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Abstract—The quantization of the outputs of a binary-input
discrete memoryless channel is considered. A new recursive
method for finding all optimal quantizers for all output cardinal-
ities is proposed. Two different versions of the newly proposed
method for top-down and bottom-up approaches are developed
which provide an improved understanding of the quantization
problem under consideration. Also, an efficient algorithm based
on dynamic programing is proposed and shown to have a
comparable complexity with the state of the art.

I. INTRODUCTION

Quantization has practical applications in hardware im-
plementations of communication systems, e.g., from channel
output quantization to message passing decoders [1] and
polar code construction [2]. In such applications, there is a
trade-off between performance and complexity of the system
represented by the number of quantization levels. Therefore, it
is of interest to use as few quantization levels as possible while
maintaining reliable communication with a given transmission
rate.

Recently we studied channel output quantization from a
mismatched-decoding perspective [3]. This study showed that
the best mismatched decoder coincides with maximum like-
lihood decoding for the channel between the channel input
and the quantizer output. This result supports the approach of
optimizing the quantizer based on a performance metric for
the quantized channel, e.g., mutual information [4] or error
exponent [5].

Consider a discrete memoryless channel (DMC) followed by
a quantizer at the output, as shown in Fig. 1. The channel input
X takes values in X = {1, . . . , J} with probability distribution
px = Pr(X = x), and the channel output Y takes values
in Y = {1, . . . ,M}, with channel transition probabilities
Wy|x = Pr(Y = y|X = x). The channel output is quantized
to Z(K), which takes values in Z(K) = {z(K)

1 , . . . , z
(K)
K }, by

a possibly stochastic quantizer Qz|y = Pr(Z(K) = z|Y = y).
The conditional probability distribution of the quantizer output
given the channel input is Tz|x = Pr(Z(K) = z|X = x) =∑
y∈Y Qz|yWy|x.
The mutual information between X and Z(K) is

I(X;Z(K)) =
∑

z∈Z(K)

∑
x∈X

pxTz|x log
Tz|x∑

x′ px′Tz|x′
. (1)
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Fig. 1: A discrete memoryless channel followed by a quantizer.

Let us denote the set of all possible quantizers Q with
K outputs, including stochastic quantizers, with Q(K). We
formulate the quantizer optimization as follows: for a given
constant 0 ≤ α ≤ 1, we want to find an optimal quantizer Q∗α
with the smallest cardinality K from the set S defined as

S , {Q ∈ QK : 1 ≤ K ≤M, I(X;Z(K)) ≥ αI(X;Y )}.
(2)

The optimal quantizer Q∗α preserves at least an α-portion
of the original mutual information with the smallest number
of quantization levels K.

II. BACKGROUND AND CONTRIBUTION

For a fixed output cardinality K, Kurkoski and Yagi showed
that there is a deterministic quantizer that maximizes the
mutual information (1) between channel input and quan-
tized output [4]. Therefore, considering only deterministic
quantizers is sufficient to find the optimal quantizer Q∗α. A
deterministic quantizer Q maps each output y to only one
quantized output z(K)

k , Q : {1, . . . ,M} → {z(K)
1 , . . . , z

(K)
K },

therefore, the corresponding probabilistic map Qz|y takes only
values 0 or 1. We define the pre-image of z(K)

k as

A(z
(K)
k ) =

{
y ∈ Y : Q−1(z

(K)
k ) = y

}
(3)

which is the set of channel outputs that are mapped to z(K)
k .

Hence, the deterministic quantizer Qz|y partitions Y to K

subsets {A(z
(K)
1 ), . . . ,A(z

(K)
K )}.

Let Px|y = Pr(X = x|Y = y) be the posterior conditional
probability distribution on the channel input which depends
on the input distribution px and the channel conditional
distribution Wy|x. For each channel output y, we define a
vector vy

vy =
[
P1|y, P2|y, . . . , PJ−1|y

]
(4)

with vy ∈ U = [0, 1]
J−1. Define an equivalent quantizer

Q̃ on the vectors {v1, . . . , vM} as Q̃(vy) = Q(y) = z.



Kurkoski and Yagi in [4, Lemma 2], using the results of
[6], study a condition to find an optimal quantizer Q̃∗. They
show the existence of an optimal quantizer Q̃∗ for which two
distinct preimages Q̃∗−1(z) and Q̃∗−1(z′) are separated by a
hyperplane in Euclidean space U . Unfortunately, this condition
does not offer a practical search method for quantizer design
problem in general; however, as suggested in [4], it simplifies
the problem for binary-input case.

