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Capacity Approaching Codes for
Non-Coherent Orthogonal Modulation

Albert Guillén i Fàbregas, Member, IEEE, and Alex J. Grant, Senior Member, IEEE

Abstract— This paper describes a curve-fitting approach for
the design of capacity approaching coded modulation for or-
thogonal signal sets with non-coherent detection. In particu-
lar, bit-interleaved coded modulation with iterative decoding is
considered. Decoder metrics are developed that do not require
knowledge of the signal-to-noise ratio, yet still offer very good
performance.

Index Terms— Belief propagation (BP), bit-interleaved coded
modulation (BICM), channel capacity, decoding threshold, den-
sity evolution, extrinsic information, iterative decoding, non-
coherent frequency-shift keying (NFSK), orthogonal modulation,
repeat-accumulate codes, turbo codes.

I. INTRODUCTION

ORTHOGONAL modulation with non-coherent detection
is a practical choice for situations where the received

signal phase cannot be reliably estimated and/or tracked.
There are many important applications where this is the case.
Examples include military communications using fast fre-
quency hopping, airborne communications with high Doppler
shifts due to significant relative motion of the transmitter and
receiver, and high phase noise scenarios, due to the use of
inexpensive or unreliable local oscillators.

A common choice of implementation for the modulator is
frequency shift keying (FSK), and in the remainder of the
paper we will therefore refer to non-coherent FSK (NC-FSK).1

Capacity analysis of M -ary NC-FSK [1] reveals a trade-off
between the modulation order M and the minimum energy
per bit Eb required for reliable communications. Increasing M
reduces the required Eb. This is useful in cases where transmit
power is more important than spectral efficiency, such as low
probability of intercept communications.

It is therefore of some interest to consider the design of
error control codes which approach the capacity of these non-
coherent channels. In the literature, concatenations of Reed
Solomon (RS) codes and convolutional codes have been con-
sidered [2], as well as RS codes combined with repeat diversity
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A. Guillén i Fàbregas was with the Institute for Telecommunications
Research, University of South Australia, Mawson Lakes SA 5095, Australia.
He is now with the Department of Engineering, University of Cambridge,
Trumpington Street, Cambridge, CB2 1PZ, UK (e-mail: guillen@ieee.org).

A. J. Grant is with the Institute for Telecommunications Research, Uni-
versity of South Australia, Mawson Lakes SA 5095, Australia (e-mail:
alex.grant@unisa.edu.au).

Digital Object Identifier 10.1109/TWC.2007.06040154.
1Another common implementation is pulse position modulation (PPM).

Although we focus on FSK, the model and all results of this paper are directly
applicable to PPM.

[3], [4], [5]. Trellis coded modulation has been considered
in [6]. The use of turbo codes has been considered in [7],
[8], where the capacity of the binary NC-FSK channel was
approached within about 0.7 dB on Rayleigh fading channels.
As discussed above however, higher order modulation may be
of more interest.

More recently, bit interleaved coded modulation with it-
erative decoding (BICM-ID) [9], [10] has been considered
for the NC-FSK channel [11], [12], [13]. Using the standard
cdma2000 turbo code with rates 1/2, 1/3, 1/4 and 1/5 they
report simulation results ranging from about 0.9 dB from
capacity for 4-ary NC-FSK to about 1.7 dB from capacity
for 64-ary NC-FSK (with Rayleigh fading). Although a gain
is demonstrated by iterating between demodulation and decod-
ing, no optimization of the component codes is considered.

Another important consideration in many applications is the
amount of channel state information (CSI) available at the
decoder. This may range from full CSI, where the decoder
knows the instantaneous fading amplitude and the average
signal-to-noise ratio (SNR), to partial CSI, where only the
average SNR is known, right through to no CSI, where not
even the SNR is known. The latter case is of interest for partial
band jamming of a fast frequency hopped system, where the
resulting SNRs for each of the M frequency bins may vary
with frequency and time. Valenti and Cheng [13] develop
decoder metrics for both the full and partial CSI scenarios,
but do not consider the complete absence of CSI.

There are two main contributions in this paper. First,
in Section IV, we develop low-complexity decoder metrics
suitable for iterative decoding/demodulation with no CSI. We
demonstrate the corresponding effect of loss of CSI on the
extrinsic information (EXIT) charts [14] of the demodulator.
Secondly, in Section V we use curve fitting of EXIT charts
[15], [16] to optimize the degree sequences for outer irregular
repeat-accumulate codes [17] for use with an inner rate-1
recursive M -ary modulator. The resulting codes outperform
all previously reported results for the NC-FSK channel.

