sect. 1,

such approach is a good candidate for flexible constellation format transmission. The main drivers

for the selection of the FEC code have been flexibility, i.e. use a single mother code, independently

of the modulation and code rates; complexity, i.e. have a code as compact and simple as possible;

and good performance, i.e. approach Shannon’s capacity bound as much as possible.

We consider throughout a coded modulation scheme for which the transmitted symbolsx =

(x0, . . . , xL−1) are obtained as follows: 1) The information bits sequencea = (a0, . . . , aK−1) is en-

coded with a binary codeC ∈ FN
2 of rater = K/N ; 2) The encoded sequencec = (c0, . . . , cN−1) ∈

C is bit-interleaved, with an index permutationπ = (π0, . . . , πN−1); 3) The bit-interleaved se-

quencecπ is mapped to a sequence of modulation symbolsx with a labeling ruleµ : FM
2 → X ,

such thatµ(a1, . . . , aM) = x. In addition to the description of the code, we also propose the use of

some new heuristics to tune the final design of the BICM codes.

4.1 Code Design

It was suggested in [15] that the binary codeC can be optimized for a binary channel (such as

BPSK or QPSK with AWGN). We substantiate this claim with some further insights on the effect

of the code minimum distance in the error performance. The Bhattachharyya union bound (BUB)

on the frame error probabilityPe for a BICM modulation assuming that no iterations are performed

at the demapper side is given by [15]:

Pe ≤
∑

d

A(d)B(Es/N0)
d, (16)

2The optimization method based on the mutual information proposed in Sect. 3.2.2 can be easily extended to the
case of the BICM mutual information [15] with almost identical resuts assuming Gray mapping. However, we use the
proposed method in order to keep the discussion general and not dependent on the selected coding scheme.
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whereA(d) is the number of codewords at a Hamming distanced, dmin is the minimum Hamming

distance, withB(Es/N0) denoting the Bhattachharyya factor, which is given by:

B(Es/N0) =
1

M log2 M

log2 M∑
i=1

1∑

b=0

∑
x∈Xi=b

En





√√√√
∑

z∈Xi=b̄
exp(− 1

N0
|x− z + n|2)∑

z∈Xi=b
exp(− 1

N0
|x− z + n|2)



 . (17)

Eq. (17) can be evaluated very efficiently using the Gauss-Hermite quadrature rules. For suffi-

ciently largeEs/N0 the BUB in Eq. (5) is dominated by the term at minimum distance, i. e., the

error floor

Pe ' Admin
B(Es/N0)

dmin . (18)

From this equation we can derive an easy lower bound on thed0 on the minimum distance ofC for

a given target error rate, modulation, and number of codewords atdmin:

dmin ≥ dd0e, whered0 =
log Pe − log Admin

log B
, (19)

wheredxe denotes the smallest integer greater or equal tox. Notice that the target error rate is fixed

to be the error floor under ML decoding3. The lowest error probability floor is achieved by a codeC
with Admin

= 1. Fig. 7 shows the lower boundd0 with Admin
= 1, as a function ofEs/N0 for target

Pe = 10−4, 10−7, QPSK, 16-QAM, 16-APSK and 32-APSK modulations and Gray labelling. In

order to ease the comparison, a normalized SNR is used, defined as:

Es

N0

∣∣∣
norm

=
Es

N0

1

2R − 1
(20)

whereR is the spectral efficiency, and the normalization is thus to the channel capacity. The code

rate has been takenr = 3/4 for all cases. Note that a capacity-achieving pair modulation-code

would work at a normalizedEs/N0|norm = 1, or 0 dB.

A remarkable conclusion is that BICM with Gray mapping preserves the properties ofC regard-

less of the modulation used, since we observe that the requirements for non-binary modulations

3Although this does not necessarily hold under iterative decoding, it does still provide a useful guideline into the
performance.
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are strikingly similar to those for binary modulations (in the error-floor region). In order to work

at about 3 dB from capacity, that is, a normalizedEs/N0|norm = 3 dB, the neededd0 is about 5 and

10 for a frame error rate of 10−4 and 10−7 respectively.

