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Optimal Power Control for LDPC Codes in Block-Fading Channels
Gottfried Lechner, Khoa D. Nguyen, Albert Guillén i Fàbregas, and Lars K. Rasmussen

Abstract—We study the error probability of LDPC codes in
delay-limited block-fading channels with channel state informa-
tion (CSI) at the transmitter and the receiver. We derive the
optimal power allocation algorithms for LDPC codes with specific
degree distributions using multi-edge-type density evolution error
boundaries. The resulting performance approaches the outage
probability for a number of power constraints. Furthermore,
we adapt the algorithm for finite-length codes and show that
the proposed algorithm enables gains larger than 10 dB over
uniform power allocation. The method is valid for general,
possibly correlated, fading distributions. This represents the first
analysis of specific LDPC codes over block-fading channels with
full CSI.

Index Terms—Low-density parity-check (LDPC) codes, block-
fading channel, power allocation, outage probability, density
evolution.

I. INTRODUCTION

THE block-fading channel [1], [2] has attracted attention
over the past decade as a conveniently simple channel

model that captures fundamental characteristics of practical
wireless communications systems. The most popular example
is an orthogonal frequency division multiplex (OFDM) system,
where it is common to assume that the fading coefficient
of a single frequency band is constant over a finite number
of OFDM symbols. Other examples are frequency-hopping
in GSM/EDGE systems, free-space optical systems [3], and
hybrid optical-radio frequency systems [4] where the links
can be modeled as (possibly correlated) slow-varying fading
channels.

In practice, the number of independent fading blocks is
predominantly quite limited. For example, in OFDM-based
systems, there is a significant degree of frequency correlation,
which implies that only groups of subcarriers can be consid-
ered (and treated, for code design purposes) as independent.
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Furthermore, for a large number of fading blocks it is usually
not desirable to construct full diversity codes since the rate
of the code is always upper bounded by 1/𝐵 where 𝐵 is
the number of blocks. Therefore, for practical reasons, we
focus our examples on relevant scenarios where the number
of fading blocks is relatively small.

For delay-sensitive applications, the block-fading channel
is delay-limited, implying that each codeword is transmitted
over a finite number of fading blocks. An outage occurs
when the instantaneous mutual information is less than the
target transmission rate [1], [2]. It has been shown [5], that
there exist codes whose error probability is arbitrarily close
to the outage probability for large block lengths; conversely,
the word error probability of any code is lower bounded
by the outage probability for sufficiently long block lengths.
Therefore, the outage probability is the natural fundamental
limit of the channel.

An important characteristic of the outage probability is its
SNR exponent or diversity gain. The outage SNR exponent is
the asymptotic (for large SNR) slope of the outage probability
as a function of the SNR, in a log-log scale. For discrete, fixed
transmission alphabets, such as QAM signal constellations,
the optimal SNR exponent is determined by the transmission
and channel parameters through the Singleton bound [5]–
[7]. Practical coding schemes based on powerful turbo-like
codes [8], [9] and low-density parity-check (LDPC) codes
[10], [11] have been proposed, and demonstrated to achieve
full diversity.

When channel state information (CSI) is available only at
the receiver, the available transmission power is uniformly
distributed across fading blocks. In case CSI is available at the
transmitter, the outage probability can be minimized through
power allocation, i.e., the transmit power is allocated across
blocks as a function of the channel realization subject to
certain constraints. Optimal power allocation for delay-limited
block-fading channels using continuous or discrete symbol
alphabets has been studied in [2], [4], [12]–[17], where short-
term, long-term, and short-to-long-term power ratio (SLPR)
constraints have been of particular interest. In some cases, all
outages can be removed, showing dramatic performance gains
with respect to uniform power allocation.

The region of channel gain realizations causing an outage
event has previously been characterized by an outage bound-
ary [9], [10], [18]. Furthermore, a similar error boundary
can be determined for practical coding schemes, providing
a qualitative measure of the gap to the outage limit [9], [10],
[18], [19].

