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Abstract—We study several properties of the upper bound
on the mismatch capacity problem we recently proposed. In
particular, we show that the bound can be cast as a convex-
concave saddlepoint problem enabling efficient computation.
Moreover, as opposed to multiple achievability bound in the
literature, we show that the multiletter version of this bound does
not yield any gain. In addition, we show a necessary condition
for the mismatch capacity to be strictly smaller than the channel
capacity for binary-input channels.

I. INTRODUCTION AND PRELIMINARIES

We consider reliable communication over a discrete mem-
oryless channel (DMC) W with a given decoding metric [1],
[2]. This problem arises when the decoder uses a suboptimal
decoding rule due to limited computational resources, or
imperfect channel estimation. Moreover, it is shown in [2]
that important problems in information theory, like zero-error
capacity of a channel can be cast as instances of mismatched
decoding problem. Multiple achievability results have been
reported in the literature [1]–[4] (see also [5]). These results
are derived by random-coding techniques, i.e. analyzing the
average probability of error of mismatched decoder over an
ensemble of codebooks. On the other hand, the only single-
letter converse was given in [6], where it was claimed that for
binary-input DMCs, the mismatch capacity was the achievable
rate derived in [3], [4]. Reference [7] provided a counterexam-
ple to this converse invalidating its claim. Multiletter converse
results were proposed in [8].

We assume input and output alphabets are X =
{1, 2, · · · , J} and Y = {1, 2, · · · ,K}, respectively, with
J,K < ∞. We denote the channel transition probability
by W (k|j), k ∈ Y, j ∈ X . A codebook Cn is defined
as a set of M sequences Cn =

{
x(1),x(2), · · · ,x(M)

}
,

where x(m) =
(
x1(m), x2(m), · · · , xn(m)

)
∈ Xn, for

m ∈ {1, 2, · · · ,M}. A message m ∈ {1, 2, · · · ,M} is chosen
equiprobably and x(m) is sent over the channel. The channel
produces a noisy observation y = (y1, y2, · · · , yn) ∈ Yn
according to Wn(y|x) =

∏n
i=1W (yi|xi). Upon observing

y ∈ Yn the decoder produces an estimate of the transmitted
message m̂ ∈ {1, 2, · · · ,M}. The decoder that minimizes the
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error probability is the maximum-likelihood (ML) decoder,
that produces the message estimate m̂ according to

m̂ = arg max
i∈{1,2,··· ,M}

Wn
(
y|x(i)

)
. (1)

Rate R > 0 is achievable if for any ε > 0 there exists a
sequence of length-n codebooks {Cn}∞n=1 such that |Cn| ≥
2n(R−ε), and lim infn→∞ Pe(Cn) = 0. The capacity of W ,
denoted by C(W ), is defined as the largest achievable rate.

In multiple practical scenarios, it is not possible to use a
decoder based on Wn and instead, the decoder produces the
message estimate m̂ as

m̂ = arg max
i∈{1,2,··· ,M}

d
(
x(i),y

)
, (2)

where,

d
(
x(i),y

)
=

n∑
`=1

d
(
x`(i), y`

)
(3)

The mismatch capacity Cd(W ) is defined as the largest
achievable rate when the decoder is (2). Recently, we have
shown that Cd(W ) is upper bounded by the following quantity,

R̄d(W ) = max
PX

min
PY Ŷ |X∈Mmax(d)

PY |X=W

I(PX , PŶ |X) (4)

where I(PX , PŶ |X)
∆
= I(X; Ŷ ) and the setMmax(d) is given

in the following definition.
Definition 1: Let PY Ŷ |X be a joint conditional distri-

bution and define the set S(k1, k2)
∆
=

{
i ∈ X |i =

arg maxi′∈X d(i′, k2) − d(i′, k1)
}

. We say that PY Ŷ |X is a
maximal joint conditional distribution if for all (j, k1, k2) ∈
X × Y × Y ,

PY Ŷ |X(k1, k2|j) = 0 if j /∈ S(k1, k2). (5)

For a given decoding metric d, we define the set of maximal
joint conditional distributions to be Mmax(d).

In this paper we study some properties of the upper bound.
Specifically, in Section II we show that computing our upper
bound is a convex-concave saddlepoint problem and we derive
the optimality KKT conditions. In Section III, we show that
the multiletter version of the upper bound coincides with the
single-letter one. In Section IV we derive a sufficient condition
for Cd(W ) < C(W ) for binary-input channels.



