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Abstract— This paper describes a curve-fitting approach for the
design of capacity approaching coded modulation for orthogo-
nal signal sets with non-coherent detection. In particular, bit-
interleaved coded modulation with iterative decoding is considered.
Decoder metrics are developed that do not require the knowledge
of the signal-to-noise ratio, yet still offer very good performance.

I. I NTRODUCTION

Orthogonal modulation with non-coherent detection is a
practical choice for situations where the received signal phase
cannot be reliably estimated and/or tracked. There are many
important applications where this is the case. Examples include
military communications using fast frequency hopping, airborne
communications with high Doppler shifts due to significant
relative motion of the transmitter and receiver, and high phase
noise scenarios, due to the use of inexpensive or unreliable local
oscillators.

A common choice of implementation for the modulator is
frequency shift keying (FSK), and in the remainder of the paper
we will therefore refer to non-coherent FSK (NC-FSK).

Capacity analysis ofM -ary NC-FSK [1] reveals a trade-
off between the modulation orderM and the minimum energy
per bit Eb required for reliable communications. IncreasingM
reduces the requiredEb. This is useful in cases where transmit
power is more important than spectral efficiency, such as low
probability of intercept communications.

It is therefore of some interest to consider the design of
error control codes which approach the capacity of these non-
coherent channels. In the literature, concatenations of Reed
Solomon (RS) codes and convolutional codes have been consid-
ered [2], as well as RS codes combined with repeat diversity [3],
[4], [5]. Trellis coded modulation has been considered in [6].
The use of turbo codes has been considered in [7], [8], where the
capacity of the binary NC-FSK channel was approached within
about 0.7 dB on Rayleigh fading channels. As discussed above
however, higher order modulation may be of more interest.

More recently, bit interleaved coded modulation with iterative
decoding (BICM-ID) [9], [10] has been considered for the NC-
FSK channel [11], [12], [13]. Using the standard cdma2000
turbo code with rates1/2, 1/3, 1/4 and1/5 they report simula-
tion results ranging from about 0.9 dB from capacity for 4-ary
NC-FSK to about 1.7 dB from capacity for 64-ary NC-FSK
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(with Rayleigh fading). Although a gain is demonstrated by
iterating between demodulation and decoding, no optimization
of the component codes is considered.

Another important consideration in many applications is the
amount of channel state information (CSI) available at the
decoder. This may range from full CSI, where the decoder
knows the instantaneous fading amplitude and the average
signal-to-noise ratio (SNR), to partial CSI, where only the
average SNR is known, right through to no CSI, where not
even the SNR is known. The latter case is of interest for partial
band jamming of a fast frequency hopped system, where the
resulting SNRs for each of theM frequency bins may vary with
frequency and time. Valenti and Cheng [13] develop decoder
metrics for both the full and partial CSI scenarios, but do not
consider the complete absence of CSI.

There are two main contributions in this paper. First, in
Section III, we develop low-complexity decoder metrics suitable
for iterative decoding/demodulation with no CSI. We demon-
strate the corresponding effect of loss of CSI on the extrinsic
information (EXIT) charts [14] of the demodulator. Secondly,
in Section IV we use curve fitting of EXIT charts [15], [16]
to optimize the degree sequences for outer irregular repeat-
accumulate codes [17] for use with a an inner rate-1 recursive
M -ary modulator. The resulting codes outperform all previously
reported results for the NC-FSK channel.

Notation: All vectors will be column vectors, and will be
denoted using bold face, e.g.x = (x1, x2, . . . , xn)t ∈ Cn is
a column vector withn complex elements.N

(
µ, σ2

)
denotes

the circularly symmetric complex Gaussian density, with mean
µ and varianceσ2/2 in the real and imaginary components.| · |
denotes the magnitude of its complex argument.

II. SYSTEM MODEL

We assume that the modulation order is a power of two,
M = 2m. With reference to Figure 1, an information source
produces a binary sequenceu[i], i = 0, 1, . . . , RLm−1, which
is encoded at rateR to produce the binary sequencec[j], j =
0, 1, . . . , Lm−1. The coded bit sequence is bit-wise permuted,
resulting inc[π(j)].