The aim of this paper is to study the performance of
LDPC code ensembles over the block-fading channel with
power allocation. We apply multi-edge-type density evolution
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to completely characterize the code ensemble by its error
boundary. Power allocation schemes arising from various
power constraints are easily incorporated into the framework.
Optimal power allocation algorithms for infinite-length codes
operate exactly at the error boundary of the code, which is the
equivalent of the threshold for ergodic channels. In contrast
to the asymptotic case of infinite block length, finite-length
codes do not show a threshold effect. Therefore, we derive
new power allocation algorithms that can be applied to finite-
length codes. Our modified algorithm for finite-length codes
leads to performance gains of more than 10 dB with respect to
uniform power allocation for lengths as short as 200. Although
we restrict ourselves to binary inputs, the results can be easily
generalized to arbitrary input constellations.

The remainder of this paper is organized as follows. The
system model and the power allocation schemes are introduced
in Section II. In Section III, we define outage and error regions
which allow for a unified treatment of code ensembles and the
computation of outage/error probabilities. These regions are
used in Section IV to derive results for systems with power
allocation. Power allocation for finite-length codes is presented
in Section V and concluding remarks can be found in Section
VI.

II. SYSTEM MODEL AND POWER ALLOCATION

We consider transmission of codewords over 𝐵 channels
(blocks), where the channel coefficients 𝛼𝑏, 𝑏 = 1, . . . , 𝐵 are
constant and chosen independently from a known distribution.
Let 𝒙𝑏 denote the input of channel 𝑏 consisting of the elements
𝑥𝑏,ℓ, ℓ = 1, . . . , 𝑁/𝐵, where 𝑁 (an integer multiple of
𝐵) denotes the overall codeword length. We assume that
𝑥𝑏,ℓ are chosen with equal probability from {+√

𝛾𝑏,−√
𝛾𝑏}

and therefore 𝔼

[
𝑥2
𝑏,ℓ

]
= 𝛾𝑏. The corresponding input-output

relationship of the channel is given by

𝒚𝑏 = 𝛼𝑏𝒙𝑏 + 𝒛𝑏, (1)

where 𝒛𝑏 denotes zero-mean white Gaussian noise with vari-
ance 𝜎2 = 1. For simplicity, we assume that the fading coeffi-
cients 𝛼𝑏 are Rayleigh distributed with 𝔼

[
𝛼2
𝑏

]
= 1. However,

our results hold for a wide variety of fading distributions. The
average received SNR on block 𝑏 is therefore 𝛾𝑏.

When CSI is only available at the receiver, the transmit
power is distributed uniformly across the fading blocks, i.e.,
𝛾𝑏 = 𝑃x for 𝑏 = 1, . . . , 𝐵, where 𝑃x denotes the average
transmit power. In the case of CSI at the transmitter, power
allocation subject to short-term or long-term constraints can
be applied. For a short-term constraint, we have that

⟨𝜸⟩ ≤ 𝑃ST, (2)

where 𝜸 = (𝛾1, . . . , 𝛾𝐵) and

⟨𝜸⟩ ≜ 1

𝐵

𝐵∑
𝑏=1

𝛾𝑏 (3)

denotes the arithmetic mean of the elements of the vector 𝜸.
For a long-term constraint, the expected power per codeword
is upper bounded by 𝑃LT

𝔼 [⟨𝜸⟩] ≤ 𝑃LT. (4)

An example of a combination of a short- and long-term power
constraint is the case of a short-term to long-term power ratio
(SLPR) where

𝑃ST

𝑃LT
=

⟨𝜸⟩
𝔼 [⟨𝜸⟩] ≤ SLPR. (5)

III. OUTAGE AND ERROR REGIONS

Let 𝐼𝐵(𝜶,𝜸) denote the instantaneous mutual information
between the input and output vector of the block-fading
channel normalized by the codeword length

𝐼𝐵(𝜶,𝜸) =
1

𝐵

𝐵∑
𝑏=1

𝐼𝑏(𝛾𝑏𝛼
2
𝑏), (6)

where the vector of channel coefficients is 𝜶 = (𝛼1, . . . , 𝛼𝐵)
and 𝐼𝑏(𝛾𝑏𝛼

2
𝑏) is the mutual information of an AWGN channel

with binary inputs and SNR 𝛾𝑏𝛼
2
𝑏 .

