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Abstract—We use importance sampling to estimate the
random-coding union (RCU) bound to the achievable error
probability in coded-modulation wireless channels. We provide
closed-form expressions of the exponentially-tilted distributions
to generate the required samples, and illustrate the technique for
coded BPSK modulation over the i.i.d. Rayleigh fading channel.

I. INTRODUCTION

Evaluating the error probability of the transmission of coded
data over a continuous-output channel is a common problem in
digital communications. Efficient simulation methods of high-
performance codes were proposed in, e. g., [1] for low density
parity check (LDPC) codes. Together with other powerful
codes such as polar codes and turbo codes, LDPC codes as-
sume large code lengths. This assumption is yet not compatible
with the ultra-high reliability and low latency requirements for
next-generation wireless systems.

Instead of considering a good code, we study the random-
coding union (RCU) bound to the achievable error probability
[2, Eq. (62)]. Let x denote a transmitted codeword of length
n drawn from a constellation X , and let y be the received
sequence taking values over Cn. Random-coding arguments
show the existence of a code of M codewords, transmitted
over a memoryless channel with conditional density W (y|x),
whose error probability, the probability of decoding in favor
of the wrong codeword, is at most the RCU, given by

rcun =

∫
Qn(x)Wn(y|x) min

{
1, (M−1)pepn(x,y)

}
dxdy,

(1)
where the pairwise error probability pepn(x,y) reads

pepn(x,y) =

∫
Qn(x)1{Wn(y|x) ≥Wn(y|x)} dx, (2)

and 1{·} is the indicator function. The expressions (1) and (2)
are expectations with respect to the joint probability density

Qn(x)Wn(y|x)Qn(x). (3)

The exact computation of the RCU bound is cumbersome
even for simple channels and moderate values of n. Instead
of resorting to approximations (e.g., [3]–[5]), we explore fast
and accurate simulation to estimate (1).
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II. IMPORTANCE SAMPLING

We first note that both expectations (1) and (2) can be
cast as follows. Let f(z) be a non-negative function of some
random variable Z with density P (z). The standard Monte
Carlo estimate of a quantity pn = E

[
f(Z)

]
involves drawing

N samples zi from P (z) and computing the average

p̂n,N =
1

N

N∑
i=1

f(zi). (4)

The Monte Carlo estimator (4) is unbiased as its expected
value satisfies E[p̂n,N ] = pn. Besides, when f(z) in (4) is
an indicator function, it can be inferred that the number of
samples needed to estimate pn to a given accuracy level grows
as N ∝ p−1n , [6, Sec. 4.1]. Since the RCU bound decays
exponentially with the codeword length n, this implies an
exponential growth in the required number of samples.

Alternatively, importance sampling was proposed in [7] to
diminish the sampling size in estimating the error probability
of a communication scheme. Instead of estimating pn as (4),
this variance-reducing method involves generating i.i.d. sam-
ples from another distribution P̄ (z) [7] to estimate pn as

p̂n,N =
1

N

N∑
i=1

ω(zi)f(zi), (5)

where the weights ω(z) that account for the distribution
mismatch are given by the ratio ω(z) = P (z)/P̄ (z).

A good choice for P̄ (z) is known to be the exponential
tilting [6] that exploits the exponential decay of pn. For any
value s ≥ 0 and a function gn(z), we define the exponentially-
tilted distribution

P̄s,g(z) = P (z)esgn(z)−κn(s) (6)

in terms of the cumulant generating function [8] of gn(z),

κn(s) = log E
[
esgn(Z)

]
. (7)

The importance-sampling estimator (5) then becomes

p̂n,N = α̂n,N(s) · eκn(s), (8)

where

α̂n,N(s) =
1

N

N∑
i=1

e−sgn(zi)f(zi) (9)

and the samples zi are independently drawn from P̄s,g(z).



Roughy speaking, the importance-sampling estimator ap-
proximates the pre-exponential factor αn in the quantity
pn = αn(s) · eκn(s) by α̂n,N , instead of directly estimating
pn. The importance-sampling estimator (8) is also unbiased
[6, Sec. 4.2] with a normalized sample variance

σ2
n =

E
[
eκn(s)−sgn(Z)f(Z)2

]
− p2n

p2n
(10)

that is now reduced by properly choosing the parameters
involved in the exponential tilting, namely s ≥ 0 and gn(z).
A good choice of s is the minimizer

ŝn = arg min
s≥0

κn(s), (11)

whereas the choice of gn(z) depends on the structure of f(z).
We next apply the exponentially-tilted importance-sampling
method described in this section to estimate (1).