The output of theM -FSK modulator is a sequence ofM -
vectorsx[k], k = 0, 1, . . . , L − 1. Each elementxb[k] of this
vector corresponds to one of theM frequency bins. Hence each
vector x[k] is all zeros, except for a single elementxb[k] =
1, corresponding to transmission on a particular frequency bin
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b ∈ {0, 1, . . . ,M − 1} at time k. The output alphabet of the
modulator is thereforeE = {eb : b = 0, 2, . . . ,M − 1}, where
eb is the canonical basis vector with a one at positionb and
zeros everywhere else.

For the moment we leave the precise modulation mapping
unspecified. A memoryless modulator performs a natural map-
ping of consecutive blocks ofm bits from c[j]. Alternatively,
the modulator could have memory (e.g. a rate 1 recursive trellis
code).

The channel output at symbol timek is given by

y[k] =
√

Esh[k]x[k] + n[k]

where Es is the per-symbol transmit power,h[k] ∈ C is the
channel gain at timek andn[k] ∼ N (0, N0) is a vector of zero-
mean circularly symmetric complex Gaussian noise samples,
with varianceN0.

Settingh[k] = 1 for k = 0, 1, . . . , L−1, results in an additive
white Gaussian noise (AWGN) channel. Fast, flat fading is
modeled by lettingh[k] ∼ N (0, 1), or in polar coordinates,
h[k] = a[k]eiθ[k] with a[k] i.i.d. Rayleigh andθ[k] uniform over
[0, 2π). Thus under either channel model, the average SNR is

γ
∆= Es/N0, while for the Rayleigh channel, the instantaneous

SNR isa2[k] γ. The energy per source bit isEb = Es/(Rm).
Where it causes no confusion, we will omit the symbol time

indexingk.

Source Encoder Modulatorπ

×

+

Sink Decoder Demod.

π−1

π

h[k]

n[k]

x[k]

y[k]

c[j]u[i]

û[i]

Fig. 1. System model.

A non-coherent receiver simply measures the energy|yb|2
of each frequency bin, and the resulting channel transition
probabilities are given by [18]

p (y | x = eb) = KI0

(
2
√

Es

N0
a|yb|

)
(1)

where the normalization constant

K =
(γ

π

)M

e− γ(a2+‖y‖2)

is independent of the hypothesisb, andI0(.) is the 0-th order
modified Bessel function of the first kind [19]. Note that the
transition probabilities depend on the ratioa

√
Es/N0 rather

than the ratioa2 γ appearing in coherent detection.
The transition probabilities in (1) can be very easily evalu-

ated with extremely high precision and low-complexity using
with the algorithm presented in [20] based on the polynomial
expansions of [19].

The capacity of the non-coherent FSK channel was found
by Stark in [1]. Figure 2 shows the minimumEb/N0 (in dB)
required for reliable communication withM -FSK with non-
coherent detection in AWGN, forM = 2, 4, 8. The coherent
BPSK AWGN channel is shown for comparison (dashed line).

There are two main observations. First, increasing the band-
width (increasingM ) reduces the requiredEb/N0. Secondly,
in contrast to the coherent channel, as the code rateR → 0, the
requiredEb/N0 → ∞. Thus there is a non-trivial rate which
optimizes the requiredEb/N0 for any givenM .
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Fig. 2. MinimumEb/N0 versus code rateR required for reliable communica-
tion with M -ary FSK with non-coherent detection in AWGN forM = 2, 4, 8.

III. M ETRICS FORITERATIVE DECODING

Iterative decoding of BICM [9], [10] has shown promise for
the NC-FSK channel [13]. The main idea is to iterate between
soft demodulation and soft decoding, as shown in Figure 1.
Gains of 0.7 to 1 dB have been reported compared to single-
pass decoding of BICM.