Following [12], we define the outage region as the set of
all realizations of the channel coefficients where the channel
does not support the transmission rate 𝑟 of the code

ℛout(𝜸; 𝑟) =
{
𝜶 ∈ R𝐵

+ : 𝐼𝐵(𝜶,𝜸) < 𝑟
}
, (7)

and the boundary ℬout(𝜸; 𝑟) of this outage region is given by

ℬout(𝜸; 𝑟) =
{
𝜶 ∈ R𝐵

+ : 𝐼𝐵(𝜶,𝜸) = 𝑟
}
. (8)

The outage probability is obtained by integrating the density
function of the fading parameters over the outage region

𝑃out(𝜸; 𝑟) =

∫
𝜶∈ℛout(𝜸;𝑟)

𝑝(𝜶)𝑑𝜶. (9)

We define the outage diversity as

𝑑out = − lim
𝑃→∞

log𝑃out(𝜸; 𝑟)

log𝑃
, (10)

where 𝑃 denotes the average power. We will denote by 𝑑out,ST
and 𝑑out,LT the outage diversity with short- and long-term
power constraints, respectively.

In the same way, we compute the word error probability of
an LDPC code ensemble by replacing the outage region by
the error region of the code. This error region, i.e., the region
of channel realizations for which the decoder is unable to
decode successfully, can be computed using density evolution
for multi-edge-type codes [20].

It is important to note that density evolution allows the
computation of the bit error rate but we are interested in
the computation of the word error rate. In the case where all
variable node degrees are larger than two, it has been shown
in [21] that the iterative decoding thresholds of bit and block
error probability coincide. Jin and Richardson [22] extended
this result to the case where degree two variable nodes exist
but possess a certain structure. To be precise, the degree two
variable nodes have to be arranged in a chain which ensures
that the number of nodes in the neighborhood of a variable
node in the degree two subgraph grows at most linearly in the
distance from the node.

Let LDPC(𝐿,𝑅) define an LDPC ensemble in the context
of the multi-edge-type framework (for a detailed description of
multi-edge-type density evolution we refer to [20, Chapter 7]).
The multinomials 𝐿 and 𝑅 are associated with variable nodes
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and check nodes, respectively. Furthermore, assume that the
ensemble satisfies the constraints for the degree two variable
nodes as stated above, i.e., the iterative decoding threshold for
bit and word error probabilities are identical. We define the
error region of an LDPC(𝐿,𝑅) ensemble as

ℛerr(𝜸;𝐿,𝑅) =
{
𝜶 ∈ R𝐵

+ : lim
𝑖→∞

𝑃b(𝑖) > 0
}
, (11)

where 𝑖 denotes the number of iterations and 𝑃b(𝑖) denotes
the bit error probability after 𝑖 iterations. In other words, the
region ℛerr consists of all realizations of the fading coefficients
where the iterative decoder is not able to converge to zero
errors. In contrast to the outage region, which depends only on
the code rate 𝑟, the error region of an LDPC ensemble depends
on the multi-edge degree distributions 𝐿 and 𝑅 (which in turn
define the code rate).

Similarly to the outage probability, the word error proba-
bility of an LDPC ensemble is given by the integral of the
distribution of the fading coefficients over the error region

𝑃err(𝜸;𝐿,𝑅) =

∫
𝜶∈ℛerr(𝜸;𝐿,𝑅)

𝑝(𝜶)𝑑𝜶. (12)

We similarly define the code diversity as

𝑑c = − lim
𝑃→∞

log𝑃err(𝜸;𝐿,𝑅)

log𝑃
. (13)

We will denote by 𝑑c,ST and 𝑑c,LT the code diversity with
short- and long-term power constraints, respectively.