We consider thatC is a serial concatenatation of convolutional codes (SCCC) [18], with outer

codeCO of lengthLO and raterO and inner codeCI of lengthLI and raterI . Obviously,LI = N

andrOrI = r. The resulting spectral efficiency isR = r log2 M . It provides two key advan-

tages with respect to parallel turbo codes: lower error floor, possibly achieving the bit error rate

requirements (BER≤ 10−10) without any external code; and simpler constituent codes simpler

than in turbo codes or in classical concatenated codes. In addition, with an SCCC the outer code

is fully integrated into the decoding process, which includes iterations between decoding stages

for the inner and outer codes. This avoids the need to use an additional external code, such as a

Reed-Solomon (and its associated interleaver). In some sense, the outer code is already included

in the SCCC code, thus saving one extra encoding/decoding step, and one memory level, therefore

reducing the required complexity.

The best choice in terms of low error floor forces the lowest possible rate for the outer encoder,

as this maximizes the interleaver gain, which increases exponentially with the outer code free

distance [18]. We should then set the outer code rate equal to the total code rate, and the inner code

rate to 1. Also, it turns out that the best choice for the inner encoder is the two-state differential

encoder also known as “accumulator”. It meets the requirements of simplicity, it is “almost”

systematic, in the sense that the dependency among the bits in its output sequence is very mild,

and moreover, it is recursive as imposed by the design rules of SCCCs for the inner encoder. Last

but not least, this choice leads to a very simple inner SISO, a highly desirable feature for a design

working at high data rates.

In practice the maximum block length to be used shall be selected accounting for the maximum

allowed end-to-end latency and decoder complexity. One recent finding [19] allows to split an

arbitrary block interleaver in an arbitrary number of smaller non-overlapping interleavers. This
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allows to greatly reduce the decoder complexity when parallel SISO units are used to achieve

high-speed decoding as memory requirements does not increase with the degree of parallelism.

As an outer code, we have selected the standard binary 16-state convolutional code, rate 3/4

[20]. Its free distance is 4, large enough so that interleaving gain can be achieved, and the minimum

distance of the concatenated code grows towards infinify with the blocklength [21]. Furthermore,

and if required, the code may be punctured to higher rates [22], with no loss in the code distance.

Further numerical results are presented in Sect. 4.3.

4.2 Demodulation

Decoding of BICM consists of a concatenation of two steps, namely maximum-a-posteriori (MAP)

soft-input soft-output (SISO) demapper (symbol-to-bit likelihood computer), and a MAP SISO

decoder ofC. These two steps exchange extrinsic information messagesmµ→C (from the demapper

to the SISO decoder ofC), andmC→µ (from the SISO decoder ofC to the demapper) through

the iterations. Extrinsic information messagesm (or metrics) can be in the form of likelihood

probabilities, log-likelihood ratios or some combination or approximation of them. When either

CO or CI , or both, are convolutional codes, MAP SISO decoding is efficiently computed by the

BCJR algorithm [23]. For example, the extrinsic log-likelihood ratio corresponding tomµ→C for

thei-th coded bit of thek-th symbol andl-th iteration is given by,

Λ
(
c
(l)
k,i

)
= log

∑
x∈Xi=0

p(yk|x)
∏

j 6=i P
(l−1)
C→µ (ck,j)∑

x∈Xi=1
p(yk|x)

∏
j 6=i P

(l−1)
C→µ (ck,j)

(21)

wherep(yk|x) ∝ exp
(
− 1

N0
|yk −

√
Esx|2

)
, P

(l)
C→µ(c) denotes the extrinsic probability message

corresponding tomC→µ on the coded bitc at thel-th iteration, andXi=b = {x ∈ X |µ−1
i (x) = b},

whereµ−1
i (x) = b denotes that thei-th position of binary labelx is equal tob.

