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Abstract— This paper considers random-coding bounds to the
decoding error probability with maximum-metric mismatched
decoders. Their error exponents are determined and the saddle-
point approximation to the corresponding probability is derived.
This approximation is accurate and allows for simple numerical
evaluation, as verified for several channels of interest.

I. INTRODUCTION

Two of the fundamental problems in the field of channel
coding are characterizing the error probability attained by a
given code construction and finding the largest achievable rate
with vanishing error probability. While research has chiefly
focused on the second problem, that of finding the channel
capacity, recently, spurred by the construction of near-capacity
achieving codes, renewed attention has been paid to the error
probability in the finite-length regime. In particular, Polyan-
skiy et al. [1] have derived a number of new results, such as the
random-coding union (RCU) bound, the dependence-testing
bound (DT), and the κβ bound among others. A key quantity
in their development is the information density, defined as

i(x,y) = log
PY |X(y|x)
PY (y)

(1)

where PY |X(y|x) is the vector channel transition probability
and x,y are the channel input and output sequences, re-
spectively. Moreover, these bounds have been coupled with
Strassen’s Gaussian approximation [2] to the error probability
around capacity, thereby providing an estimate of the effective
capacity for finite block length and non-zero error probability.
Glossing over the details, the key observation is that, for
memoryless channels, the information density is expressed as a
sum of random variables, which suggests the application of the
central limit theorem and leads to a Gaussian approximation.

In this paper, we rederive the RCU and DT bounds within
the framework of mismatched decoding. Whereas maximum
information-density decoders apply a maximum-likelihood de-
coding rule, a decoder is said mismatched [3], [4] if it selects
the message v̂ with largest decoding metric q(x(v),y), i. e.

v̂ = arg max
v

q(x(v),y), (2)
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where q(x(v),y) need not be the channel likelihood metric.
As we shall see, the information density is naturally replaced
by a generalized information density is(x,y), given by

is(x,y) = log
q(x,y)s

E[q(X ′,y)s]
, (3)

where s ≥ 0. The cumulant generating function of this
generalized information density is closely related to Gallager’s
E0(ρ, s) function [5]. Indeed, for an i.i.d. codebook and a
memoryless channel with metric q(x,y) =

∏n
i=1 q(xi, yi),

letting τ be an arbitrary complex number, we have that

κ(τ) = log E[eτis(X,Y )] (4)

=
n∑
i=1

log E

[(
q(Xi, Yi)s

E[q(X ′i, Yi)s|Yi]

)τ]
(5)

= −nÊ0(−τ, s), (6)

where Ê0(ρ, s) is the Gallager function for mismatched decod-
ing [3]. Setting q(x, y) = PY |X(y|x) gives the usual E0(ρ, s).

More precisely, we express the RCU and DT bounds as the
tail probability of a random variable, a form which allows us
to determine the error exponent attained by these bounds in
terms of Gallager’s E0(ρ, s) function. Moreover, this form as
a tail probability allows us to use the saddlepoint (or Laplace)
approximation. While this approximation is essentially as easy
to compute as the error exponent or the Gaussian approxima-
tion, it turns out to be more accurate, and thus provides an
efficient method to estimate the effective capacity for finite
block length and non-zero error probability.

Notation: Random variables are denoted by capital letters
and their realization by small letters. Sequences are identified
by a boldface font. The probability of an event is denoted
by Pr{·} and the expectation operator is denoted by E[·].
Logarithms are in natural units and information rates in nats,
except in the examples, where bits are used.

II. UPPER BOUNDS TO THE ERROR PROBABILITY

We adopt the conventional setup in channel coding.
First, and for a given information message v, with v ∈
{1, 2, . . . ,M}, the encoder outputs a codeword of length n
x(v) ∈ Xn, where X is the symbol channel input alphabet.
One could consider more general vector alphabets and the



error probability analysis remains unchanged. The coding rate
R is defined as R , 1

n logM . The corresponding channel
output of length n, denoted by y ∈ Yn, where Y is the symbol
channel output alphabet. The output sequence is obtained
from the input sequence according to the probability transition
PY |X(y|x). Finally, the decoder selects the message v̂ with
largest decoding metric q(x,y), i. e. v̂ = arg maxv q(x(v),y).