As an example for the rest of this paper, we consider two
blocks (𝐵 = 2) and a full-diversity (𝑑c,ST = 2) root-LDPC
code [10] which is defined by the parity-check matrix

𝑯 =

[
𝑰 0 𝑯1 𝑯2

𝑯3 𝑯4 𝑰 0

]
, (14)

where all sub-matrices 𝑯𝑗 (𝑗 = 1, . . . , 4) have variable and
check node degree of two and 𝑰 and 0 denote the identity and
zero matrix, respectively. Therefore, the overall code of rate
𝑟 = 1/2 consists of variable nodes of degree two and three
and check nodes of degree five. The edges in the sub-matrices
𝑯2 and 𝑯4 are placed such that these variable nodes form a
chain, therefore satisfying the condition in [22] for equal bit
and block error probability thresholds. This particular structure
allows the code to achieve full diversity [10].

Figure 1 shows the outage boundary for 𝑟 = 1/2 and the
error boundary for this LDPC ensemble. The gap between the
boundaries corresponds to the gap between outage probability
and error rate of the LDPC code.

IV. POWER ALLOCATION FOR INFINITE-LENGTH CODES

Depending on the system parameters and the constraints
on the transmit power, optimal power allocation can be
determined to minimize the outage/error probability, given
that CSI is available at the transmitter [2], [4], [12]–[16].
In this section we further develop the outage/error-region
framework to deal with optimal power allocation based on
various power constraints. In particular, we derive expressions
to numerically evaluate the effective average transmit power
and corresponding word error probability, and compare the

α1

α2
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Fig. 1. Outage boundary (solid line) and error boundary for root-LDPC
code with uniform power allocation (dashed line) at SNR = 0 dB and rate
𝑟 = 1/2. The modified boundaries for the outage and error region due to
power allocation are shown as dotted and dash-dotted lines, respectively.

performance of root-LDPC codes with optimal power allo-
cation based on short-term, long-term, and short-to-long-term
power ratio constraints.

Instead of allocating the same transmit power 𝑃x on each
block, the transmitter allocates power 𝛾𝑏 on block 𝑏, where
𝛾𝑏 ≥ 0, 𝑏 = 1, . . . , 𝐵 are chosen such that the required mean
power ⟨𝜸⟩ for successful transmission is minimized. For the
computation of the outage probability, successful transmission
requires that the average mutual information is larger than the
code rate 𝑟, whereas for the computation of the error rate,
convergence of the LDPC decoder to zero error probability
is required. By requiring that the realization of the channel
coefficients 𝜶 does not belong to the regions defined in (7) and
(11), we can study both cases and formulate the optimization
problem as

𝜸∗(𝜶) = arg min
𝜸∈R𝐵

+

⟨𝜸⟩ s.t. 𝜶 /∈ ℛ(𝜸). (15)

where ℛ(𝜸) denotes ℛout(𝜸; 𝑟) or ℛerr(𝜸;𝐿,𝑅), respectively.
It has been shown in [23] that the solution of (15) is optimal
in the sense that it minimizes the outage/error probability.
This is because the above problem and the maximum mu-
tual information subject to a power constraint problem are
equivalent in terms of outage probability. The optimization
of the power allocation algorithm in (15) depends only on
the region of interest allowing outage and error regions to be
treated in exactly the same way. Power allocation effectively
modifies the outage/error region since it allows successful
transmission for channel realizations which would cause an
error for uniform power allocation. For the example of the
previous section these modified outage/error regions are shown
in Figure 1.

The optimization problem in (15) can be solved in an
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Fig. 2. Power allocation for two blocks with 𝛼1 = 0.2 and 𝛼2 = 2.0. The
solid line corresponds to the boundary of ℛ𝛾 and the dashed line to the mean
power ⟨𝜸⟩ = 0.63 dB.

efficient way. For a given 𝜶, let ℛ𝛾 denote the region
of all power-allocation vectors 𝜸 which lead to an outage
(the corresponding error region for LDPC codes is defined
according to (11))

ℛ𝛾(𝜶; 𝑟) =
{
𝜸 ∈ R𝐵

+ : 𝐼𝐵(𝜶,𝜸) < 𝑟
}
. (16)

In the block-fading channel, the instantaneous mutual infor-
mation of a block is just a function of the product 𝛾𝑏𝛼