II. CONVEXITY ANALYSIS

In this section, we show that the optimization (4) is a
convex-concave saddlepoint problem. First we argue that the
constraints induce a convex set.

Lemma 1: For any channel W and metric d, the set of
joint conditional distributions PY Ŷ |X satisfying both PY Ŷ |X ∈
Mmax(d) and PY |X = W , is a convex set.

Proof: Let PY Ŷ |X and P ′
Y Ŷ |X both satisfy the above

constraints. Now for any 0 < λ < 1 we have,

λPY |X + (1− λ)P ′Y |X = W. (6)

In addition, if for some k1, k2 we have j /∈ S(k1, k2), both
PY Ŷ |X(k1, k2|j) and P ′

Y Ŷ |X(k1, k2|j) are equal to zero, and
so is any linear combination of them. Therefore,

λPY Ŷ |X + (1− λ)P ′
Y Ŷ |X ∈Mmax(d). (7)

Moreover, I(PX , PŶ |X) is convex in terms of PŶ |X , and
concave in terms of PX . Since PŶ |X is a linear function
of PY Ŷ |X , we get that I(PX , PŶ |X) is convex in terms of
PY Ŷ |X . Therefore from the minimax theorem [9] we get,

R̄d(W ) = max
PX

min
PY Ŷ |X∈Mmax(d)

PY |X=W

I(PX , PŶ |X) (8)

= min
PY Ŷ |X∈Mmax(d)

PY |X=W

max
PX

I(PX , PŶ |X) (9)

= min
PY Ŷ |X∈Mmax(d)

PY |X=W

C(PŶ |X). (10)

The rest of this section is devoted to deriving the KKT
conditions for the optimization problem in (4). Given that
I(PX , PŶ |X) is convex in PY Ŷ |X , and concave in PX , then
the KKT conditions are sufficient for global optimality. For
convenience, we define f(PX , PY Ŷ |X) , I(PX , PŶ |X) and
rewrite the optimization problem in (4) as,

R̄d(W ) = max
PX

min
PY Ŷ |X∈Mmax(d)

PY |X=W

f(PX , PY Ŷ |X). (11)

Let P̂X , P̂Y Ŷ |X be the optimal input and joint conditional
distributions in (11) and q̂Ŷ be the output distribution induced
by P̂X and P̂Ŷ |X . Then for P̂X we have the following
constraints:

P̂X(j) ≥ 0, ∀j ∈ X (12)∑
j∈X

P̂X(j) = 1. (13)

Let µj , j = 1, 2, · · · , J be the Lagrange multipliers cor-
responding the inequalities in (12) and ρ be the Lagrange
multiplier corresponding to (13). Therefore, from stationarity
we have,

∂

∂PX(j)
f(PX , P̂Y Ŷ |X)

∣∣∣∣
PX=P̂X

= ρ+ µj (14)

and from the complementary slackness [10] we have
µj P̂X(j) = 0 and from the dual feasibility we have µj ≥ 0
which leads to the separation of the equations of in two cases.
If P̂X(j) > 0

∂

∂PX(j)
f(PX , P̂Y Ŷ |X)

∣∣∣∣
PX=P̂X

= ρ, (15)

while when P̂X(j) = 0 we have

∂

∂PX(j)
f(PX , P̂Y Ŷ |X)

∣∣∣∣
PX=P̂X

≤ ρ. (16)

Note that, because there is no other constraint on µj , all of the
KKT conditions are summarized in (16) and (15). Moreover,
computing the derivatives in (15) and (16) gives

∂

∂PX(j)
f(PX , P̂Y Ŷ |X)

∣∣∣∣
PX=P̂X

=
∑
k∈Y

P̂Ŷ |X(k|j) log
P̂Ŷ |X(k|j)
q̂Ŷ (k)

− 1. (17)

As for P̂Y Ŷ |X , we have the following constraints. For all
j, k1, k2 ∈ X × Y × Y ,

P̂Y Ŷ |X(k1, k2|j) ≥ 0, (18)

P̂Y Ŷ |X(k1, k2|j) = 0, if j /∈ S(k1, k2) (19)

where (18) corresponds to P̂Y Ŷ |X(k1, k2|j) being a distribu-
tion and (19) corresponds to P̂Y Ŷ |X(k1, k2|j) ∈ Mmax(d).
Moreover from the constraint PY |X = W we get for all
j, k1 ∈ X × Y∑

k2

P̂Y Ŷ |X(k1, k2|j) = W (k1|j). (20)