III. ERROR PROBABILITY ESTIMATION

We first note that for a fixed transmitted codeword x and
received sequence y, a nested estimator of the pairwise error
probability (2) is needed. A good choice of gn(x) for the
importance-sampling estimate of the pairwise error probability
in (2) with integration variable x is the log-likelihood ratio

`n(x,y,x) = log
Wn(y|x)

Wn(y|x)
. (12)

As stated later, this choice helps capturing the correct expo-
nential decay of the pairwise error probability in terms of n.
The cumulant generating function of `n(x,y,X) is given by

κn,τ (x,y) = log E
[
eτ ·`n(x,y,X)

]
(13)

and leads to the following tilted distribution P̄τ (x|y) in (6)
for the estimation of pepn(x,y)

P̄nτ (x|y) =
1

µn(y)
Qn(x)Wn(y|x)τ , (14)

where µn(y) is a normalizing factor. We remark that while
the log-likelihood `n(x,y,x) depends on the transmitted
codeword x, the conditional distribution (14) for the codeword
x depends only on the received sequence y through the tilted
channel density W (y|x)τ .

The importance-sampling estimator of the pairwise error
probability generates N1 independent samples xj from the
conditional probability distribution (14), computes the average

γ̂τ,N1(x,y) =
1

N1

N1∑
j=1

e−τ ·`n(x,y,xj)fpep(x,y,xj), (15)

where we defined

fpep(x,y,x) = 1
{
`n(x,y,x) ≥ 0

}
, (16)

and finally obtains the final estimate

ˆpepn,N1
(x,y) = γ̂τ,N1(x,y) · eκn,τ (x,y). (17)

The tilting parameter τ is chosen as τ = τ̂n(x,y), where

τ̂n(x,y) = arg min
τ≥0

κn,τ (x,y). (18)

Note that τ used in the function κn,τ (x,y) depends on both
x and y. Yet, we drop the dependence on x,y in τ̂n to lighten
the notation. Basic results in large-deviation theory imply that
for memoryless channels the pairwise error probability (2)
behaves exponentially as

lim
n→∞

log pepn(x,y)

κn,τ̂n(x,y)
= 1. (19)

We now address the importance-sampling estimate of the
random-coding union bound in (1), an expectation with respect
to the integration variables x and y. In this case, we select
the random variable

gn(x,y) = log(M − 1) + κn, 1
1+ρ

(x,y) (20)

because its cumulant generating function, given by

χn(ρ) = log E

[
(M − 1)ρ

(
E
[
Wn(Y |X)

1
1+ρ |Y

]
Wn(Y |X)

1
1+ρ

)ρ]
, (21)

gives the random-coding exponent [9, Sec. 5.6]. As a result,
we will restrict the parameter ρ in the [0, 1] interval. Using (6),
every pair of samples (xi,yi) is drawn from

P̄nρ (x,y) = Qn(x)W̄n
ρ (y|x), (22)

where W̄n
ρ (y|x) is the tilted channel density given by

W̄n
ρ (y|x) =

1

µn
Wn(y|x)

1
1+ρ

(
E[Wn(y|X)

1
1+ρ ]

)ρ
(23)

with normalizing factor µn. Inspecting (22), we observe that
the transmitted codewords xi are generated with the original
random coding distribution Qn(x), whereas the received se-
quences yi are drawn from the modified channel transition
probability (23).

The importance-sampling estimator for the RCU bound (1)
based on the independently generated pairs of samples xi,yi
from the probability distribution (22) is given by

ˆrcun,N1,N2 = α̂n,N1,N2(ρ) · eχn(ρ), (24)

where the pre-factor estimate reads

α̂n,N1,N2
(ρ) =

1

N2

N2∑
i=1

e−ρ·gn(xi,yi)frcu(xi,yi) (25)

with frcu(xi,yi) a function that depends on the pairwise error
probability estimate (17) as

frcu(x,y) = min{1, (M − 1) ˆpepn,N1
(x,y)}. (26)

For choice of

ρ̂n = arg min
0≤ρ≤1

χn(ρ), (27)

it follows from basic results in large-deviation theory that

lim
n→∞

log rcun
χn(ρ̂n)

= 1. (28)



In summary, we proposed an importance-sampling estimator
for the RCU bound (1) built from two nested estimators.
Transmitted codewords x are drawn from the original random-
coding distribution and received sequences y are generated
from the modified channel transition probability (23) with
optimal tilting parameter ρ̂n related to the random-coding error
exponent (28). For a given transmitted codeword and received
sequence, the pairwise codewords x are generated indepen-
dently from x but conditioned on y from the conditional
distribution (14) with optimal tilting parameter τ̂n related to
the exponential decay of the pairwise error probability (19).

We remark that (14) and (23) might not be standard prob-
ability distributions. Yet, samples can be efficiently generated
using, e. g., the rejection method described in [10, Ch. II.3].

We finally briefly discuss the performance analysis of the
proposed importance-sampling estimator. We observe that
ˆrcun,N1,N2

is the sum of N2 independent terms, each of them a
nonlinear function of the inner estimator ˆpepn,N1

(xi,yi) that
is also the sum of N1 independent terms. Using refined central-
limits theorems and Taylor expansions in inverse powers of N1

and N2, we show in [11] that for memoryless channels and
sufficiently large code length n, as both N1 and N2 tend to
infinity the importance-sampling estimator (24) converges in
probability1 to the exact RCU bound rcun according to

ˆrcun,N1,N2

p−−−−−−−→
N1,N2→∞

rcun

(
1− k1,n

N1
+

√
k2,n
N2

Θ

)
, (30)

where k1,n and k2,n are positive numbers growing with n as
O(
√
n), and Θ is the standard normal random variable.