2
𝑏

and therefore, the region ℛ𝛾 can be obtained directly from
ℛout. For two blocks, the optimization problem is illustrated
in Figure 2 with 𝛼1 = 0.2 and 𝛼2 = 2.0. The solid line
represents the boundary of ℛ𝛾 and the dashed line corresponds
to vectors 𝜸 with the same mean power. The point of tangency
of both functions is the solution of (15) and the values of 𝛾∗

1

and 𝛾∗
2 can directly be obtained. For higher dimensions, the

optimization can be performed numerically. We note that the
complexity of such an optimization grows exponentially in the
number of dimensions (i.e., fading blocks). Since we focus
on a relatively small number of blocks this is not an issue in
practice.

We start by considering a short-term power constraint where
the mean power over one codeword is upper bounded by
𝑃ST. The optimal solution for this problem has been obtained
in [13] and it is based on the relationship between mutual
information of Gaussian channels and the minimum mean-
square error [24]. Let ℛST denote the modified region under
a short-term power constraint defined as

ℛST(𝑃ST) =
{
𝜶 ∈ R𝐵

+ : ⟨𝜸∗(𝜶)⟩ > 𝑃ST
}
. (17)

The outage/error probability under a short-term power con-
straint is computed in the same way as before by integration
over the probability density function of the channel parameters

𝑃err,ST(𝑃ST) =

∫
𝜶∈ℛST(𝑃ST)

𝑝𝜶(𝜶)𝑑𝜶. (18)

It has been shown in [14], [16] that the diversity achieved
by this power allocation algorithm is given by the Singleton
bound, i.e., the same as if no power allocation was employed.

We next consider a long-term power constraint. In contrast
to a short-term power constraint, where the mean power over
one codeword is upper bounded, a long-term power constraint
upper bounds the expected power per codeword by 𝑃LT. The
optimal power allocation for this case was determined in [12]
for Gaussian distributed inputs and in [14], [16], [17] for
arbitrary constellations. In [14] it was shown that a long-
term power constraint 𝑃LT can be enforced by imposing a
corresponding short-term power constraint 𝑃ST

∗ > 𝑃LT (see
[14] for more details). Therefore, the outage/error region can
be defined via the short-term power constraint as

ℛLT(𝑃LT) =
{
𝜶 ∈ R𝐵

+ : ⟨𝜸∗(𝜶)⟩ > 𝑃ST
∗} . (19)

The optimal power allocation under a long term constraint
[14] is

𝜸∗
LT(𝜶) =

{
𝜸∗(𝜶), ⟨𝜸∗(𝜶)⟩ ≤ 𝑃ST

∗,
0, otherwise

(20)

i.e., if the required power for successful transmission of a
codeword is larger than 𝑃ST

∗, the transmitter allocates zero
power on that codeword, thereby saving transmit power.

The average transmit power 𝑃avg is given by the integral
over all fading gains outside the error region imposed by
the short-term constraint 𝑃ST

∗, and the short-term power
constraint 𝑃ST

∗ is determined such that the average transmit
power does not exceed the long-term power constraint, i.e.,

𝑃avg =

∫
𝜶/∈ℛST(𝑃ST

∗)
⟨𝜸∗(𝜶)⟩𝑝𝜶(𝜶)𝑑𝜶 ≤ 𝑃LT. (21)

It is now straightforward to determine the error probability
for the case of a long-term power constraint by setting 𝑃ST =
𝑃ST

∗ in (18). In a similar manner, we can determine the error
probability for the case of short-term to long-term power ratio
constraints.

In [23], it is shown that the outage diversity under a long-
term power constraint can be obtained from the diversity of
the corresponding system with a short-term constraint. The
proof in [23] is based on the concept of outage regions which
translate to error regions in a straightforward way. Therefore,
the relation between short-term and long-term diversity also
holds for the word error rates of LDPC code ensembles: If
the short-term diversity 𝑑c,ST is larger than one, there exists a
𝑃0 such that the delay-limited capacity is positive for 𝑃LT ≥
𝑃0. Therefore, for 𝑑c,ST > 1, the long-term diversity 𝑑c,LT is
infinite and the average transmit power converges to a finite
value. On the other hand, if 𝑑c,ST < 1, the diversity of the
system under a long-term constraint is given by

𝑑c,LT =
𝑑c,ST

1− 𝑑c,ST
. (22)

Note, however, that the diversity will always be 𝑑c,ST for any
finite SLPR.