There is a marginal information loss in considering no iterations at the demodulator side when

Gray mapping is used for transmitting high rates [15], i.e.,P
(l−1)
C→µ (ck,j) = 0.5 implies almost

no loss in spectral efficiency using Gray mapping. When demapper iterations are allowed, Gray
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mapping is known not to gain through the iterations [24]. Moreover, when other mapping rules are

used, scheduling the operations for such decoder (a SCC with BICM) can be a very complicated

task and has been solved only forN → ∞ (see e. g. [25] for recent results on the subject). For

all these aforementioned reasons, we will assume Gray mapping and that information flows from

demodulator to decoder only, with no feed-back.

4.3 Performance Analysis

Density evolution (or approximations such as EXIT charts [24]) of such turbo-coded BICM is a

very complicated task due to the concatenation of three elements exchanging extrinsic information

messages through the iterations. Such techniques lead in general to 3-dimensional surfaces which

are difficult to deal with in practical decoding algorithms for finite length codes [25]. We will

therefore resort to a mixture of computer simulations and bounds on Maximum Likelihood (ML)

decoding error probability. Regarding convergence, simulations can accurately estimate the values

of Eb/N0 at which the decoding algorithm does not converge, as will be shown shortly.

We denote the binary-input channel between the modulator and demodulator as the equivalent

binary-input BICM channel. It has been recently shown [26] that such channel can be very well

approximated as AWGN4 with SNRγ = − log B(Es/N0). Therefore, standard bounds for binary-

input channels can be successfully applied here. In particular, the standard union bound (UB)

yields

Pe /
∑

d

AdQ
(√

−2d log B(Es/N0)
)

. (22)

At high SNR, (16) and (22) are dominated by the pairwise terms corresponding to the few code-

words with low Hamming distance (error floor). When turbo-like codes are used, union bounding

techniques are known not to provide good estimates of the error probability, and one typically

4Notice that the Gaussian approximation (GA) is common practice in density evolution techniques [24].
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resorts to improved bounds such as the tangential-sphere bound (TSB) [27],

PF /
∫ +∞

−∞

dz1√
2πσ2

e−z2
1/2σ2

{
1− Γ̄

(
N − 1

2
,

rz1

2σ2

)
+

+
∑

d: δ/2<αδ

Ad Γ̄

(
N − 2

2
,
r2
z1
− βδ(z1)

2

2σ2

)[
Q

(
βδ(z1)

σ

)
−Q

(
rz1

σ

)]}
,

(23)

whereΓ̄(a, x) = 1
Γ(a)

∫ x

0
ta−1e−tdt is the normalized incomplete gamma function andΓ(x) =

∫ +∞
0

tx−1e−tdt is the gamma function,σ2 = (−2 log B(Es/N0))
−1, rz1 = r

(
1−z1/4R

)
, βδ(z1) =

rz1√
1− δ2/4R2

δ
2r , αδ = r

√
1− δ2/4R2, R2 = N , δ = 2

√
d andr, the cone radius, is the solution

of
∑

d: δ/2<αδ Ad

∫ θk

0
sinN−3 φdφ =

√
πΓ(N−2

2 )
Γ(N−1

2 )
with θk = cos−1

(
δ
2r

1√
1− δ2/4R2

)
.

Fig. 8 shows the bit-error probability bounds using the Gaussian approximation, Eq. (22) and

simulations for BPSK, 4+12-APSK and 4+12+16-APSK with the pseudo-Gray labelings of Fig. 1.