Notation: All vectors will be column vectors, and will be
denoted using bold face, e.g. x = (x0, x1, . . . , xn−1)T ∈ Cn

is a column vector with n complex elements. N (
μ, σ2

)
denotes the circularly symmetric complex Gaussian density,
with mean μ and variance σ2/2 in the real and imaginary
components. | · | denotes the magnitude of its complex argu-
ment. The relationship a ∝ b is used to denote that quantity
a is proportional to quantity b.

II. SYSTEM MODEL

We assume that the modulation order is a power of two,
M = 2m, where m is an integer m ≥ 1. With reference to
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Fig. 1. System model.

Figure 1, an information source produces a binary sequence
u[i], i = 0, 1, . . . , RLm − 1, which is encoded at rate R to
produce the binary sequence c[j], j = 0, 1, . . . , Lm−1, where
L is an integer. The coded bit sequence is bit-wise permuted,
resulting in c[π(j)].

The output of the M -FSK modulator is a sequence of M -
vectors x[k], k = 0, 1, . . . , L − 1. Each element xb[k] of this
vector corresponds to one of the M frequency bins. Hence
each vector x[k] is all zeros, except for a single element
xb[k] = 1, corresponding to transmission on a particular
frequency bin b ∈ {0, 1, . . . , M − 1} at time k. The output
alphabet of the modulator is therefore E = {eb : b =
0, 1, . . . , M − 1}, where eb is the canonical basis vector with
a one at position b and zeros everywhere else.

For the moment we leave the precise modulation mapping
{0, 1}m → E unspecified. A memoryless modulator performs
a natural mapping of consecutive blocks of m bits from c[j].
Alternatively, the modulator could have memory (e.g. a rate 1
recursive trellis code).

The channel output at symbol time k is given by

y[k] =
√

Esh[k]x[k] + n[k]

where Es is the per-symbol transmit power, h[k] ∈ C is the
channel gain at time k and n[k] ∼ N (0, N0) is a vector
of zero-mean circularly symmetric complex Gaussian noise
samples, with variance N0.

Setting h[k] = 1 for k = 0, 1, . . . , L − 1, results in an
additive white Gaussian noise (AWGN) channel. Fast, flat
fading is modeled by letting h[k] ∼ N (0, 1), or in polar
coordinates, h[k] = a[k]eiθ[k] with a[k] i.i.d. Rayleigh and θ[k]
uniform over [0, 2π). Thus under either channel model, the

average SNR is γ
Δ= Es/N0, while for the Rayleigh channel,

the instantaneous SNR is a2[k] γ. The energy per source bit
is Eb = Es/(Rm).

Where it causes no confusion, we will omit the symbol time
indexing k.

A non-coherent receiver simply measures the energy |yb|2
of each frequency bin, and the resulting channel transition
probabilities are given by [18]

p (y | x = eb) = KI0

(
2
√

Es

N0
a|yb|

)
(1)

where the normalization constant

K =
1

(πN0)
M

e−
1

N0
(Esa

2+‖y‖2)

is independent of the hypothesis b, and I0(.) is the zeroth order
modified Bessel function of the first kind [19]. Note that the
transition probabilities depend on the ratio a

√
Es/N0 rather

than the ratio a2 γ appearing in coherent detection.
The transition probabilities in (1) can be very easily evalu-

ated with extremely high precision and low-complexity using
with the algorithm presented in [20] based on the polynomial
expansions of [19].

III. CHANNEL CAPACITY

The channel capacity of the non-coherent FSK channel was
found by Stark in [1] and is given by,

C = log2 M − Ey|x=e0

[
log2

(
1 +

M−1∑
b=1

Λb(y)

)]
(2)

where

Λb(y) =
I0

(
2
√

Es

N0
a|yb|

)

I0

(
2
√

Es

N0
a|y0|

) . (3)

Figure 2 shows the minimum Eb/N0 (in dB) required
for reliable communication with M -FSK with non-coherent
detection in AWGN and Rayleigh fading (solid lines), for
M = 4, 8, 16, 64. There are two main observations. First,
increasing the bandwidth (increasing M ) reduces the required
Eb/N0. Secondly, in contrast to the coherent channel, as the
code rate R → 0, the required Eb/N0 → ∞. Thus there is a
non-trivial rate which optimizes the required Eb/N0 for any
given M .