For the ease of notation, we skip the step of explicitly
considering a Lagrange multiplier for (18). However, after
simplification, The following KKT conditions are equivalent
to the full KKT conditions considering a Lagrange multiplier
for (18). Details follow similarly to the above derivation. If
we use a Lagrange multiplier λj,k1 for each of the conditions
in (20), we have when P̂Y Ŷ |X(k1, k2|j) > 0

∂

∂PY Ŷ |X(k1, k2|j)
f(P̂X , PY Ŷ |X)

∣∣∣∣
PY Ŷ |X=P̂Y Ŷ |X

= λj,k1

(21)

and when P̂Y Ŷ |X(k1, k2|j) = 0 and j ∈ S(k1, k2) we have

∂

∂PY Ŷ |X(k1, k2|j)
f(P̂X , PY Ŷ |X)

∣∣∣∣
PY Ŷ |X=P̂Y Ŷ |X

≥ λj,k1 .

(22)

Explicitly computing the derivative gives

∂

∂PY Ŷ |X(k1, k2|j)
f(P̂X , PY Ŷ |X)

∣∣∣∣
PY Ŷ |X=P̂Y Ŷ |X

(23)

= P̂X(j) log
P̂Ŷ |X(k2|j)
q̂Ŷ (k2)

. (24)



Summarizing, for the KKT optimality conditions of we get
the following inequalities

1) For P̂X(j) > 0,∑
k∈Y

P̂Ŷ |X(k|j) log
P̂Ŷ |X(k|j)
q̂Ŷ (k)

= 1 + ρ, (25)

2) For P̂X(j) = 0,∑
k∈Y

P̂Ŷ |X(k|j) log
P̂Ŷ |X(k|j)
q̂Ŷ (k)

≤ 1 + ρ, (26)

3) For P̂Y Ŷ |X(k1, k2|j) > 0,

P̂X(j) log
P̂Ŷ |X(k2|j)
q̂Ŷ (k2)

= λj,k1 , (27)

4) For P̂Y Ŷ |X(k1, k2|j) = 0 and j ∈ S(k1, k2),

P̂X(j) log
P̂Ŷ |X(k2|j)
q̂Ŷ (k2)

≥ λj,k1 . (28)

In the next section, we employ the above KKT conditions
to analyze the multiletter version of our bound.

III. MULTILETTER BOUND

In this section, we study the multiletter extension of the
bound (4). In particular, we show that the multiletter version
cannot improve on the single-letter bound. We define the `-
letter decoding metric d(`) : X ` × Y` → R as follows

d(`)
(
(x1, x2, · · · , x`), (y1, y2, · · · , y`)

)
=
∑̀
i=1

d(xi, yi).

(29)

This decoding metric definition is consistent with the additive
decoder we have defined in (3). We denote j ∈ X ` and k ∈ Y`
as the `-letter inputs and outputs, respectively. Let W (`) denote
a DMC over input alphabet X ` and output alphabet Y` with
the channel rule W (`)

(
(y1, y2, · · · , y`)|(x1, x2, · · · , x`)

)
=∏`

i=1W (yi|xi). Additionally, we define P
(`)
X and P

(`)

Y Ŷ |X
accordingly

P
(`)
X (x1, . . . x`) =

∏̀
i=1

PX(xi) (30)

P
(`)

Y Ŷ |X

(
(y1, y2, · · · , y`), (ŷ1, ŷ2, · · · , ŷ`)|(x1, x2, · · · , x`)

)
=
∏̀
i=1

PY Ŷ |X(yi, ŷi|xi) (31)

X` and Y `, Ŷ ` denote random variables defined on alphabets
X `, Y` and Y`, respectively. Moreover, S(`)(k1,k2) is defined
as

S(`)(k1,k2)
∆
={

i ∈ X ` | i = arg max
i′∈X `

d(`)(i′,k2)− d(`)(i′,k1)
}
.

(32)

In the following lemma we characterize the sets
S(`)(k1,k2) and relate them to S(k1,i, k2,i), i = 1, 2, · · · , `.