We study the probability that the decoder outputs a message
different from the one sent, i. e. Pr{V̂ 6= V }. Specifically, we
consider the average (codeword) error probability P̄e over the
ensemble of (randomly selected) i.i.d. codewords.

We consider memoryless channels, for which PY |X(y|x) =∏n
i=1 PY |X(yi|xi), with PY |X(y|x) the symbol transition

probability. For maximum-likelihood (ML) decoding, the met-
ric is given by q(x,y) = PY |X(y|x). We study a general
decoding metric, not necessarily ML; however, we assume
that the codeword metric admits a symbolwise decomposition
q(x,y) =

∏n
i=1 q(xi, yi), with some abuse of notation.

A. The Random Coding Union Bound

Polyanskiy’s random coding union (RCU) bound to the
average error probability under ML decoding [1] is given by

P̄e ≤ E
[

min
{

1, (M − 1)Pr
{
i(X ′,Y ) ≥ i(X,Y )

∣∣X,Y
}}]

.

(7)

The proof of this bound is easily extended to mismatched
decoding, resulting in the following theorem.

Theorem 1: The error probability of a maximum-metric
decoder with decoding metric q(X,Y ), averaged over all
codebooks whose codewords are selected independently ac-
cording to a distribution PX(x) is upper bounded by

P̄e ≤ E
[
min

{
1, (M − 1)Pr

{
q(X ′,Y ) ≥ q(X,Y )

∣∣X,Y
}}]

.

(8)

Further, applying Markov’s inequality to the probability
Pr
{
q(X ′,y) ≥ q(x,y)

}
, the bound can be loosened to

P̄e ≤ rcu(n,M) , E

[
min

{
1, (M − 1)

E
[
q(X ′,Y )s|Y

]
q(X,Y )s

}]
(9)

= E
[
e−
(
is(X,Y )−log(M−1)

)+]
, (10)

where (a)+ , max(0, a).
The identity for non-negative random variables A [1],

E
[
min{1, A}

]
= Pr{A ≥ U}, (11)

where U is a uniform (0, 1) random variable, allows us to ex-
press our loosened RCU in Eq. (10) as the the tail probability
above zero of a random variable Z , log M−1

U − is(X,Y ).
This expression will prove fruitful later in the paper.

Remark 1: This bound may be combined with information-
spectrum techniques to derive an formula for the achievable
rate with mismatched decoding analogous to the inf-mutual
information [6], [7].

B. The Dependence-Testing Bound

To derive the DT bound [1], one uses a threshold de-
coder which sequentially considers all messages, and outputs
the first message whose metric exceeds a pre-determined
threshold γ(v), which we allow to depend on the message.
An error is made if the metric does not exceed the thresh-
old, q(X(i),Y ) ≤ γ(i), or if there exists an alternative
codeword with lower index and metric above the threshold,
q(X(j),Y ) > γ(j), with j < i. Averaging over all messages
and codebooks, we get that P̄e is upper bounded by

P̄e ≤
1
M

∑
i

(
Pr
{
q(X(i),Y ) ≤ γ(i)

}
+

+
∑
j<i

Pr
{
q(X(j),Y ) > γ(j)|X(i)

})
(12)

=
1
M

∑
i

(
Pr
{
q(X(i),Y ) ≤ γ(i)

}
+

+ (M − i) Pr
{
q(X(i),Y ) > γ(i)

})
. (13)

In the last equation, the pair (X(i),Y ) is distributed according
to PXPY |X in the first summand and according to PXPY in
the second one.

This bound admits a simplified form for ML decoding. We
may write the metric as q(x,y) = PY |X(y|x)

PY (y) , which allows
us to optimize the threshold as in [1]; we find that γ(i) =
M − i gives the tighest bound. Moreover, using the relation
P
(
dP
dQ ≤ γ

′)+ γ′Q
(
dP
dQ > γ′

)
= EP

[
min

{
1, γ′ dQdP

}]
[1], we

may compactly rewrite the bound in Eq. (13) as

P̄e ≤
1
M

∑
i

E

[
min

{
1, (M − i) PY (Y )

PY |X(Y |X)

}]
. (14)

The expectation is done according to PXPY |X . Further, since
1
M

∑
i γ(i) = M−1

2 , and min[1, ax] is concave in x, applying
Jensen’s inequality relaxes Eq. (14) to the form in [1],

P̄e ≤ dtb(n,M) , E

[
min

{
1,
M − 1

2
PY (Y )

PY |X(Y |X)

}]
(15)

= E
[
e−
(
i(X,Y )−log M−1

2

)+]
. (16)

In the general mismatched decoding case it may not be
possible to express (13) in the compact form (16).