In the case where non-optimal metrics are used, the mis-
matched mutual information [21], [22] is given by [1]

I�(X ; Y ) = log2 M − Ey|x=e0

[
log2

(
1 +

M−1∑
b=1

Λ�
b(y)

)]
(4)

where

Λ�
b(y) =

p� (y | x = eb)
p� (y | x = e0)

(5)

and p� (y | x = eb) are the transition probabilities used by
the decoder. Note that if p� (y | x = eb) = p (y | x = eb) we
have that I�(X ; Y ) = C.

IV. METRICS FOR ITERATIVE DECODING

Iterative decoding of BICM [9], [10] has shown promise for
the NC-FSK channel [13]. The main idea is to iterate between
soft demodulation and soft decoding, as shown in Figure 1.
Gains of 0.7 to 1 dB have been reported compared to single-
pass decoding of BICM.

In this section we will develop metrics suitable for use in
such decoders. There are two main design objectives. First,
the metrics should have a simple implementation. Secondly,
it is desirable to develop metrics that do not require any CSI,
i.e. do not depend on a[k], Es and N0.
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Fig. 2. Minimum Eb/N0 versus code rate R required for reliable com-
munication with M -ary FSK with non-coherent detection in AWGN for
M = 4, 8, 16, 64. Solid lines correspond to the channel capacity (2) and
dashed lines correspond to the parameter free mutual information (15).

A memoryless NC-FSK modulator transmits x[k] = eb at
symbol time k where the active frequency bin b is according
to

b =
m−1∑
i=0

c[j(k, i)] 2i.

where j(k, i) = π−1(mk + i), i = 0, 1, . . . , M − 1 are the
indexes of the m coded bits modulated into symbol k.

Let Bi
0 ⊂ {0, 1, . . . , M − 1} and Bi

1 ⊂ {0, 1, . . . , M − 1}
denote the sets of indexes with a zero or a one in the i-th
position of their binary representation, respectively.

For b ∈ {0, 1, . . . , M − 1}, k ∈ {1, 2, . . . , L − 1} and i ∈
{0, 1, . . . , m − 1}, define the extrinsic probabilities [24]

qk,i (b) =
m−1∏
l=0
l �=i

Pr (c[j(k, l)] = b) .

Standard iterative BICM demodulation [9] consists of feed-

ing the decoder with the following metrics (in log-likelihood
ratio form)

L(c[j(k, i)]) = log
p(c[j(k, i)] = 0)
p(c[j(k, i)] = 1)

= log

∑
b∈Bi

0

p (y[k] | eb) qk,i(b)

∑
b∈Bi

1

p (y[k] | eb) qk,i(b)
. (6)

Substituting (1) into (6), we obtain the iterative decoder used
by [13].

The summations in (6) may be undesirable from the point
of view of complexity. To avoid these summations, the log
likelihood ratio (6) may be approximated in the following
standard way

L(c[j(k, i)]) ≈ max
b∈Bi

0

log
[
I0

(
2
√

Es

N0
a[k] |yb[k]|

)
qk,i(b)

]

− max
b∈Bi

1

log
[
I0

(
2
√

Es

N0
a[k] |yb[k]|

)
qk,i(b)

]
(7)

We shall refer to (6) and (7) as the Bessel and Bessel dual-max
metrics respectively.

Note that in order to compute (6) and (7), the signal energy,
the noise variance and the fading coefficients (or sufficiently
accurate estimates) must be available to the receiver. Both of
these metrics require full CSI.

A. Parameter Free Metrics

We will now develop decoder metrics that do not depend on
Es, N0 or a[k]. Taylor series expansion of the Bessel function
I0(α) around zero yields

I0(α) = 1 +
α2

4
+ O(α4) (8)

which motivates the following approximation of the transition
probabilities

p (y | x = eb) ≈ 1 +
Es

N2
0

a2|yb|2 (9)

and of the log-likelihood ratios (6),

L(c[j(k, i)]) ≈ log

M

2
+

Es

N2
0

a[k]2
∑
b∈Bi

0

|yb[k]|2 qk,i(b)

M

2
+

Es

N2
0

a[k]2
∑
b∈Bi

1

|yb[k]|2 qk,i(b)
.

(10)
If we further assume that

Es

N2
0

a[k]2
∑

b∈Bi
ω

|yb[k]|2 � M/2 (11)

for ω ∈ {0, 1} we have

L(c[j(k, i)]) ≈ log

∑
b∈Bi

0

|yb[k]|2 qk,i(b)

∑
b∈Bi

1

|yb[k]|2 qk,i(b)
(12)
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which is independent of Es, N0 and the fading amplitudes
a[k]. The interpretation of (12) is interesting. The receiver
first measures the received energies at every frequency bin and
computes the empirical probability at every bin as the fraction
of the total received energy present in a given bin. Obviously,
the normalization factor (the total energy

∑M−1
i=0 |yi[k]|2)

cancels in (12).
We can further approximate (12) using the dual-max method

as follows,

L(c[j(k, i)]) ≈ max
b∈Bi

0

log(|yb[k]|2 qk,i(b))

− max
b∈Bi

1

log(|yb[k]|2 qk,i(b)) (13)

which yields the corresponding parameter free dual-max met-
rics.