Since k1,n in (30) is a positive term and Θ is a zero-mean
random variable, it implies a negative bias in the estimation
of the RCU bound. Yet, the estimator is consistent, as the bias
vanishes as N1 goes to infinity, although the bias might be sig-
nificant for small values of N1. The variance term k2,n in (30)
grows as the squared root of n, implying a significant reduction
in the variance with the importance-sampling estimator, as the
number of samples needed to accurately estimate the RCU
bound for a given confidence level grows as N2 ∝

√
n, rather

than the typical growth N2 ∝ rcun
−1 in standard Monte Carlo

[6, Sec. 4.1], which would be exponential in the code length
n in our setting of a memoryless channel.

.

IV. NUMERICAL EXAMPLE

We illustrate the above importance-sampling estimator of
the RCU bound for the binary phase-shift keying (BPSK)
modulation. We denote the symbol set X = {−

√
P ,+

√
P},

where P is a positive number describing an average power

1Two sequences of random variables AN and BN indexed by N are said
to converge in probability if for all ε > 0, it holds

lim
N→∞

Pr[|AN −BN | > ε] = 0. (29)

We denote the convergence in probability by AN
p−−−−−→

N→∞ BN .
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Fig. 1. Error probability versus Eb/N0 over the AWGN channel, for code
rate Rb = 0.5, N1 = N2 = 500 samples, and several code lengths n.
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Fig. 2. Error probability versus n over the AWGN channel, for code rate
Rb = 0.5, N1 = N2 = 500 samples, and several values of Eb/N0.

constraint. A codeword x = (x1, . . . , xn) is transmitted over
the i.i.d. Rayleigh fading channel described by

yi = hixi + wi, (31)

where y = (y1, . . . , yn) is the received sequence, w =
(w1, . . . , wn) is an i.i.d. real-valued zero-mean Gaussian noise
with variance σ2. Since the phase of the fading coefficients is
irrelevant, we assume that h = (h1, . . . , hn) is a real-valued
i.i.d. Rayleigh distributed with density

pn(h) =

n∏
i=1

2hie
−h2

i1{hi ≥ 0}. (32)

The symmetry of BPSK implies that the input distribution
Qn(x) that optimizes both the exponential decay (28) and the
channel capacity, denoted as Cb, is the uniform distribution

Qn(x) =
1

2n
. (33)
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Fig. 3. Error probability versus Eb/N0 over the i.i.d. Rayleigh channel, for
code length n = 1024, N1 = N2 = 500 samples, and several code rates Rb.

The input distribution Qn(x), together with the channel con-
ditional density given by

Wn(y|x,h) =

n∏
i=1

1√
2πσ2

e−
(yi−hixi)

2

2σ2 , (34)

determine the required parameters for the importance-
sampling estimator (24), namely the the cumulant-generating
functions (13) and (21), the optimal tilting parameters τ̂n
and ρ̂n respectively in (18) and (27), and the tilted distri-
butions (14) and (23). The additive white Gaussian noise
(AWGN) channel can be recovered from (34) by setting

pn(h) = δn(h− 1) (35)

where δn(·) is the n-dimensional Dirac delta, and 1 is the
all-ones length-n vector. As usual, we define the code rate as

Rb =
1

n
log2M, (36)

and the coded average Eb/N0 ratio as

Eb

N0
=

P

σ2
· 1

2Rb
. (37)

We set N1 = N2 = 500 to estimate the achievable error
probability by means of the RCU, and include Shannon’s
sphere-packing bound [12, Eq. (15)] for the AWGN channel
or an improved sphere-packing bound [13, Th. 3.1] for the
i.i.d. Rayleigh fading channel. The error probability of good
binary codes must lie between the RCU and the sphere-
packing bounds, as shown in Figs. 1–4 in gray-shaded regions
for several configurations of codeword length n, code rate Rb

and coded Eb/N0 ratio. In the presence of fading, we observe
a larger gap between achievability and converse bounds com-
pared to the AWGN case, especially for small values of n. As
another example, a performance loss of approximately 2 dB
in Eb/N0 is noticed at n = 2048 in Fig. 4 for the fading case
when compared to the AWGN case in Fig. 1.
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Fig. 4. Error probability versus Eb/N0 over the i.i.d. Rayleigh channel, for
code rate Rb = 0.5, N1 = N2 = 500 samples, and several code lengths n.

V. CONCLUSION

In this paper, we proposed an importance-sampling tech-
nique to estimate the random-coding union (RCU) bound to
the achievable error probability for the transmission of coded
data over a continuous-output channel. We derived closed-
form expressions for the optimal tilted distributions needed
to generate the samples of the two nested estimators involved,
and illustrated the transmission of the coded BPSK modulation
over the AWGN and i.i.d. Rayleigh fading channels.
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