In particular, in Fig. 8(a) we use a repeat and accumulate (RA) code [28] withr = 1/4 and

K = 512 information bits per frame. In this case, the weight enumerator can be computed in

closed form [28]. We observe that as expected BICM preserves the properties of the underlying

binary codeC, since both waterfall and floor occur at almost the same probability values. We also

observe that the approximations in Eqs. (22) and (23) are very accurate and yield much better error

probability estimates than the standard Bhattacharyya bound. Same conclusions apply to Fig. 8(b)

where we use a SCCC with the optimal 16 statesr = 3/4 convolutional code as outer code and

inner accumulator, with interleaver sizeN = 5000. Storage limitations prevent us from showing

the curves for largerN . However, we observe that already withN = 5000 we have very low error

floors. In particular, in the DVB-S2 application, the interleaver size is set to16200 or 64000, which

implies that almost-error-free transmission is possible with such code.

Finally, Fig. 9, shows the simulated BER performance for the same SCCC with the optimal 16

statesr = 3/4 convolutional code as outer code and inner accumulator, with interleaver sizeN =

162005 with 4+12-APSK, 16-QAM, 4+12+16-APSK and 32-QAM. For the sake of comparison,

5The selected FEC block size ensures that the FEC floor is well below the required BER of10−10 for satellite
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we also plot the BER for a 4+12-APSK with a 16 states TCM, typical of satellite systems current

standard [3]. As we observe, the SCCC codes yield a substantial performance improvement with

respect to TCM. In the TCM case, one usually concatenates a Reed Solomon code operating at

an input BER of10−4, which usually diminishes the spectral efficiency and increases the receiver

complexity. Notice as well that 32-APSK achieves a better performance than 32-QAM, giving a

further justification to the use of modulations in the APSK family instead of the classical QAM.

5 Summary and Conclusions

Extensive analysis and simulations for turbo-coded APSK modulations, with particular emphasis

on its applicability to satellite broadband communications have been presented in this paper. In

particular, we have investigated APSK constellation optimization under mutual information and

minimum Euclidean distance criteria, under the simplified assumption of rectangularly shaped

transmission pulses. We have shown that the degrees of freedom in the design of an APSK modu-

lation can be exploited thanks to the mutual information maximization, and this has been applied to

the design of 16- and 32-ary constellations. This technique has been shown to extend the standard

minimum Euclidean distance maximization, yielding a small but significant improvement.

The pragmatic approach of BICM allows for a good coupling between such optimized APSK

modulations with powerful binary turbo-codes, due to its inherent flexibility for multiple-rate trans-

mission. Some new heuristics have been used to further justify the design of a single mother code

to be used for all rates. A theoretical explanation of the the fact that the error floor typical of turbo

codes remains at a constant distance from capacity has been presented. We have presented some

new ML decoding error probability bounds for BICM APSK, and we have compared them with

simulations findings. Numerical results based on simulation of bit-error rate probability for high

rate transmission with turbo-coded APSK have been presented, showing large advantage of the

presented scheme over standard TCM.

broadcasting systems.
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Modulation order Coding rater Spectral eff. (b/s/Hz) ρopt
1 ρopt

2

4+12-APSK 2/3 2.67 3.15 N/A
4+12-APSK 3/4 3.00 2.85 N/A
4+12-APSK 4/5 3.20 2.75 N/A
4+12-APSK 5/6 3.33 2.70 N/A
4+12-APSK 8/9 3.56 2.60 N/A
4+12-APSK 9/10 3.60 2.57 N/A

4+12+16-APSK 3/4 3.75 2.84 5.27
4+12+16-APSK 4/5 4.00 2.72 4.87
4+12+16-APSK 5/6 4.17 2.64 4.64
4+12+16-APSK 8/9 4.44 2.54 4.33
4+12+16-APSK 9/10 4.50 2.53 4.30

Table 1: Capacity optimized constellation parameters for 16-ary and 32-ary APSK
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Figure 1: Parametric description and pseudo-Gray mapping of 16 and 32-APSK constellations with
n1 = 4, n2 = 12, φ2 = 0 andn1 = 4, n2 = 12, n3 = 16, φ2 = 0, φ3 = π/16 respectively. For the
first two rings: mapping below corresponds to 4+12-APSK, mapping above to 4+12+16-APSK.
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