Equation (12) suggests the following definition of the para-
meter free transition probabilities as

p� (y | x = eb) =
1∑M−1

i=0 |yi[k]|2 |yb[k]|2 . (14)

By inserting (14) into (4) we get the parameter free mis-
matched information rate,

I�(X ; Y ) = log2 M − Ey|x=e0

[
log2

(
1 +

M−1∑
b=1

Λ�
b(y)

)]
(15)

where

Λ�
b(y) Δ=

|yb|2
|y0|2

. (16)

Note that I�(X ; Y ) depends on Es, N0 and a only through
y and that I�(X ; Y ) ≤ C by the data processing theorem
[23]. Figure 2 also shows (dashed lines) the minimum Eb/N0

required for reliable communication with M -FSK with non-
coherent detection in AWGN and Rayleigh fading using (15).
In the AWGN case we observe that the optimal rate R is very
close to that of the Bessel metrics. We also observe that the
minimum Eb/N0 required to transmit very low rates is much
higher. Also notice that in the AWGN case, the energy loss
is small, while the Rayleigh fading case, the loss is larger,
especially at low rates.

B. Numerical Examples

Before proceeding further, we present some numerical
examples which demonstrate the utility of the parameter
free metrics. Since we are interested in application of the
metrics to iterative decoding, it is of interest to compare the
corresponding EXIT charts [25].

Figure 3 shows EXIT charts for soft demodulation using
the Bessel metrics (6) (solid), dual-max Bessel (7) (dashed),
and the parameter free metrics (12) (dashed-dotted) and (13)
(dotted). The charts are for 4-FSK, 16-FSK and 64-FSK
modulation on the AWGN channel, Figure 3(a) and on the
Rayleigh fading channel, Figure 3(b).

The first observation is that the curves exhibit an almost-
linear behavior, with Bessel metrics and parameter free metrics
resulting in similar slopes. This implies that at higher γ, the
parameter metrics will have the same EXIT chart, which will
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Fig. 3. EXIT charts of the Bessel and parameter free metrics for 4, 16 and
64 NC-FSK on the AWGN (a) and Rayleigh fading (b) channel with γ = 6
dB.

help in assessing the performance degradation due to the lack
of CSI.

Further, we observe that the parameter free metrics are
information lossy, namely, when the input mutual information
is Iin = 1, the output mutual information is lower than that
obtained with Bessel metrics.

Finally, and perhaps most surprising, the parameter free
dual-max metric (13) is significantly better than (12) at low
Iin, despite the reduction in computational complexity. Ap-
plication of the dual-max approximation following the Taylor
approximation seems to regain some of the loss from the ideal
Bessel metrics. As it will be illustrated in more detail later,
this series of approximations induces a loss of Gaussianity
in the iterative decoding process, which explains the slightly
decreasing behavior of the curves for the metrics (13) for low
Iin.

Figure 4(a) shows the demodulator EXIT charts for metrics
(6), (12) and (13) at their respective SNR thresholds with the
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Fig. 4. EXIT chart and BER results for BICM over the AWGN channel with
a (25, 27, 33, 37)8 outer convolutional code using Bessel (6) and parameter
free metrics (12), (13). a) EXIT charts for 64-ary NC-FSK. Each demodulator
chart is shown at its Eb/N0 threshold; b) simulated BER results for 4, 16
and 64-ary NC-FSK.

(25, 27, 33, 37)8 convolutional code. Figure 4(b) shows the
corresponding BER simulations with 10 decoding iterations
and 10000 information bits per codeword. For the sake of
clarity, we do not show the curves for the Bessel dual-max
metrics (7), as the results are only slightly worse than the
standard Bessel metrics (6). From Figure 4(b), it is apparent
that as M grows, the error floor is pushed down to lower error
rates, effectively disappearing for 64-FSK at BERs of practical
interest. We also see that the metric (12) exhibits significant
performance degradation with respect to its simpler dual max
counterpart (13). The parameter free dual-max metrics (13)
prove to be very robust and show performance close to the
ideal Bessel metric. This result is quite remarkable, as the
loss for not knowing γ is shown to be around 0.6 dB.