In this section we will develop metrics suitable for use in
such decoders. There are two main design objectives. First, the
metrics should have a simple implementation. Secondly, it is
desirable to develop metrics that do not require any CSI, i.e.
do not depend ona[k], Es andN0.

A memoryless NC-FSK modulator transmitsx[k] = eb at
symbol timek where the active frequency binb is according to

b =
m−1∑
i=0

c[j(k, i)] 2i.

where j(k, i) = π−1(mk + i), i = 0, 1, . . . ,M − 1 are the
indexes of them coded bits modulated into symbolk.

Let Bi
0 = {b ∈ {0, 1, . . . ,M − 1} : b ∧ 2i = 0} andBi

1 =
{b ∈ {0, 1, . . . ,M − 1} : b ∧ 2i = 1}, where∧ denotes the
bitwise AND operation. ThusBi

0 is the set of indexes with a
zero in thei-th position of their binary representation andBi

1

is the set with a one at that position.
For b ∈ {0, 1, . . . ,M − 1}, k ∈ {1, 2, . . . , L − 1} and i ∈

{0, 1, . . . ,m− 1}, define the extrinsic probabilities [21]

qk,i (b) =
m−1∏
l=0
l 6=i

Pr
(
c[j(k, l)] = 2l ∧ b

)
.
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Standard iterative BICM demodulation [9] consists of feeding
the decoder with the following metrics (in log-likelihood ratio
form)

L(c[j(k, i)]) = log
p(c[j(k, i)] = 0)
p(c[j(k, i)] = 1)

= log

∑
b∈Bi

0

p (y[k] | eb) qk,i(b)∑
b∈Bi

1

p (y[k] | eb) qk,i(b)
. (2)

Substituting (1) into (2), we obtain the iterative decoder used
by [13].

The summations in (2) may be undesirable from the point
of view of complexity. To avoid these summations, the log
likelihood ratio (2) may be approximated in the following
standard way

L(c[j(k, i)]) ≈ max
b∈Bi

0

log I0

(
2
√

Es

N0
a[k] |yb[k]|

)
qk,i(b)

−max
b∈Bi

1

log I0

(
2
√

Es

N0
a[k] |yb[k]|

)
qk,i(b)

(3)

We shall refer to (2) and (3) as the Bessel and Bessel dual-max
metrics respectively.

Note that in order to compute (2) and (3), the signal energy,
the noise variance and the fading coefficients (or sufficiently
accurate estimates) must be available to the receiver. Both of
these metrics require full CSI.

A. Parameter Free Metrics

We will now develop decoder metrics that do not depend on
Es, N0 or a[k]. Taylor series expansion of the Bessel function
I0(α) around zero yields

I0(α) = 1 +
α2

4
+ O(α4) (4)

which motivates the following approximation of the log-
likelihood ratios (2),

L(c[j(k, i)]) ≈ log

M

2
+

Es

N2
0

a[k]2
∑
b∈Bi

0

|yb[k]|2 qk,i(b)

M

2
+

Es

N2
0

a[k]2
∑
b∈Bi

1

|yb[k]|2 qk,i(b)
. (5)

If we further assume that
Es

N2
0

a[k]2
∑
b∈Bi

0

|yb[k]|2 � M/2 (6)

we have

L(c[j(k, i)]) ≈ log

∑
b∈Bi

0

|yb[k]|2 qk,i(b)∑
b∈Bi

1

|yb[k]|2 qk,i(b)
(7)

which is independent ofEs, N0 and the fading amplitudesa[k].
The interpretation of (7) is interesting. The receiver first mea-

sures the received energies at every frequency bin and computes

the empirical probability at every bin as the fraction of the
total received energy present in a given bin. Obviously, the
normalization factor (the total energy

∑M−1
i=0 |yb[k]|2) simplifies

in (7).
We can further approximate (7) using the dual-max method

as follows,

L(c[j(k, i)]) ≈
max
b∈Bi

0

log(|yb[k]|2 qk,i(b))−max
b∈Bi

1

log(|yb[k]|2 qk,i(b)) (8)

which yields the corresponding parameter free dual-max met-
rics.