Lemma 2: ] For j ∈ X `,k1 ∈ Y`,k2 ∈ Y` we have that
j ∈ S(`)(k1,k2) if and only if for all 1 ≤ i ≤ ` we have

ji ∈ S(k1,i, k2,i). (33)

Proof: We have

arg max
j∈X `

d(`)(j,k2)− d(`)(j,k1) (34)

= arg max
j∈X `

∑̀
i=1

d(ji, k2,i)− d(ji, k2,i) (35)

= arg max
(j1,j2,··· ,j`)∈X `

∑̀
i=1

d(ji, k2,i)− d(ji, k2,i) (36)

From (36) we get that if (j1, j2, · · · , j`) ∈ S(k1,k2) then for
all 1 ≤ i ≤ ` we should have ji ∈ S(k1,i, k2,i). Therefore,

S(`)(k1,k2)

= S(k1,1, k2,1)× S(k1,2, k2,2)× · · · × S(k1,`, k2,`). (37)

For the above `-letter alphabets and distributions, the con-
struction and analysis of the bound remains unchanged. There-
fore, (4) remains valid for its `-letter extension, which can be
written as

R̄
(`)
d (W ) ,

1

`
R̄d(`)(W

(`)) (38)

=
1

`
max
p
X`

min
P

Y `Ŷ `|X`∈Mmax(d(`))

P
Y `|X`=W (`)

I(pX` , PY `Ŷ `|X`).

(39)

We have the following result.
Proposition 1:

R̄
(`)
d (W ) = R̄d(W ). (40)

Proof: Given that I(PX , PŶ |X) is convex in PY Ŷ |X , and
concave in PX , the KKT conditions are also sufficient for
global optimality. Similarly, f(pX` , PY `Ŷ `|X`) is convex in
terms of pX` and concave in terms of PY `Ŷ `|X` . Here we use
the optimality conditions derived in the past section to show
that if P ∗X , P

∗
Y Ŷ |X are the optimal distributions for the single-

letter bound then P̂
(`)
X , P̂

(`)

Y Ŷ |X
defined in (30) and (31) are

optimal distributions for the multiletter version. As a result,
if we find a feasible pair PY `Ŷ `|X` , PX` such that when
fixing PY `Ŷ `|X` , the input distribution PX` is a maximizer
of f(·, PY `Ŷ `|X`), and when fixing PX` , the joint conditional
distribution PY `Ŷ `|X` is a minimizer of f(pX` , ·), then the
pair (PY `Ŷ `|X` , PX`) is a saddlepoint.

We need to show that if P̂X , P̂Y Ŷ |X is a saddlepoint for the

single-letter case, then, P̂ (`)
X , P̂

(`)

Y Ŷ |X
is a saddlepoint for the

multiletter bound. Based on the aforementioned argument, it is
sufficient to show that P̂ (`)

Y Ŷ |X
is a minimizer of (39) by fixing



P̂
(`)
X . This is because it is known that 1

`C(P̂
(`)

Ŷ |X
) = C(PŶ |X),

i.e., the product distribution P ∗(`)X achieves C(P̂
(`)

Ŷ |X
).

In the following lemma we prove that by fixing P̂
(`)
X ,

then P̂
(`)

Y Ŷ |X
satisfies the KKT conditions and hence, it is

a minimizer of (39). Before stating the result we recall that
the multiletter counterparts of the single-letter KKT conditions
given in (27) and (28) hold. Moreover, as in the single-letter
case, the multiletter KKT conditions are sufficient for global
optimality, because the function f(P̂

(`)
X , ·) is concave. Using

Lemma 3 below completes the proof.
Lemma 3: Let P̂X , P̂Y Ŷ |X be a saddlepoint for optimization

problem (4). Set PX` = P̂
(`)
X . Then, the joint conditional

distribution P̂ (`)

Y Ŷ |X
is a minimizer of

min
P

Y `Ŷ `|X`∈Mmax(d(`))

P
Y `|X`=W (`)

f
(
P̂

(`)
X , PY `Ŷ `|X`

)
. (41)

Proof: We should show that by setting PX` = P̂
(`)
X , the

multiletter versions of the KKT conditions (27) and (28) hold
for P̂ (`)

Y Ŷ |X
. Generalizing the conditions of (27) and (28) to the

multiletter case, and setting PY `Ŷ `|X` = P̂
(`)

Y Ŷ |X
, we should

show that for all j,k1 ∈ X ` × Y` there exist λj,k1
such that

the conditions below are fulfilled. If we show this, then the
Lemma is proved because these are precisely the conditions
for the minimizer of (41).
i) When P̂ (`)