III. CHERNOFF BOUND AND ERROR EXPONENTS

The RCU and DT bounds considered in Sect. II, being
closely linked to the tail probability of the rv is(X,Y ), are
amenable to analysis with large-deviations theory, which gives
the rate of exponential decay. The Chernoff bound to the tail
probability of a rv Z, Pr{Z ≥ ε}, with ε > E[Z], is given by

Pr{Z ≥ ε} ≤ inf
τ>0

E[eτZ−τε] = inf
τ>0

{
eκ(τ)−τε

}
, (17)

where κ(τ) = log E[eτZ ] is the cumulant transform. It follows
that the rate of exponential decay of the probability Pr{Z ≥ ε}



is bounded as

lim
n→∞

− 1
n

log Pr{Z ≥ ε} ≥ sup
τ>0

lim
n→∞

1
n

{
τε− κ(τ)

}
. (18)

We will use this identity to lower bound the channel reliability
function, which gives the rate of exponential decay in the error
probability of the best possible code.

We wish to bound the channel reliability function by finding
the exponent Ercu(R), given by

Ercu(R) , sup
s

lim
n→∞

− 1
n

log rcu(n,M). (19)

We may thus concentrate on the tail of the random variable
Z = log M−1

U − is(X,Y ) above ε = 0. By definition, its
cumulant transform κn,M (τ, s) is given by

κn,M (τ, s) , log E
[
eτ log M−1

U −τis(X,Y )
]

(20)

= τ log(M − 1)− log(1− τ)

+ log E

[(
E[q(X ′,Y )s|Y ]

q(X,Y )s

)τ]
. (21)

The second term is due to the expectation over U , therefore,
for the cumulant transform to converge we need τ < 1.

For an i.i.d. codebook with PX(x) =
∏n
i=1 PX(xi) and

memoryless channel and metric, we may follow Gallager and
introduce the function Ê0(ρ, s) given by

Ê0(ρ, s) = − log E

[(
E[q(X ′, Y )s|Y ]

q(X,Y )s

)ρ]
, (22)

to write κn,M (τ, s) as

κn,M (τ, s) = τ log(M − 1)− log(1− τ)− nÊ0(τ, s). (23)

As τ is a dummy variable, we may safely replace it by ρ.
Applying the Chernoff bound, we lower bound the exponent

as

Ercu(R) ≥ sup
0<τ<1
s≥0

lim
n→∞

− 1
n
κn,M (τ, s) (24)

= sup
0<ρ<1
s≥0

{
Ê0(ρ, s)− ρR

}
, (25)

namely Gallager’s random coding exponent with mismatched
decoding, which we denote by Egb(R) [3].

Let ρ̂0 be the value maximizing Ê0(ρ, s)−ρR; equivalently
the only root of Ê′0(ρ̂0, s) = R. The critical rate is defined as
the rate where ρ̂ = 1 [5]. Below the critical rate, ρ̂0 ≥ 1, a
value outside the range of the cumulant transform κn,M (τ, s).
In this case, convexity of the latter shows that the supremum
is attained at ρ̂ = 1, and we conclude that ρ̂ = min(1, ρ̂0) and
Ê′0(ρ, s) = R.

Remark 2: This analysis shows the achievability of the
generalized mutual information [3]. The exponent is negative
as long as R < Ê0(ρ,s)

ρ . As ρ → 0, the right-hand side is
the first derivative of Ê0(ρ, s) evaluated at ρ = 0, a quantity
which coincides with the generalized mutual information.