The problem of finding Q∗α can be tackled by either a
bottom-up or top-down approach. The former starts with trivial
partition into K = M subsets, where each subset A(z

(K)
k ),

1 ≤ k ≤ K contains exactly one element of Y . At each
step, we decrease the cardinality K by one and design a
quantizer with output size K. We stop when the corresponding
mutual information goes below the desired threshold. The
latter approach starts with the other trivial solution with single
partition containing all the elements, i.e., A(z

(1)
1 ) = Y . At

each step, we increment the cardinality K by one and design a
quantizer with output size K. We stop when the corresponding
mutual information reaches (or exceeds) the desired threshold.
In both approaches, the quantizer design at each step can
be performed either recursively, namely by starting from the
result of previous step, or independently, which means that the
design is performed independent of the previous step result.

An example of a recursive bottom-up approach is the
agglomerative information bottleneck [7] which has been
rediscovered multiple times in the literature with different
names such as greedy merging or greedy combining [1], [2].
This algorithm iteratively reduces the cardinality by merging
two outputs into a new single output. At each iteration, the
greedy algorithm evaluates all the possible pairwise merges
and selects the one that minimizes the mutual information
loss. Although this algorithm finds the optimal pairwise merge
at each step, it is globally suboptimal, since it fixes all the
previously performed merges. This algorithm has complexity
O(M2) for a bottom-up design, resulting in a quantizer for
each cardinality 1 ≤ K ≤M .

As for the independent approach, several quantizer design
algorithms from the literature can be utilized. For binary-
input DMCs, Kurkoski and Yagi developed an algorithm based
on dynamic programming that finds an optimal quantizer
with time complexity O(K(M −K)2) [4]. Iwata and Ozawa
[8] improved the complexity to O(K(M − K)) using the
SMAWK algorithm. For the non-binary-input case, finding
the optimal quantizer is an NP-hard problem [9], however
several suboptimal algorithms are proposed in the literature.
An example is KL-means quantizer [10] which is a variation
of the K-means clustering algorithm by replacing Euclidean
distance metric with Kullback-Leibler divergence. This algo-
rithm has complexity O(KMT ) where T is the number of
iterations that algorithm is run to converge to a local optimum.
The complexity of top-down (or bottom-up) approach with
independent design at each step is K (or M −K) times the
complexity of a single-step run, respectively.

In this paper, we focus on the binary-input case and we
propose a recursive method for quantization of binary-input

DMCs that finds all the optimal quantizers. We develop
two versions of the new method, one for top-down and the
other for bottom-up approach. In addition, we propose an
algorithm based on dynamic programming that has comparable
complexity to the best known algorithm from the literature.

III. OPTIMAL RECURSIVE QUANTIZER

For the binary-input case, the posterior conditional proba-
bilities vy = P (1|y) are in one-dimensional space U = [0, 1].
Denote the output probabilities by πi = Pr(Y = i). We assume
that the outputs are relabelled to satisfy

P (1|1) < P (1|2) < · · · < P (1|M). (5)

According to the [4, Lemma 3], there is an optimal quantizer
Q∗ such that preimages of the quantizer outputs consist of
contiguous set of integers,

A∗(z(K)
k ) = {a∗k−1 + 1, . . . , a∗k} (6)

for z(K)
k ∈ Z(K), with a∗0 = 0 and a∗k−1 < a∗k and a∗K = M .

The a∗k’s are optimal quantizer boundaries which satisfy

0 < a∗1 < a∗2 < · · · < a∗K−1 < M. (7)

Here we show that this condition is necessary for any
optimal quantizer. Denote the mutual information loss cor-
responding to merging outputs j and l with ∆ı(j, l) which is
given by

∆ı(j, l) =
∑

x∈{1,2}

πjΦ(P (x|j)) + πlΦ(P (x|l))

− (πj + πl)Φ(P (x|yjl)), (8)

where Φ(x) = x log(x).

Lemma 1. For binary-input DMC, assuming that the outputs
are relabelled to satisfy (5), then for any choice of 1 ≤ j <
k < l ≤M at least one of the following is true,{

∆ı(j, k) < ∆ı(j, l) if πj

πl
≤ vl−vk

vk−vj ,

∆ı(k, l) < ∆ı(j, l) if πj

πl
≥ vl−vk

vk−vj .
(9)

The proof is in the Appendix. Lemma 1 shows that for
any quantizer that does not satisfy the condition in (6),
there is another quantizer satisfying this condition that has a
higher mutual information. Therefore, based on this necessary
condition, the quantizer design reduces to searching for the
optimal boundaries a∗k as in (7).