As an example, we show the outage probability and the
word error rates of the root-LDPC code in (14) under a long-
term power and SLPR constraint in Figure 3. We assume
𝐵 = 2 fading blocks and the fading coefficients 𝛼𝑏 are
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Fig. 3. Outage probability (solid lines) and word error rates of the root-LDPC
code (dashed lines) for long-term power and SLPR constraints. Numbers on
the curves denote the SLPR.

distributed according to a Rayleigh distribution. In the case
of no short-term constraint, the error probability can be made
arbitrarily small with finite 𝑃LT. This is due to the fact, that
𝑑c,ST = 2 for this LDPC code ensemble [10] and therefore,
the delay-limited capacity is larger than zero. For high 𝑃LT,
the outage/error probability is dominated by the short-term
constraint and therefore, the slope of the curve corresponds to
the diversity order under a short-term power constraint. This
has been shown in [16] for the outage probability and holds
also for the error probability.

V. POWER ALLOCATION FOR FINITE-LENGTH CODES

Finite-length codes have a non-zero error rate even out-
side the error region which requires a modification of the
algorithms of Section IV. We note that an exact analysis
would require the error probability of the finite-length code
for every vector of fading gains. This is not feasible in general
and we therefore follow a suboptimal approach. However,
simulation results at the end of this section show that our
method performs close to the asymptotic limits and that it
achieves gains of more than 10 dB.

The simplest approach is to increase the transmit power, i.e.,
computing the necessary transmit power for the asymptotic
case of infinite block length and then adding a power margin
that is sufficiently large to allow the finite-length decoder
to converge. This section shows how this additional margin
should be allocated to the individual fading blocks and how
large it should be.

First, we discuss the allocation of the additional transmit
power on the fading blocks. One approach is to distribute it
uniformly over the blocks. However, we argue that this is not
a good approach as shown in the following example: Assume
a block-fading scenario with two blocks where the first block
is received error-free (i.e., at high SNR) and the other block at
low SNR. Adding additional transmit power to the first block
(as done by a uniform allocation) will not help the decoder.

0 5 10 15 20 25
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d
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Fig. 4. Difference between the long-term constraint and the average transmit
power.

We therefore propose an allocation scheme that maximizes the
mutual information.

We use the power allocation algorithm for the infinite block
length case (20) with an appropriate constraint (see below)
leading to a power allocation vector 𝜸∗

LT(𝜶). If the transmitter
allocates non-zero power, we add additional transmit power
𝑃add such that the mutual information is maximized

𝜸add = arg max
𝜸′

⟨𝜸′⟩=𝑃add

𝐼𝐵(𝜶,𝜸∗
LT(𝜶) + 𝜸 ′), (23)

and transmit using the power allocation 𝜸∗
LT(𝜶) + 𝜸add.

The remaining question is how large 𝑃add should be. To
answer this question, we consider a system with a long-
term power constraint 𝑃LT and an additional SLPR constraint.
Systems with a short-term power constraint can be obtained
by setting the SLPR to 0 dB. In such a setting, the maximum
short-term transmit power 𝑃ST is either limited by the long-
term or by the SLPR constraint. According to (21), the
long-term constraint can be translated into a corresponding
short-term constraint 𝑃 ∗

ST. Therefore, the effective short-term
constraint is given by

𝑃ST = min {𝑃 ∗
ST, 𝑃LT ⋅ SLPR} . (24)

Consider the case where the short-term transmit power is
limited by 𝑃 ∗

ST. If the power allocation (20) allocates non-zero
power, we add an additional power margin 𝑃add. To maintain
the long-term power constraint in (4), we choose 𝑃 ∗

ST such that
the average transmit power due to 𝑃 ∗

ST (21) and the additional
power 𝑃add satisfies

𝑃avg + 𝑃add (1− 𝑃err,ST(𝑃
∗
ST)) = 𝑃LT. (25)

This allows to apply power allocation for the infinite block-
length case followed by an additional margin while still not
violating the long-term power constraint.