B. Numerical Examples

Before proceeding further, we present some numerical exam-
ples which demonstrate the utility of the parameter free metrics.
Since we are interested in application of the metrics to iterative
decoding, it is of interest to compare the corresponding EXIT
charts [22].

Figure 3 shows EXIT charts for soft demodulation using the
Bessel metrics (2) (solid), dual-max Bessel (3) (dashed), and
the parameter free metrics (7) (dashed-dotted) and (8) (dotted).
The charts are for4-FSK, 16-FSK and64-FSK modulation on
the AWGN channel, Figure 3(a) and on the Rayleigh fading
channel, Figure 3(b).

The first observation is that the curves exhibit an almost-
linear behavior, with Bessel metrics and parameter free metrics
resulting in similar slopes. This implies that at higherγ, the
parameter metrics will have the same EXIT chart, which will
help in assessing the performance degradation due to the lack
of CSI.

Further, we observe that the parameter free metrics are
information lossy, namely, when the input mutual information
is Iin = 1, the output mutual information is lower than that
obtained with Bessel metrics.

Finally, and perhaps most surprising, the parameter free dual-
max metric (8) is significantly better than (7) at lowIin, despite
the reduction in computational complexity. Application of the
dual-max approximation following the Taylor approximation
seems to regain some of the loss from the ideal Bessel metrics.

Figure 4(a) shows the demodulator EXIT charts for metrics
(2), (7) and (8) at their respective SNR thresholds with the
(25, 27, 33, 37)8 convolutional code. Figure 4(b) shows the
corresponding BER simulations with 10 decoding iterations and
10000 information bits per codeword. For the sake of clarity,
we do not show the curves for the Bessel dual-max metrics (3),
as the results are only slightly worse than the standard Bessel
metrics (2).

The EXIT analysis predicts the threshold behavior quite
accurately for (2) and (8). From Figure 4(b), it is apparent that
as M grows, the error floor is pushed down to lower error
rates, effectively disappearing for64-FSK at BERs of practical
interest.

We also see that the metric (7) exhibits significant per-
formance degradation with respect to its simpler dual max
counterpart (8). The self-normalized dual-max metrics (8) prove
to be very robust and show performance close to the ideal
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Fig. 3. EXIT charts of the Bessel and parameter free metrics for4, 16 and
64 NC-FSK on the AWGN (a) and Rayleigh fading (b) channel withγ = 6
dB.

Bessel metric. This result is quite remarkable, as the loss for
not knowing theγ is shown to be around0.6 dB.

Figure 5 shows the simulated bit-error rate for BICM with an
outer rateR = 1/2 repeat-accumulate code and4, 16 and64-
ary NC-FSK. Figure 5(a) is for AWGN only, while Figure 5(b)
is for Rayleigh fading. Metrics (2), (7) and (8) are considered.

The simulations were performed using10, 000 information
bits per codeword and 20 decoding iterations (one iteration of
the RA decoder per demodulation iteration). Once again, the
metrics (7) offer poor performance asM grows. In this case,
the dual-max metric (8) pays a maximum penalty of only about
1.5 dB for not knowingEs, N0 or the fading amplitude.
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(a) EXIT charts for64-ary NC-FSK. Each demodulator
chart is shown at itsEb/N0 threshold.
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(b) Simulated BER results for4, 16 and64-ary NC-FSK.

Fig. 4. EXIT chart and BER results for BICM over the AWGN channel with
a (25, 27, 33, 37)8 outer convolutional code using Bessel (2) and parameter
free metrics (7), (8).

IV. CODE OPTIMIZATION

The results presented in the previous section were for BICM
with an arbitrary selection of outer code (a similar approach
was taken in [13], where an off-the-shelf code was considered).
Our main intention however was to evaluate the utility of the
parameter free metrics. In this section we proceed to optimize
the choice of outer code, and consider more suitable modulation
mappings.