Y Ŷ |X
(k1,k2|j) > 0 we must have,

∂

∂PY `Ŷ `|X`(k1,k2|j)
f(P̂

(`)
X , PY `Ŷ `|X`)

∣∣∣∣
P

Y `Ŷ `|X`=P̂
(`)

Y Ŷ |X

= λj,k1
. (42)

ii) When P̂ (`)

Y Ŷ |X
(k1,k2|j) = 0 and j ∈ S(`)(k1,k2) we must

have that,
∂

∂PY `Ŷ `|X`(k1,k2|j)
f(P̂

(`)
X , PY `Ŷ `|X`)

∣∣∣∣
P

Y `Ŷ `|X`=P̂
(`)

Y Ŷ |X

≥ λj,k1
. (43)

Similarly to (23), the derivative in (42) and (43) is,

∂

∂PY `Ŷ `|X`(k1,k2|j)
f(P̂

(`)
X , PY `Ŷ `|X`)

∣∣∣∣
P

Y `Ŷ `|X`=P̂
(`)

Y Ŷ |X

= P̂
(`)
X (j) log

P̂
(`)

Ŷ |X
(k1|j)

q̂
(`)

Ŷ
(k1)

(44)

which, by using that PY `Ŷ `|X` = P̂
(`)

Y Ŷ |X
, P̂ (`)

X and q̂
(`)

Ŷ
are

product distributions, gives,

P̂
(`)
X (j) log

P̂
(`)

Ŷ |X
(k1|j)

q̂
(`)

Ŷ
(k1)

= P̂X(j1)P̂X(j2) · · · P̂X(j`)

(∑̀
i=1

log
P̂Ŷ |X(k2,i|ji)
q̂Ŷ (k2,i)

)
(45)

In order to show that there exist some coefficients λj,k1

satisfying both (42) and (43), we make a particular choice
and show that the choice satisfies both (42) and (43). To this
end, define

λj,k1
=

{
0 P̂X(j) = 0∏`
i=1 P̂X(ji)

(∑`
i=1

λji,k1,i

P̂X(ji)

)
P̂X(j) 6= 0

(46)

where λji,k1,i is the single-letter Lagrange multiplier corre-
sponding to ji and k1,i.

Now, excluding the cases where
P̂X(j1)P̂X(j2) · · · P̂X(j`) = 0 where from (45), (42)
and (43) the KKT conditions clearly hold, we have two cases
i) When P̂

(`)

Y Ŷ |X
(j,k1,k2) > 0, then for all 1 ≤ i ≤ ` we

must have P̂Y Ŷ |X(k1,i, k2,i|ji) > 0 and therefore, (27) is
valid. We have to verify that this implies that (42) is also
valid. Thus,

∂

∂PY `Ŷ `|X`(k1,k2|j)
f(P̂X , PY `Ŷ `|X`)

∣∣∣∣
P

Y `Ŷ `|X`=P̂
(`)

Y Ŷ |X

= P̂X(j1)P̂X(j2) · · · P̂X(j`)

(∑̀
i=1

log
P̂Ŷ |X(k2,i|ji)
q̂Ŷ (k2,i)

)
(47)

= P̂X(j1)P̂X(j2) · · · P̂X(j`)

(∑̀
i=1

λji,k1,i

P̂X(ji)

)
(48)

= λj,k1 (49)

where (48) holds from the single-letter optimality in (27).
ii) When P̂

(`)

Y Ŷ |X
(k1,k2|j) = 0 and j ∈ S(`)(k1,k2), as a

result of Lemma 2, we have that S(`)(k1,k2) is a product set,
i.e., for all 1 ≤ i ≤ `,

ji ∈ S(k1,i, k2,i). (50)

Moreover, either P̂Y Ŷ |X(k1,i, k2,i|ji) > 0 where (27) is
satisfied or P̂Y Ŷ |X(k1,i, k2,i|ji) = 0 where (28) is satisfied.
Now, with these assumptions, we should verify that (43) is
valid. We have,

∂

∂PY `Ŷ `|X`(k1,k2|j)
f(P̂X , PY `Ŷ `|X`)

∣∣∣∣
P

Y `Ŷ `|X`=P̂
(`)

Y Ŷ |X

= P̂X(j1)P̂X(j2) · · · P̂X(j`)

(∑̀
i=1

log
P̂Ŷ |X(k2,i|ji)
q̂Ŷ (k2,i)

)
(51)

≥ P̂X(j1)P̂X(j2) · · · P̂X(j`)

(∑̀
i=1

λji,k1,i

P̂X(ji)

)
(52)

= λj,k1
(53)

where (52) is true because of the single-letter optimality in
(27) and (28).