Consider now the case where the short-term transmit power
is limited by 𝑃LT ⋅ SLPR. Using (21) allows the computation
of the average transmit power 𝑃avg associated with this short-
term power constraint. This average transmit power is less
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Fig. 5. The dashed lines show the word error rate of infinite length root-
LDPC codes for long-term power and SLPR constraints. Simulation results
with ∘ are for 𝑁 = 200 and results with × for 𝑁 = 2, 000.

than 𝑃LT because otherwise, the short-term constraint would be
limited by 𝑃 ∗

ST. Therefore, if we make sure that the peak-power
constraint 𝑃LT⋅SLPR is not exceeded, we can add an additional
margin to every transmitted codeword which is given by

𝑃add =
𝑃LT − 𝑃avg

1− 𝑃err,ST(𝑃LT ⋅ SLPR)
. (26)

This additional margin 𝑃add is shown in Figure 4 for the case
of the root-LDPC code in (14). It can be seen that it is zero
as long as 𝑃 ∗

ST is the active constraint and increases with the
long-term constraint. For the case of a short-term constraint
only (i.e., SLPR = 0 dB) we see that the additional margin
is always larger than approximately 5 dB. Therefore, it is
possible to achieve error rates close to the asymptotic case
even with short block lengths. Furthermore, for larger values
of SLPR, we can expect to achieve error rates close to the
asymptotic case (in block length) if the long-term constraint
(and therefore also the additional power margin) is sufficiently
large.

To demonstrate the performance gains of our method, we
use the same example as in Section IV and set the SLPR to
15 dB. For this scenario, we constructed parity-check matrices
of length 𝑁 = 200 and 𝑁 = 2, 000 according to (14). For the
case where 𝑃 ∗

ST is the limiting quantity in (24), we set 𝑃add =
1.6 dB and 𝑃add = 1.3 dB for the code of length 𝑁 = 200 and
𝑁 = 2, 000, respectively. The resulting error rates are shown
in Figure 5. It can be observed that the longer code shows a
better performance in the waterfall region. However, when the
SLPR constraint is the limiting quantity, both codes perform
close to the results predicted in Section IV. As a comparison
we also show the error probability for a short-term power
constraint (SLPR = 0 dB). As we observe, at error rate 10−3

our method achieves more than 10 dB gain with respect to the
short-term power constraint algorithm even with a short code
of 𝑁 = 200.

VI. CONCLUSIONS

We presented an efficient method to study the word error
rates of LDPC code ensembles over the block-fading channel
with power allocation. The approach is based on a complete
characterization of the ensemble by an error boundary which
is the first analysis of specific LDPC codes over block-fading
channels with optimal power control. Our framework allows
for the incorporation of short-term, long-term and short-term
to long-term power ratio constraints.

For two fading blocks, the gain achieved by optimal power
allocation based on a short-term power constraint is limited but
significant gains can be obtained by optimal power allocation
strategies based on a long-term power constraint. Furthermore,
we conclude that codes which show a good performance for
uniform power allocation are also good for systems with
optimal power allocation based on short-term and/or long-term
power constraints. This is in line with information-theoretic
conclusions stating that an optimal transmission strategy can
be based on an outage-achieving coding scheme (for uniform
power allocation), followed by an optimal power allocation
rule [12]. To further support this claim, the example of a
root-LDPC code without optimized degree distribution shows
that this code already performs within 0.5 dB of the outage
probability.

Finite length codes do not exhibit a threshold behavior, i.e.,
even for channel realizations above the decoding threshold, the
decoder is not guaranteed to converge to zero errors. This has
to be considered for the derivation of optimal power allocation
algorithms for finite length codes. We proposed a suboptimal
algorithm that performs close to the infinite-length results and
that allows for gains of more than 10 dB with respect to
uniform or short-term constrained power allocation.
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