Motivated by the serially concatenated coded modulation
(SCCM) scheme of T̈uchler [23], we particularize it toM -
ary orthogonal modulation with outer irregular repetition codes.
This approach consists of concatenating a binary outer code
with a jointly designed inner code and modulator through a
bit interleaverπ. So we still have the system of Figure 1,
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Fig. 5. BER performance of BICM with outer rateR = 1/4 repeat accumulate
code and4, 16, 64 NC-FSK over AWGN and Rayleigh fading channel.

where rather than use a memoryless modulator, we use a coded
modulator with memory.

With reference to Figure 6, we propose an inner en-
coder/modulator that operates as follows. Encoding is per-
formed on blocks of2m bits. Pairs of bits from the block
of 2m bits undergo a single parity check. The result is then
encoded by a recursive ratem/m trellis code. The output of
the recursive encoder is finally fed to the standardM -ary NC-
FSK memoryless modulator (described above in Section III).
Thus the overall rate of the inner encoder/modulator is2m bits
per symbol.

Note that no interleaver is used between the encoder and
the NC-FSK modulator, as suggested by [23]. An interesting
characteristic of this inner code is that it reaches the(1, 1)

point on the EXIT chart [23]. The use of the single parity
checks prior to trellis encoding further improves the properties
of the resulting EXIT charts, as discussed in [15]. The particular
choice of trellis code shown in Figure 6 has been hand-selected
for properties that are particularly convenient when it comes to
optimizing the outer code.
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(a) 4 NC-FSK
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x[k]

+

c[j(k, 4)]

c[j(k, 5)]

(b) 8 NC-FSK

Fig. 6. Inner encoder/modulator for4 and8-ary NC-FSK.

For the outer code, we will use an irregular non-systematic
repetition code of lengthn, defined by the degree distribution
(edge perspective){

λi ≥ 0, i = 2, . . . , dmax :
dmax∑
i=2

λi = 1

}
,

where λi is the fraction of edges in the outer code graph
connected to information bit nodes of degreei, and dmax is
the maximum allowed degree (see [24] for details).

With these definitions, the number2 of information bit nodes
of degreei of the outer code is given byki = λin/i and the
resulting code rate is

R =
1
n

dmax∑
i=2

ki =
dmax∑
i=2

λi

i
.

The factor graph representation [25] of the overall serially
concatenated code is shown in Figure 7. In our design, we do
not use grouping nodes [24]. In a sense, the inner code nodes
act as grouping nodes of grouping factor2m.

2In practice, some small adjustments are required to ensure that theki are
integer.
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Fig. 7. Factor graph representation of the entire code. Grey circles denote
the message bits, the white circles denote the outer coded bits, double circles
denote theM -ary symbols, black circles represent the inner code state. Squares
represent the encoding constraint functions.

As shown in [14] for the binary erasure channel, the gap
between capacity and the decoding threshold for iteratively
decoded codes is related to the area between the EXIT charts
of the outer and inner codes. This idea has been extensively
used to optimize various irregular code ensembles over the
AWGN [23], [15], [24]. In the AWGN channel, the area theorem
[14] is not exact. For exact results the reader is referred to
the generalized EXIT charts of [26]. Unfortunately, computing
these generalized charts is not a simple task. However, codes
resulting from optimization with standard EXIT charts are
usually as close as desired from capacity (see e.g. [23], [15],
[24]).

Let II(u, γ) be the EXIT chart of the inner code at a given
SNRγ and a priori mutual informationu. Let IO

i (u) denote the
EXIT chart of an outer regular repetition code of degreei. We
can easily evaluateIO

i in terms of the well-knownJ function
[15] as follows,

IO
i = J

(
J−1(u)

√
i− 1

)
, where

J(x) = 1−
∫

e−(t−x2/2)/2x2

√
2πx2

log2(1 + e−t)dt

Accurate numerical evaluation is possible using the approxima-
tions in [16].