IV. BINARY-INPUT CHANNELS

In [2], the authors state that for any DMC and decoding
metric d(x, y), the mismatch capacity Cd(W ) remains unal-
tered for a decoder with metric d̃(x, y) = d(x, y)+a(x)+b(y),
where a(x), b(y) are functions of the input and output, respec-
tively. This property suggests that for binary-input channels,
the mismatch capacity Cd(W ) is only a function of the
metric difference d(1, y) − d(2, y). In this section, we show
a necessary condition for Cd(W ) < C(W ) for binary-input
channels based on the above observation.

Definition 2: We say that two sequences {αi}Ki=1 and
{βi}Ki=1 have the same order if for all 1 ≤ i1, i2 ≤ K

αi1 ≥ αi2 ⇒ βi1 ≥ βi2 . (54)

We have the following result.
Theorem 1: Assume that W (k|j) > 0, for all j = 1, 2, k =

1, . . .K. If the sequences
{

logW (k|1) − logW (k|2)
}K
k=1

and
{
d(1, k)− d(2, k)

}K
k=1

do not have the same order, then
R̄d(W ) < C(W ).

Proof: Without loss of generality, we assume that the
sequence

{
d(1, k) − d(2, k)

}K
k=1

is non-decreasing, i.e., for
k1 ≤ k2,

d(1, k1)− d(2, k1) ≤ d(1, k2)− d(2, k2). (55)

This assumption simplifies the evaluation of the sets S(·, ·).
For k1 = k2 we have S(k1, k2) = {1, 2}. Moreover, when
k1 < k2 from (55) and Definition 1, we have that 1 ∈
S(k1, k2) and 2 ∈ S(k2, k1).

We prove a slightly stronger result. In particular, we prove
that the condition Cd(W ) = C(W ) implies that sequences{

P̂X(1) log
W (k|1)

q̂Ŷ (k)

}K
k=1

,
{
− P̂X(2) log

W (k|2)

q̂Ŷ (k)

}K
k=1

(56)

both should have the same order as the decoding metric
difference sequence {d(1, k)− d(2, k)}Kk=1, where recall that
the notation P̂X refers to the capacity-achieving distribution
of W .

Now assume that Cd(W ) = C(W ). Therefore,
P̂X , PY Ŷ |X = PY Y |X must be a saddle point of (9). As a
result, the KKT conditions in (27) (28) must hold. Observe
that

PY Y |X(k1, k2|j) =

{
W (k1|j) k1 = k2

0 k1 6= k2.
(57)

Therefore, combining the KKT conditions in (27) (28) we
have,

1) If k1 = k2, for both j = 1, 2 we have

P̂X(j) log
W (k1|j)
q̂Y (k1)

= λj,k1 (58)

2) If k1 < k2 we know 1 ∈ S(k1, k2) and 2 ∈ S(k2, k1)

P̂X(1) log
W (k2|1)

q̂Y (k2)
≥ λ1,k1 (59)

P̂X(2) log
W (k1|2)

q̂Y (k1)
≥ λ2,k2 (60)

Therefore we get if k1 < k2

P̂X(1) log
W (k2|1)

q̂Y (k2)
≥ λ1,k1 = P̂X(1) log

W (k1|1)

q̂Y (k1)
(61)

P̂X(2) log
W (k1|2)

q̂Y (k1)
≥ λ2,k2 = P̂X(2) log

W (k2|2)

q̂Y (k2)
. (62)

Therefore we get that
{
P̂X(1) log W (k|1)

q̂Y (k)

}K
k=1

and

−
{
P̂X(2) log W (k|2)

q̂Y (k)

}K
k=1

are both non-decreasing sequences
and so is any linear combination of them with positive
coefficients. Therefore, since

logW (k|1)− logW (k|2) =
1

P̂X(1)

(
P̂X(1) log

W (k|1)

q̂Y (k)

)
− 1

P̂X(2)

(
P̂X(2) log

W (k|2)

q̂Y (k)

)
(63)

we conclude that the sequence {logW (k|1)−logW (k|2)}Kk=1

is a non-decreasing sequence.
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