Figures 5(a) and 5(b) show the EXIT charts and simulated
trajectories for metrics (6) and (13) respectively. While, the

EXIT analysis predicts the threshold behavior quite accurately
for (6), the EXIT chart analysis is slightly pessimistic in the
case of metrics (13) (see Figures 4(a) and 4(b) for reference
with EXIT chart thresholds and real simulations). Further-
more, as we can see from Figure 5(b), the simulated decoding
trajectories do not always follow the EXIT predictions. This
is due to the fact that the Gaussian approximation inherent
in the EXIT analysis is not accurate for mismatched decoder
metrics. To illustrate this fact, Figures 5(c) and 5(d) show the
empirical density evolution process. The solid lines represent
the measured densities of the messages, while the dotted densi-
ties are Gaussian densities with the same extrinsic information
rate. Iterations induce a left shift and larger variance on the
distributions. As we observe, in the case of Bessel metrics,
both density evolution and Gaussian approximation are very
similar. On the other hand, in the case of the parameter
free metrics (13) both are fairly different, which explains
the divergence between true density evolution and the EXIT
chart analysis (Gaussian approximation). Recall that metrics
(13) are a result of three consecutive approximations to (6)
and therefore, some loss in the Gaussianity of the iterative
process is expected. However, as we have seen, the EXIT chart
thresholds upperbound the true decoding thresholds, and the
difference between the two is small.

Figure 6 shows the simulated bit-error rate for BICM with
an outer rate R = 1/4 repeat-accumulate code and 4, 16 and
64-ary NC-FSK. Figure 6(a) is for AWGN only, while Figure
6(b) is for Rayleigh fading. Metrics (6), (12) and (13) are
considered.

The simulations were performed using 10, 000 information
bits per codeword and 20 decoding iterations (one iteration of
the RA decoder per demodulation iteration). Once again, the
metrics (12) offer poor performance as M grows. In this case,
the dual-max metric (13) pays a maximum penalty of only
about 1.5 dB for not knowing Es, N0 or the fading amplitude.

V. CODE OPTIMIZATION

The results presented in the previous section were for
BICM with an arbitrary selection of outer code (a similar
approach was taken in [13], where an off-the-shelf code was
considered). Our main intention however was to evaluate the
utility of the parameter free metrics. In this section we proceed
to optimize the choice of outer code, and consider more
suitable modulation mappings.

Motivated by the serially concatenated coded modulation
(SCCM) scheme of Tüchler [26], we particularize it to M -ary
orthogonal modulation with outer irregular repetition codes.
This approach consists of concatenating a binary outer code
with a jointly designed inner code and modulator through a
bit interleaver π. So we still have the system of Figure 1,
where rather than use a memoryless modulator, we use a coded
modulator with memory.

With reference to Figure 7, we propose an inner en-
coder/modulator that operates as follows. Encoding is per-
formed on blocks of 2m bits. Pairs of bits from the block
of 2m bits undergo a single parity check. The result is then
encoded by a recursive rate m/m trellis code. The output of



GUILLÉN i FÀBREGAS and GRANT: CAPACITY APPROACHING CODES FOR NON-COHERENT ORTHOGONAL MODULATION 4009

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1  

Iin

Iout

(a) Trajectory for 64-ary NC-FSK in AWGN with Bessel metrics (6) at
Eb/N0 = 3 dB.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Iin

Iout

(b) Trajectory for 64-ary NC-FSK in AWGN with parameter
free metrics (13) at Eb/N0 = 4 dB.

−10 −8 −6 −4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

L

pL(L)

(c) Density evolution for 64-ary NC-FSK in AWGN with Bessel metrics (6)
at Eb/N0 = 3 dB.

−10 −8 −6 −4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L

pL(L)

(d) Density evolution 64-ary NC-FSK in AWGN with para-
meter free metrics (13) at Eb/N0 = 4 dB.

Fig. 5. EXIT chart trajectories and measured density evolution for BICM over the AWGN channel with a (25, 27, 33, 37)8 outer convolutional code using
Bessel (6) and parameter free metrics (13). Density evolution (solid lines) is compared to Gaussian distributions of the same extrinsic information rate (dashed
lines). Iterations induce a left shift in the distributions.

the recursive encoder is finally fed to the standard M -ary NC-
FSK memoryless modulator (described above in Section IV).
Thus the overall rate of the inner encoder/modulator is 2m
bits per symbol.