Finally, the EXIT chart of an irregular repetition code is
simply the weighted sum of the degree-i charts [14], [15], [16]

IO =
dmax∑
i=1

λiI
O
i .

We can therefore use linear programming to optimize the outer
code degree distribution, to minimize the area between the inner
and outer code EXIT charts.

Figure 8 shows the results of this curve fitting procedure for4
and8-ary modulation with rate1/2 codes. Degree distributions,
and thresholds for these codes, as well as rate1/4 are shown
in Table I. The thresholds are given in terms of the distance to
capacity∆C dB.
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Fig. 8. EXIT charts of optimized4 and 8-ary NC-FSK coded modulation.
Solid line is the outer code. Dashed line is the inner coded modulator

Figure 9 shows simulated BER results for the optimized rate
1/2 codes with 4 and 8 NC-FSK the AWGN channel, along with
capacity (solid) and the predicted decoding threshold (dashed).
A block length of100, 000 was used for the simulation with
100 decoding iterations. These results clearly validate the code
design using curve fitting of EXIT charts.
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Fig. 9. Simulated BER results for the optimized codes on the AWGN channel.

Table I summarizes the results of our code design. There
are two main conclusions. First, we have found codes very
close to capacity, ranging from 0.17 - 0.05 dB. This can be
compared to gaps of 0.9 - 1.7 dB reported in [13], where
no code optimization was performed. Secondly, the maximum
degree for the optimized codes is not unrealistically high. In our
linear program we allowed much higherdmax (up to 50), but
fortuitously such high degree nodes were not required. These
low maximum degrees, coupled with the extremely simple
inner code results in a system with very low implementation
complexity.
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TABLE I

OPTIMAL CODES FORM = 4, 8, 16 AND 64 IN THE AWGN CHANNEL WITH

BESSEL MATRICS.

M R Capacity Threshold Distribution

4 1/4 4.6172 dB 4.7602 dB λ2 = 0.0483
λ4 = 0.1250
λ11 = 0.0911
λ12 = 0.7356

1/2 4.1809 dB 4.3500 dB λ2 = 0.1413
λ4 = 0.1523
λ5 = 0.7064

8 1/4 3.5484 dB 3.5994 dB λ2 = 0.0193
λ4 = 0.0193
λ10 = 0.8655

1/2 2.9904 dB 3.0391 dB λ2 = 0.0581
λ4 = 0.6512
λ5 = 0.2907

16 1/4 2.5921 dB 2.600 dB λ2 = 0.042017
λ4 = 0.0442165
λ5 = 0.151857
λ12 = 0.617372
λ13 = 0.1445366

1/2 2.0685 dB 2.1397 dB λ2 = 0.128628
λ4 = 0.255314
λ5 = 0.575429
λ6 = 0.040627

64 1/4 1.6845 dB 1.6890 dB λ2 = 0.04975
λ6 = 0.163822
λ7 = 0.425504
λ30 = 0.36091

1/2 1.1155 dB 1.1487 dB λ2 = 0.114061
λ3 = 0.156532
λ4 = 0.463261
λ10 = 0.085959
λ11 = 0.180176

V. CONCLUSIONS

We have found a low complexity method of computing
metrics suited for iterative demodulation/decoding ofM -ary
non-coherent orthogonal modulation that does not require any
knowledge of the signal-to-noise ratio or fading coefficients
at the receiver. The method is based on the first-order Taylor
series expansion of the Bessel function. The proposed method
performs within0.6 dB of the ideal metrics. This enables the
use of methods such as bit-interleaved coded modulation over
non-coherent channels without side information.

We have also designed new codes for the4 and 8-ary non-
coherent orthogonal modulation channel. These codes are a
concatenation of an irregular repeat code and an two-state
trellis coded modulator. By optimizing the degree sequence of
the outer code we have found codes with decoding thresholds
within 0.15 dB of capacity, surpassing all previously known
codes. Furthermore, the optimized codes are very low complex-
ity, with low maximum degree. A forthcoming journal paper
will report addition results no CSI metrics.
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