A. Modified Greedy Merging

The greedy merging algorithm [1], [2] reduces the output
cardinality by performing the best pairwise merge at each step.
It finds the optimal single-step quantizer by a greedy search,
i.e.,

Q(i)
m = arg min

Q∈Q(i)
m

I(X;Z(i+1))− I(X;Z(i)), (10)

where Q(i)
m is set of all possible single-step deterministic

quantizers (pairwise merges) from Z(i+1) to Z(i).



In this section, we propose a new greedy algorithm which
considers all pairwise merges and also another set of single-
step quantizers which we denote them as contractions. A
contraction is a single-step quantizer that consists of splits and
merges. Next, we denote the definitions of split and merge and
afterwards we define a contraction.

Definition 1 (Splitting an output). A quantizer output zk with
preimage A(zk) = {ak−1 +1, . . . , ak} of size bk = |A(zk)| ≥
2, splits into two non-empty parts zkL (left) and zkR (right)
with preimages A(zkL) = {ak−1 + 1, . . . , s} and A(zkR) =
{s+1, . . . , ak}. This split can be done in bk−1 different ways,
ak−1 + 1 ≤ s ≤ ak − 1.

Definition 2 (Merging an split output). An split output zk with
two non-empty parts zkL (left) and zkR (right) is merged as:
1- zkL merges with zk−1 (or z(k−1)R if it has been split too)
2- zkR merges with zk+1 (or z(k+1)L)

Contraction from K-level to (K − 1)-level:

1) Input: a K-level quantizer with output boundaries
{a1, a2, . . . , aK−1}

2) Select a set of consecutive non-boundary outputs
{zj , zj+1, . . . , zl} with j > 1, l < K and bk =
|A(zk)| ≥ 2 for all j ≤ k ≤ l.

3) Split each zk according to Definition 1. This step can
be done in

∏l
k=j(bk − 1) different ways.

4) Merge zkR with z(k+1)L for all j ≤ k ≤ l−1, also merge
zj−1 with zjL and zlR with zl+1.

5) Output: a (K−1)-level quantizer with output boundaries
{a′1, . . . , a′K−2} for which ak−1 < a′k−1 < ak for all
j ≤ k ≤ l − 1.

Let us denote the set of all quantizers obtained by contrac-
tion as Q(K−1)

c .
As an example to illustrate contraction, consider a quantizer

with 3 outputs with preimages A(z1) = {1, . . . , a1}, A(z2) =
{a1 + 1, . . . , a2} and A(z3) = {a2 + 1, . . . ,M}. According
to step 2 of contraction, the only possibility for a set of
consecutive non-boundary outputs is {z2} if b2 = |A(z2)| ≥ 2.
In step 3, we split z2 into two parts A(z2L) = {a1 +1, . . . , s}
and A(z2R) = {s+1, . . . , a2} where a1 +1 ≤ s ≤ a2−1. We
merge z2L with z1 and z2R with z3 according to step 4. The
output of this contraction is a quantizer with 2 outputs that has
the boundary a′1 = s. The set of all b2−1 possible contractions
for this example are specified by a1 + 1 ≤ s ≤ a2 − 1.

Modified greedy merging starts from the trivial solution with
M outputs and at each step performs a greedy search over
all possible contractions Q(i)

c and all pairwise merges Q(i)
m ,

selecting the one with lowest mutual information loss. At each
step it keeps all the quantizers that have the highest mutual
information and uses them as a seed for the next step.

Theorem 1. For the binary-input DMC, the modified greedy
merging algorithm finds all optimal quantizers Q∗ for all
output cardinalities 1 ≤ K ≤M .

Due to space limitations, we omit the proof.

B. Modified Greedy Splitting

Modified greedy splitting is a top-down algorithm that is
the dual of modified greedy merging. It starts from the trivial
solution with a single output and at each step it increases the
output cardinality by one, performing a greedy search over all
possible expansions. It keeps all the quantizers that have the
highest mutual information at each step and uses them as a
seed for next step. In the following we define an expansion
which consists of splits and merges.

Assume that we have a K-level quantizer which is specified
by its boundaries {a1, a2, . . . , aK}, we obtain a (K+1)-level
quantizer by set of splits and merges according to following
steps.