The DT bound in Eq. (16) has a form very similar to the
RCU bound, with Z given by Z = log M−1

2U − i1(X,Y ). It
follows that the exponent of the DT bound Edtb(R) for ML
decoding is thus given by

Edtb(R) = sup
0<ρ<1

{
E0(ρ, 1)− ρR

}
. (26)

Here E0(ρ, 1) is the function Ê0(ρ, s) evaluated for the ML
metric and s = 1. The DT exponent may thus not exceed the
RCU exponent. In particular, we have the obvious

Edtb(R) ≤ Egb(R) = Ercu(R) (27)

This is because the DT is derived with the information density,
for s = 1. As for the form in Eq. (14), the message-dependent
threshold term M − i adds an extra term to the cumulant
transform κn,M (τ, s), namely

log

(
M∑
i=1

1
M

(M − i)τ
)
' log

(
Mτ

∫ 1

0

(1− x)τ dx
)

(28)

= τ logM − log(1 + τ). (29)

This does not change the exponent of the DT bound.

IV. SADDLEPOINT APPROXIMATIONS

A. Motivation

Chernoff-type bounds provide a natural estimate of the
tail probability via the cumulant transform, namely Pr{Z ≥
ε} ∼ eκ(τ̂)−τ̂ε, with τ̂ = arg minτ

{
κ(τ) − τε

}
. Clearly, a

more accurate estimate would be of the form Pr{Z ≥ ε} ∼
α(κ, τ̂) · eκ(τ̂)−τ̂ε. Saddlepoint approximations provide such
estimates [8]. In its classical form, the coefficient α(κ, ρ̂) of
the saddlepoint approximation is given by

α(κ, τ̂) =
1

τ̂
√

2πκ′′(τ̂)
. (30)

However, this expression becomes inaccurate as τ̂ → 0, as
it happens when ε is close to the mean E[Z]. In such cases
—and more generally—, a better coefficient is given by

α(κ, τ̂) =
1
2

erfcx
(
τ̂

√
κ′′(τ̂)

2

)
, (31)

where erfcx(x) , erfc (x) exp(x2). An asymptotic expansion
of erfc (x) at x→∞ recovers Eq. (30). As τ̂ → 0, however,
we have τ̂ → E[Z]−ε

κ′′(0) , where κ′′(0) is the variance of Z, and

Pr{Z ≥ ε} ∼ 1
2

erfcx
(
τ̂

√
κ′′(τ̂)

2

)
eκ(τ̂)−τ̂ε (32)

∼ Q

(
E[Z]− ε√
κ′′(0)

)
, (33)

where Q(x) = 1√
2π

∫∞
x
e−

x2
2 dx is the Gaussian tail proba-

bility function. We thus recover a Gaussian approximation to
the probability for values of ε close to the mean E[Z].



B. Approximation to the RCU Bound
We expressed in Eq. (10) the average error probability as

the tail probability of a continuous random variable Z =
log M−1

U − is(X,Y ). We derived its cumulant transform
κn,M (τ, s) in Sect. III. The parameter τ is a complex number
for the purpose of deriving the saddlepoint approximation.
As the cumulant transform is the Laplace transform of the
probability density function pZ(z), the density function itself
is expressable as an inverse Laplace transform [8], namely

pZ(z) =
1

2πj

∫ τ̂+j∞

τ̂−j∞
eκn,M (τ,s)−ρz dτ, (34)

where τ̂ < 1 from the definition of κn,M . Since P̄e is the tail
above ε = 0, we compute it by integrating over z ∈ [0,∞).
Changing the integration order, we get

rcu(n,M) =
1

2πj

∫ τ̂+j∞

τ̂−j∞

∫ ∞
0

eκn,M (τ,s)−τz dz dτ (35)

=
1

2πj

∫ τ̂+j∞

τ̂−j∞
eκn,M (τ,s)

(
e−τz

−τ

∣∣∣∣∞
0

)
dτ (36)

=
1

2πj

∫ τ̂+j∞

τ̂−j∞
eκn,M (τ,s) 1

τ
dτ, (37)

where τ̂ > 0 to guarantee convergence. For i.i.d. channels,
and substituting the form of κn,M (τ, s) we get

rcu(n,M) =
1

2πj

∫ ρ̂+j∞

ρ̂−j∞
eρ log(M−1)−nÊ0(ρ,s)

1
ρ(1− ρ)

dρ.