Note that no interleaver is used between the encoder and
the NC-FSK modulator, as suggested by [26]. An interesting
characteristic of this inner code is that it reaches the (1, 1)
point on the EXIT chart [26]. The use of the single parity
checks prior to trellis encoding further improves the proper-
ties of the resulting EXIT charts, as discussed in [15]. The
particular choice of trellis code shown in Figure 7 has been
hand-selected for properties that are particularly convenient
when it comes to optimizing the outer code.

For the outer code, we will use an irregular non-systematic
repetition code of length n, defined by the degree distribution
(edge perspective)

{
λi ≥ 0, i = 2, . . . , dmax :

dmax∑
i=2

λi = 1

}
,

where λi is the fraction of edges in the outer code graph
connected to information bit nodes of degree i, and dmax is
the maximum allowed degree (see [27] for details).

With these definitions, the number2 of information bit nodes
of degree i of the outer code is given by ki = λin/i and the
resulting code rate is

R =
1
n

dmax∑
i=2

ki =
dmax∑
i=2

λi

i
.

The factor graph representation [28] of the overall serially
concatenated code is shown in Figure 8. In our design, we do
not use grouping nodes [27]. In a sense, the inner code nodes
act as grouping nodes of grouping factor 2m.

As shown in [14] for the binary erasure channel, the gap
between capacity and the decoding threshold for iteratively
decoded codes is related to the area between the EXIT charts
of the outer and inner codes. This idea has been extensively

2In practice, some small adjustments are required to ensure that the ki are
integer.
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Fig. 6. BER performance of BICM with outer rate R = 1/4 repeat
accumulate code and 4, 16, 64 NC-FSK over AWGN and Rayleigh fading
channel.

used to optimize various irregular code ensembles over the
AWGN channel [26], [15], [27]. In the AWGN channel, the
area theorem [14] is not exact. For exact results the reader is
referred to the generalized EXIT charts of [29]. Unfortunately,
computing these generalized charts is not a simple task.
However, codes resulting from optimization with standard
EXIT charts are usually as close as desired from capacity (see
e.g. [26], [15], [27]).

Let II(u, γ) be the EXIT chart of the inner code at a given
SNR γ and a priori mutual information u. Let IO

i (u) denote
the EXIT chart of an outer regular repetition code of degree
i. We can easily evaluate IO

i in terms of the well-known J
function [15] as follows,

IO
i = J

(
J−1(u)

√
i − 1

)
, (17)

where

J(x) = 1 −
∫

e−(t−x2/2)/2x2

√
2πx2

log2(1 + e−t)dt. (18)

Delay

+

+

+

+
Modulator

c[j(k, 0)]

c[j(k, 1)]

c[j(k, 2)]

c[j(k, 3)]
x[k]

+

c[j(k, 2m − 2)]

c[j(k, 2m − 1)]

...... ...

Fig. 7. Inner encoder/modulator for M -ary NC-FSK.

Accurate numerical evaluation of J(x) and J−1(x) is possible
using the approximations in [16].

Finally, the EXIT chart of an irregular repetition code is
simply the weighted sum of the degree-i charts [14], [15],
[16]

IO =
dmax∑
i=1

λiI
O
i .

We can therefore use linear programming to optimize the outer
code degree distribution, to minimize the area between the
inner and outer code EXIT charts [15], [27]. Figure 9 shows
the results of this curve fitting procedure for 8-ary modulation
with rate 1/2 codes.

Tables I and II summarize the results of our code search for
the AWGN and Rayleigh fading channels. There are two main
conclusions. First, we have found codes very close to capacity,
ranging from 0.4 - 0.05 dB in the case of Bessel metrics.
Smaller gaps are possible by using larger (and eventually
irregular) grouping factors [15], [27]. This can be compared
to gaps of 0.9 - 1.7 dB reported in [13], where no code
optimization was performed. Secondly, the maximum degree
for the optimized codes is not unrealistically high. In our
linear program we allowed much higher dmax (up to 50), but
fortuitously such high degree nodes were not required. These
low maximum degrees, coupled with the extremely simple
inner code results in a system with very low implementation
complexity.

Figure 10 shows simulated BER results for the optimized
rate 1/2 codes with 8 NC-FSK the AWGN channel, along with
capacity (solid) and the predicted decoding threshold (dashed)
for Bessel and dual-max parameter free metrics. The capacity
values for Bessel and parameter free metrics are very close to
each other (see Table I for the exact values). A block length
of 150, 000 was used for the simulation with 100 decoding
iterations. Once again, in the case of the Bessel metrics, the
simulated and curve-fitting EXIT results match very well. In
the case of the dual-max parameter free metrics the simulation
is slightly better than the EXIT analysis threshold, as for
the case of memoryless BICM, due to the EXIT trajectory
inaccuracy.
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TABLE I

OPTIMAL CODES FOR M = 4, 8, 16 AND 64 IN THE AWGN CHANNEL WITH BESSEL AND PARAMETER FREE METRICS. (*) INDICATES DUAL-MAX.