Expansion from K-level to (K + 1)-level:
1) Input: a K-level quantizer with output boundaries
{a1, a2, . . . , aK−1}

2) Select a set of consecutive outputs {zj , zj+1, . . . , zl}
with j ≥ 1, l ≤ K and bk = |A(zk)| ≥ 2 for all
j ≤ k ≤ l.

3) Split each zk according to Definition 1. This step can
be done in

∏l
k=j(bk − 1) different ways.

4) If the size of selected set in Step 2 is one, omit this
otherwise merge zkR with z(k+1)L for all j ≤ k ≤ l− 1.

5) Output: a (K+1)-level quantizer with output boundaries
{a′1, . . . , a′K} for which ak−1 < a′k < ak for all j ≤
k ≤ l.

Let us denote the set of all quantizers obtained by expan-
sions as Q(K+1)

e .
As an example to illustrate expansion, consider a quan-

tizer with 2 outputs with preimages A(z1) = {1, . . . , a1},
A(z2) = {a1 +1, . . . ,M}. An expansion for this example can
be obtained in two different ways. The first one is simply by
splitting one of the outputs z1 or z2 which can be performed
in b1 − 1 and b2 − 1 different ways. The second one is by
splitting both z1 and z2 and merging z1R with z2L. The latter
can be performed in (b1−1)(b2−1) different ways. The output
of any such expansion is a quantizer with 3 outputs that has
the boundaries {a′1, a′2}.

Theorem 2. For the binary-input DMC, the modified greedy
splitting finds all optimal quantizers Q∗ for all output cardi-
nalities 1 ≤ K ≤M .

This theorem can be easily proved by showing the duality
between expansions and contractions plus pairwise merges.

Note that the number of possible contractions and ex-
pansions increases polynomially as the number of outputs
with large preimages increase. Therefore, the complexity of
the modified greedy algorithms also grows polynomially. In
the following we provide an algorithm based on dynamic
programming which has quadratic complexity in the worst
case.

C. Dynamic Programming Based Algorithm

This algorithm is a modified version of the Quantizer Design
Algorithm [4] which is an instance of dynamic programming.



The assumption for this algorithm is that we already know the
optimal K-level quantizer (which is specified by its boundaries
{ai}Ki=0) and we want to find the optimal (K + 1)-level
quantizer employing the constraints imposed by expansion
procedure on the resulting boundaries {a′i}

K+1
i=0 . The algorithm

has a state value Sz(y), which is the maximum partial mutual
information when channel outputs 1 to y are quantized to
quantizer outputs 1 to z. This can be computed recursively
by conditioning on the state value at time index z − 1:

Sz(a) = max
a′

(
Sz−1(a′) + ı(a′ → a)

)
, (11)

where ı(a′ → a) is the contribution that the quantizer output
z = {a′ → a} makes to the mutual information. It is called
partial mutual information and is given by

ı(a′ → a) =
∑
x∈X

Px

a∑
y=a′+1

Py|x log

∑a
y′=a′+1 Py′|x∑

x′
∑a
y′=a′+1 Py′|x′

.

(12)
There are constraints imposed by the expansion procedure
on the set of states a′ that needs to be considered in the
maximization in (11). These constraints have a key role in
simplifying the original Quantizer Design Algorithm [4].

Splitting Algorithm
1) Inputs

• Binary-input discrete memoryless channel Py|x re-
labelled to satisfy (5).

• Input distribution Px.
• Set of boundaries {ai}Ki=0 corresponding to the

optimal K-level quantizer.
2) Precompute the partial mutual information. For each 0 ≤

i ≤ K − 1,
• For a′ = ai + 1 and for each a ∈ ai + 1, . . . , ai+1,

compute ı(a′ → a) according to (12).
• For each a′ ∈ {ai + 2, . . . , ai+1} and for each a ∈
{ai+1, . . . , t}, (where t = M for i = K−1 and t =
ai+2 − 1 otherwise) compute ı(a′ → a) according
to (12).

3) Recursion
• S1(a) = ı(1→ a) for a ∈ {1, . . . , a1}.
• Store the local decision h1(a) = 0 for a ∈
{1, . . . , a1}.

• For each 1 ≤ i ≤ K − 1,
– Compute

Si+1(ai) = max
a′

Si(a
′) + ı(a′ → ai),

hi+1(ai) = arg max
a′

Si(a
′) + ı(a′ → ai),

where the maximization is over a′ ∈ {ai−1 +
1, . . . , ai − 1}.