(38)

We next expand the exponent in the integrand as a Taylor
series around ρ̂ = min(1, ρ̂0), with ρ̂0 given by the root of
Ê′0(ρ̂0, s) = R = 1

n logM (it is safe to replace M − 1 by M
here) discussed in Sect. III. Neglecting terms of order higher
than 2 and up to a common factor n, we get

ρR− Ê0(ρ, s) ∼ ρ̂R−Ê0(ρ̂, s) +
(
R− Ê′0(ρ̂, s)

)
(ρ− ρ̂)

− 1
2
Ê′′0 (ρ̂, s)(ρ− ρ̂)2. (39)

Let us define the following parameters W and V :

W , R− Ê′0(ρ̂, s), V , −Ê′′0 (ρ̂, s). (40)

We have W = 0 if ρ̂ ≤ 1. Beyond the critical rate, however,
W 6= 0. We also have V ≥ 0 and in general V > 0.

We proceed further by replacing the exponent in the inte-
grand of Eq. (38) by Eq. (39) and using that 1

ρ(1−ρ) = 1
ρ+ 1

1−ρ .
With the change of integration variable ρ− ρ̂ = jρi, we must
compute the following integrals (see [8, Section 2.1])

1
2π

∫ ∞
−∞

ejnWρi− 1
2nV ρ

2
i

1
ρ̂+ jρi

dρi =

=
1
2

erfcx1

(
ρ̂

√
nV

2
,W

√
n

2V

)
(41)

1
2π

∫ ∞
−∞

ejnWρi− 1
2nV ρ

2
i

1
1− ρ̂− jρi

dρi =

=
1
2

erfcx1

(
(1− ρ̂)

√
nV

2
,−W

√
n

2V

)
. (42)

where we used the function erfcx1(x, y) , erfcx(x −
y) exp(−y2) = erfc (x− y) exp(x2 − 2xy).

We thus obtain our desired saddlepoint approximation

rcu(n,M) ' en(ρ̂R−Ê0(ρ̂,s))
1
2

(
erfcx1

(
ρ̂

√
nV

2
,W

√
n

2V

)

+ erfcx1

(
(1− ρ̂)

√
nV

2
,−W

√
n

2V

))
,

(43)

Remark 3: This analysis also extends to the DT bound in
Eq. (16), for which s = 1 and M (for M − 1) is replaced by
M
2 . The approximation is as in Eq. (43), with s = 1, an extra

term 2−ρ̂, and with W = R − Ê′0(ρ̂, s) − 1
n log 2. As for the

form in Eq. (14), the term − log(1 +ρ) in κn,M (τ, s) induces
the replacement of the factor 2−ρ̂ by 1/(1+ρ̂), thereby slightly
reducing the error probability.

C. Channel Dispersion and the Gaussian Approximation

As discussed in the introduction to this section, the saddle-
point and Gaussian approximations are closely related. Since
the Gaussian distribution is the only continuous distribution for
which cumulants of order higher than 2 are zero, neglecting
terms of order higher than 2 in the Taylor expansion of Eq. (39)
may be seen as a form of Gaussian approximation.

For simplicity, we consider ML decoding. Let the rate
R be rate close to the mutual information I(X;Y ). The
comments here extend without difficulty to the generalized
mutual information. Being close to I(X;Y ), we expect ρ̂ to be
small, and may carry out a Taylor expansion of ρR− Ê0(ρ, s)
around ρ̂ = 0 (thus s = 1) keeping terms up to order
2. Moreover, we use that E′0(0; 1) = I(X;Y ) and define
V0 = −E′′0 (0; 1). In general V0 ≥ 0, yet we assume V0 > 0.
This defines a Gaussian approximation to κn,M (τ, s), namely

κn,M (τ, s) ' κga(τ, s) , n
(
R− I(X;Y )

)
τ + n

1
2
V0τ

2,

(44)

where we neglected the contribution from log(1 − τ). Pro-
ceeding as in the previous section, we solve for τ̂ by setting
R− Ê0(τ̂ , s) ' κ′ga(ρ̂, s) = 0, with τ̂ = ρ̂, namely

κ′ga(ρ̂, s) ' n
(
R− I(X;Y )