M R Bessel Metrics Parameter Free Metrics
Capacity Threshold Distribution Information Rate Threshold Distribution

4 1/4 4.6172 dB 4.7602 dB λ2 = 0.0483 4.8920 dB 5.2103 dB λ2 = 0.0213
λ4 = 0.1250 λ3 = 0.1173
λ11 = 0.0911 λ11 = 0.4567
λ12 = 0.7356 λ12 = 0.4047

1/2 4.1809 dB 4.3500 dB λ2 = 0.1413 4.2723 dB * 5.0750 dB λ2 = 0.0845
λ4 = 0.1523 λ4 = 0.4933
λ5 = 0.7064 λ5 = 0.4223

8 1/4 3.5484 dB 3.5994 dB λ2 = 0.0193 3.6123 dB 3.9494 dB λ2 = 0.0585
λ4 = 0.1152 λ9 = 0.1455
λ10 = 0.8655 λ10 = 0.7960

1/2 2.9904 dB 3.0391 dB λ2 = 0.0581 3.0015 dB * 3.9991 dB λ2 = 0.1244
λ4 = 0.6512 λ4 = 0.2536
λ5 = 0.2907 λ5 = 0.6220

16 1/4 2.5921 dB 2.600 dB λ2 = 0.042017 2.8389 dB 3.2 dB λ2 = 0.0485
λ4 = 0.0442165 λ5 = 0.0816
λ5 = 0.151857 λ7 = 0.3099
λ12 = 0.617372 λ11 = 0.3488
λ13 = 0.1445366 λ25 = 0.2112

1/2 2.0685 dB 2.1397 dB λ2 = 0.128628 2.1574 dB * 3.4397 dB λ2 = 0.1030
λ4 = 0.255314 λ3 = 0.1939
λ5 = 0.575429 λ4 = 0.0254
λ6 = 0.040627 λ5 = 0.4376

λ6 = 0.2402

64 1/4 1.6845 dB 1.6890 dB λ2 = 0.04975 1.9289 dB 2.6391 dB λ2 = 0.0437
λ6 = 0.163822 λ5 = 0.2186
λ7 = 0.425504 λ6 = 0.2612
λ30 = 0.36091 λ30 = 0.4765

1/2 1.1155 dB 1.1487 dB λ2 = 0.114061 1.1980 dB * 3.4288 dB λ2 = 0.1223
λ3 = 0.156532 λ3 = 0.2276
λ4 = 0.463261 λ4 = 0.1877
λ10 = 0.085959 λ7 = 0.4624
λ11 = 0.180176

TABLE II

OPTIMAL CODES FOR M = 4, 8, 16 AND 64 IN THE RAYLEIGH FADING CHANNEL WITH BESSEL AND PARAMETER FREE METRICS. (*) INDICATES

DUAL-MAX.

M R Bessel Metrics Parameter Free Metrics
Capacity Threshold Distribution Information Rate Threshold Distribution

4 1/4 4.8758 dB 5.1103 dB λ2 = 0.0333 6.0841 dB 7.1103 dB λ2 = 0.0583
λ4 = 0.1007 λ9 = 0.1520
λ11 = 0.3431 λ10 = 0.7897
λ12 = 0.5229

1/2 5.7865 dB 6.1000 dB λ2 = 0.1459 6.3845 dB 8.300 dB λ2 = 0.0911
λ4 = 0.1247 λ4 = 0.4532
λ5 = 0.7294 λ5 = 0.4557

8 1/4 3.5661 dB 3.9494 dB λ2 = 0.0550 4.6596 dB 5.7494 dB λ2 = 0.0505
λ9 = 0.2697 λ9 = 0.4303
λ10 = 0.6753 λ10 = 0.5191

1/2 4.4773 dB 4.9391 dB λ2 = 0.1113 5.0739 dB * 7.3391 dB λ2 = 0.0639
λ4 = 0.3321 λ4 = 0.6164
λ5 = 0.5566 λ5 = 0.3196

16 1/4 2.7831 dB 3.050 dB λ2 = 0.0533 3.8839 dB 5.0000 dB λ2 = 0.0416
λ9 = 0.3311 λ9 = 0.7528
λ10 = 0.6156 λ10 = 0.2056