– For each a ∈ {ai + 1, . . . , ai+1 − 1} compute

Si+1(a) = max
a′

Si(a
′) + ı(a′ → a),

hi+1(a) = arg max
a′

Si(a
′) + ı(a′ → a),

where the maximization is over a′ ∈ {ai−1 +
1, . . . , ai}.

– Compute

Si+1(ai+1) = Si(ai) + ı(ai → ai+1),

hi+1(ai+1) = ai.

4) Find the optimal quantizer by traceback. Let a∗K+1 =
M . For each i ∈ {K,K − 1, . . . , 1},

a∗i = hi+1(a∗i+1).

Theorem 2 guarantees finding all the optimal quantizers at
each step provided that the algorithm is run with all seeds from
the previous step and that a tie-preserving implementation
collects all locally optimal decisions and tracebacks.

Note that the dual of this algorithm can be developed for
the bottom-up approach, based on the contraction procedure.
Namely, with the assumption of already knowing the optimal
K-level quantizer, all the optimal (K−1)-level quantizers are
found using similar dynamic programming approach.

D. Complexity

The splitting algorithm developed here has complexity
O(M2) in the worst case, and more generally it has com-
plexity O(

∑K
i=1 bibi+1) where

∑K
i=1 bi = M . The worst case

complexity is in the same order as the best known state of the
art algorithm in [8].

E. Example: Additive White Gaussian Noise (AWGN) Channel

We consider a binary-input AWGN channel with equally
likely ±1 inputs and noise variance of σ2 = 0.5. We first uni-
formly quantize the output of the AWGN channel y between
-2 and 2 with M = 1000 levels. The natural order of the
outputs of the resulting DMC satisfies (5). Later we apply the
splitting algorithm to find a quantizer with minimum output
levels which preserves α = 0.99 of the mutual information of
the original AWGN. Fig. 2 shows the quantization boundaries
for the optimal quantizers (of underlying DMC) with 2 to
8 outputs. The results match with those obtained by the
algorithm in [4]. We observe that the optimal quantizer with
K = 8 outputs satisfies the mutual information constraint (Fig.
3).

APPENDIX A
PROOF OF LEMMA 1

Let us denote the new output resulting from merging j and
l as y′jl and its conditional posterior probability as vjl

vjl = P1|y′jl =
(πjvj + πlvl)

πj + πl
→ πj

πl
=
vl − vjl
vjl − vj

(13)

v̄jl = P2|y′jl = 1− vjl →
πj
πl

=
v̄jl − v̄l
v̄j − v̄jl

. (14)

Now let us assume that
πj
πl

=
vl − vjl
vjl − vj

≥ vl − vk
vk − vj

, (15)

therefore, vjl ≤ vk.
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Fig. 2: Optimal quantization of a DMC derived from a finely
quantized AWGN channel with M = 1000 to K = 2 to K = 8
levels using the top-down splitting algorithm.
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Fig. 3: Normalized mutual information of the Optimal quan-
tizers with K = 2 to K = 8 levels.

With this assumption, we will show that both terms of the
summation in (8) is larger for a (j, l) merge than for a (k, l)
merge.

∆ı1(j, l) = πjΦ(vj)+πlΦ(vl)− (πj +πl)Φ(vjl) > ∆ı1(k, l),
(16)

∆ı2(j, l) = πjΦ(v̄j)+πlΦ(v̄l)− (πj +πl)Φ(v̄jl) > ∆ı2(k, l).
(17)

Fig. 4 illustrates (16) where,

δ1 =
∆ı1(j, l)

πj + πl
, δ2 =

∆ı1(k, l)

πk + πl
. (18)

We have the following relations on the triangles in Fig. 4,

δ1
∆1 + ∆2

=
vjl − vj
vl − vj

=
πl

πj + πl
, (19)

δ2
∆2

=
vkl − vk
vl − vk

=
πl

πk + πl
, (20)
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Fig. 4: Illustration of ∆ı1(j, l) and ∆ı1(k, l).

where the second equality comes from (13). Notice that ∆1 >
0, since vjl ≤ vk and Φ(·) is a strictly convex function. Using
(19) and (20) in (18) we have

∆ı1(j, l) = πl(∆1 + ∆2) > πl∆2 = ∆ı1(k, l), (21)

which proves (16). We can prove (17) in a similar way since
from the assumption in (15) we have v̄jl ≥ v̄k.

If we assume other side of inequality from (15), namely
πj
πl

=
vl − vjl
vjl − vj

≤ vl − vk
vk − vj

, (22)

we can similarly prove that ∆ı(j, l) > ∆ı(j, k). This com-
pletes the proof.
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