)
+ nV0ρ̂ = 0, (45)

which implies that ρ̂ =
I(X;Y )−R

V0
. Within the same order

of accuracy, we may approximate the second derivative as

−nÊ′′0 (ρ, s) ' κ′′ga(ρ, s) = nV0. (46)

Putting these values back in Eq. (43), we now obtain the
following approximation

rcuga(n,M) =
1
2

erfc
((
I(X;Y )−R

)√ n

2V0

)
. (47)

Setting P̄e = rcuga(n,M), we solve for Rga as

Rga = I(X;Y )−
√
V0

n
Q−1(P̄e). (48)



This is a Gaussian approximation to the effective rate1.
We are not able to recover Strassen’s O(log n) term in the

expansion of the rate, a fact which may be traced back to
the use of Markov’s inequality in the RCU bound. Although
a precise analysis of the loss incurred by invoking Markov’s
inequality in the RCU bound is open, consider a saddlepoint
approximation to the probability Pr{q(X ′,y) ≥ q(x,y)},

Pr{q(X ′,y) ≥ q(x,y)} ' β(n)
E[q(X ′,y)s]
q(x,y)s

(49)

in analogy to the motivation at the beginning of this section.
We expect β(n) to be similar to Eq. (31): it may either be
O(1) or, for large enough n, be O(n−

1
2 ). In the latter case the

information density gets a new term 1
2 log n, which appears as

an extra summand in the Gaussian approximation, Eq. (48). To
any extent, and from a practical point of view, the saddlepoint
approximation often gives a better estimate that the Gaussian
approximation, with or without the O(log n) correction. In our
case, the saddlepoint approximation accurately characterizes
the RCU and DT bounds for all rates, while the Gaussian
approximation does so for rates close to capacity.

Incidentally, the comments in this section illustrate the
connection between the channel dispersion2 V0 and the error
exponent, namely that the dispersion is equal to the inverse of
the second derivative of the error exponent at capacity [9].

V. APPLICATIONS

In this section we discuss some applications of the bounds
and approximations described so far to the binary erasure
channel (BEC), and the binary symmetric channel (BSC).
For these channels, the maximum metric mismatched decoder
is equivalent to ML. For ML decoding, the corresponding
Gallager functions are given by

Ebec
0 (ρ, s) = − log

(
ε+ (1− ε)2−ρ

)
, (51)

Ebsc
0 (ρ, s) = − log

(
2−ρ

(
ε

1
1+ρ + (1− ε)

1
1+ρ

)1+ρ
)

(52)

The relevant channel parameter is denoted by ε.

A. Binary Erasure Channel

In general, the optimum ρ̂ is to be found numerically. An
exception is the BEC channel, for which3

E′0(ρ, s) =
(1− ε) log 2
(1− ε) + 2ρε

, (53)

1The channel dispersion V0 (as well as the rates) is in base e. In bits, one
has V bits

0 = V0/(log 2)2.
2The channel dispersion is defined as

V0 = lim
P̄e→0

lim
n→∞

n

`
C −R(n, P̄e))

´2

−2 log P̄e
. (50)

Close to the mutual information, we have P̄e ' en 1
2 E′′rcu(I)(I−R)2 =

e
n

(I−R)2

2E′′0 (0) , and conclude that V0 = 1
E′′r (C)

= −E′′0 (0).
3Moreover, E′′0 (ρ̂, s) = R(R − log 2). As expected, E′0(0, s) = (1 −

ε) log 2, namely the channel capacity, and moreover E′′0 (0, s) = −ε(1 −
ε)(log 2)2, in agreement with the channel dispersion V0 = ε(1−ε)(log 2)2.

which allows us to solve for the saddlepoint, giving

2ρ̂0 =
(1− ε)(log 2−R)

εR
. (54)

For the BEC, the saddlepoint approximations to the RCU and
DT bounds admit a closed form expression. Fig. 1 depicts
the effective coding rate for a given block length and average
error probability. Clearly, the RCU and DT bounds outperform
Gallager’s and Feinstein’s [10] bounds. In particular, the
improvement in coefficient with respect to Gallager’s bound
makes more accurate the estimate of the effective coding
rate. Also, the curves are indistinguishable from those in [1],
confirming the accuracy of the saddlepoint approximation4.
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Fig. 1. Rate-length tradeoff for the BEC; ε = 0.5, P̄e = 10−6.