1/2 3.6292 dB 4.1397 dB λ2 = 0.0017 4.2166 dB * 6.7897 dB λ2 = 0.0806
λ4 = 0.9898 λ4 = 0.5364
λ5 = 0.0085 λ5 = 0.3830

64 1/4 1.8461 dB 1.9391 dB λ2 = 0.0455 2.8610 dB 4.2391 dB λ2 = 0.0440
λ9 = 0.6107 λ6 = 0.0015
λ10 = 0.3438 λ7 = 0.5818

λ19 = 0.3726
1/2 2.6387 dB 2.9788 dB λ4 = 1 3.2099 dB * 6.2288 dB λ2 = 0.0944

λ4 = 0.4339
λ5 = 0.4718

VI. CONCLUSIONS

We have found a low complexity method of computing
metrics suited for iterative demodulation/decoding of M -ary

non-coherent orthogonal modulation that does not require any
knowledge of the signal-to-noise ratio or fading coefficients
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Fig. 8. Factor graph representation of the entire code. Grey circles denote
the message bits, the white circles denote the outer coded bits, double circles
denote the M -ary symbols, black circles represent the inner code state.
Squares represent the encoding constraint functions.

at the receiver. The method is based on the first-order Taylor
series expansion of the Bessel function and dual-max ap-
proximation. The proposed method performs very close of
the ideal metrics. This enables the use of methods such as
bit-interleaved coded modulation over non-coherent channels
without side information. We have also designed new codes
for the 4, 8, 16 and 64-ary non-coherent orthogonal modulation
channel. These codes are a concatenation of an irregular repeat
code and an two-state trellis coded modulator. By optimizing
the degree sequence of the outer code we have found codes
with decoding thresholds within 0.15 dB of capacity, surpass-
ing all previously known codes. Furthermore, the optimized
codes are very low complexity, with low maximum degree.
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GUILLÉN i FÀBREGAS and GRANT: CAPACITY APPROACHING CODES FOR NON-COHERENT ORTHOGONAL MODULATION 4013

2004, pp. 1549–1555.
[13] M. C. Valenti and S. Cheng, “Iterative demodulation and decoding of

turbo-coded M-ary noncoherent orthogonal modulation,” IEEE J. Sel.
Areas Commun (special issue on differential and noncoherent wireless
communications), vol. 23, no. 9, pp. 1739–1747, Sept. 2005.

[14] A. Ashikhmin, G. Kramer, and S. ten Brink, “Extrinsic information
transfer functions: model and erasure channel properties,” IEEE Trans.
Inf. Theory, vol. 50, no. 11, pp. 2657–2673, Nov. 2004.

[15] S. ten Brink and G. Kramer, “Design of repeat accumulate codes for
iterative detection and decoding,” IEEE Trans. Signal Processing, vol.
51, no. 11, pp. 2764–2772, Nov. 2003.

[16] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density
parity-check codes for modulation and detection,” IEEE Trans. Com-
mun., vol. 52, no. 4, pp. 670–678, April 2004.

[17] H. Jin, A. Khandekar and R. McEliece, “Irregular repeat-accumulate
codes,” in Proc. 2nd International Symposium on Turbo Codes and
Related Topics, Sept. 2000.

[18] J. Proakis, Digital Communications. McGraw-Hill, 1995.
[19] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions

with Formulas, Graphs and Mathematical Tables. New York: Dover
Press, 1972.

[20] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery,
Numerical Recepies in C, 2nd Ed. Cambridge University Press; also
available at http://www.nr.com, 1992.

[21] T. R. M. Fisher “Some remarks on the role of inaccuracy in Shannon’s
theory of information transmission,” in Trans. 8th Prag. Conf. Inform.
Theory, 1978, pp 211-226.

[22] N. Merhav, G. Kaplan, A. Lapidoth, and S. Shamai, “On information
rates for mismatched decoders,” IEEE Trans. Inf. Theory, vol. 40, pp.
1953-1967, Nov. 1994.

[23] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley
Series in Telecommunications, 1991.

[24] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error correcting coding and decoding: Turbo codes,” in Proc. IEEE Int.
Conference on Communications, 1993.

[25] S. ten Brink, “Designing iterative decoding schemes with the extrinsic
information transfer chart,” AEU Int. J. Electron. Commun., vol. 54, no.
6, pp. 389–398, Dec. 2000.

[26] M. Tuechler, “Design of serially concatenated systems depending on
the block length,” IEEE Trans. Commun., vol. 52, no. 2, pp. 209–218,
Feb. 2004.

[27] A. Roumy, S. Guemghar, G. Caire and S. Verdú, “Design methods for
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