Since E0(ρ, s) is independent of s, so is the generalized
information density is(x, y), which therefore coincides with
the usual information density i(x, y) for the BEC. Therefore,
not only does the DT bound attain Gallager’s random-coding
exponent (thus tying with the RCU bound), but it is found
to be slighly tighter than the RCU bound by a factor 2−ρ̂ or
1/(1 + ρ̂). This change translates into a small improvement in
the estimate of the effective capacity.

As the information density is independent of the parameter
s, no loss is incurred by invoking Markov’s inequality in the
RCU bound for the BEC. It is clear the number of erasures
in the output, ne, is a sufficient statistic for decoding, and
the metric for the transmitted codeword x is is q(x,y) =
(1− ε)n−neεne . As for the alternative codewords, their metric
is zero unless they coincide in the n−ne non erased positions.
There are 2ne such sequences, each with metric (1−ε)n−neεne .
Since there are 2n possible sequences of length n, the probabil-
ity that a randomly generated alternative codeword is decoded
instead of the transmitted one is given by

Pr
{
q(X ′,y) ≥ q(x,y)

}
=

2ne

2n
. (55)

4It is shown in [1] that the same bounds are valid for both average and
maximum error probability for the BEC and BSC.



An analogous computation gives

E[q(X ′,y)s]
q(x,y)s

=

(
1
2 (1− ε)s

)n−ne
(

1
2ε
s + 1

2ε
s
)ne

(1− ε)s(n−ne)εsne
=

2ne

2n
(56)

This proves that our loosened RCU bound in Eq. (10) indeed
coincides the original RCU bound in Eq. (8) [1].

B. Binary Symmetric Channel

We now examine the case of the BSC, where closed form
expressions are not so simple to obtain. In this case, and for
all our computations, we have chosen the free parameter s
to be equal to Gallager’s optimal value s = 1

1+ρ̂ . While this
choice might not be optimal, it is reasonable, as it maximises
the error exponent, and, as we shall see, is valid for low rates.

Fig. 2 depicts the saddlepoint approximation and the exact
numerical evaluation of the RCU for n = 50, 100, 200, 500.
A very close match can be observed. While the Gaussian
approximation, also shown in the figure, broadly agrees with
the general behaviour of the probability, it does not provide
an accurate estimate; its accuracy improves as n increases.
For the BSC, comparison of the two versions of the RCU
bound is not as straightforward as in the BEC channel.
Using a saddlepoint approximation for the probability involved
suggests that the true probability is O( 1√

n
) smaller than the

bound from Markov’s inequality, an effect which translates
into a loss in the saddlepoint approximation of order O(n−

ρ̂
2 ).
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Fig. 2. RCU (solid lines), RCU saddlepoint approximation (dashed lines)
and Gaussian approximation (dash-dotted lines) for a BSC with ε = 0.11.

Fig. 3 compares the proposed saddlepoint approximations
to the exact RCU and DT, the corresponding Chernoff bounds
(Gallager’s for the RCU) and the Gaussian approximation.
Again, we observe a very close match between the bounds
and saddlepoint approximations. We first observe that for low
rates and low values of the error probability, the coefficient of
the RCU saddlepoint approximation approaches 1, matching
Gallager’s bound. We observe a significant loss of the DT with

respect to the RCU, mainly due to the loss in error exponent;
the RCU has Gallager’s exponent since it uses s = 1

1+ρ , while
the DT has a worse exponent due to using s = 1.
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Fig. 3. Comparison of DT and RCU bounds, saddlepoint approximations,
Chernoff bounds and Gaussian approximation for n = 100 and a BSC with
ε = 0.11.

VI. CONCLUSIONS

In this paper, we have derived the error exponents and
saddlepoint approximations of the random-coding union bound
and the dependence-testing bound. These saddlepoint approx-
imations are a versatile tool that allow to accurately calculate
the corresponding bounds for arbitrary discrete-input memo-
ryless channels (with or without mismatched decoding) with
a complexity similar to that of the Gaussian approximation.
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